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We have studied the superfluid transition of thin two-dimensional 4He films adsorbed on an

oscillating substrate. The superfluid mass and dissipation support the Kosterlitz-Thouless pic-

ture of the phase transition in a two-dimensional superfluid. In addition we observe finite-

velocity effects which are not explained by current dynamic theories. We also report data on

two-dimensional He- He mixtures.

This paper is a report of our studies of the super-
fluid transition in two-dimensional (2D) He films. Pre-
liminary reports have appeared elsewhere. ' ' The pa-
per is divided into seven sections. Section I is an in-

troduction. In Sec. II we describe our experiment
and discuss our results. Section III discusses the
Kosterlitz-Thouless theory and its extension to in-

clude dynamic effects by Huberman, Myerson, and
Doniach4 and by Ambegaokar, Halperin, Nelson, and
Siggia (AHNS). ' Section IV discusses the calibration
of the oscillator and Sec. V discusses the fits to our
data. Section VI presents some preliminary data on
'He- He two-dimensional mixtures and Sec. VII
presents our final conclusions. There are three ap-
pendices. Appendix A contains the fitting algorithm
for the dynamic theory, Appendix B contains the
derivation of the constant-te'rnperature theory curve
and, Appendix C contains a table summarizing all

our data.

INTRODUCTION

There has been much work over the years on the
question of long-range order in two-dimensional sys-

tems. Bloch in 1930 first showed that in one- and

two-dimensional magnetic lattices there exists no fi-

nite spontaneous magnetization at a nonzero tem-

perature. In 1935 Peierls' showed the same for crys-

talline order and Osborne' in 1949 showed that an

analogous result holds for momentum order in a

Bose gas. Later, more general arguments were put
forth concerning long-range order in all two-

dimensional systems by Mermin, and Mermin and

Wagner. ' In 1967 Hohenberg" showed that the ex-
pectation value of the superfluid order parameter in a

2D Bose fluid is zero. Therefore, there appears to be
strong theoretical evidence for the fact that super-

fluidity of the conventional type should not exist in a
two-dimensional system.

However, experimentally there has been much evi-
dence to the contrary. Rollin" in 1936 first postulat-
ed the existence of the superfluid film to explain an
anomalous heat flow into a cryostat. Experimentally

saturated films were studied first by Daunt and Men-
delssohn' in 1939. Superfluid flow in much thinner
unsaturated films was first shown by Long and
Meyer' in 1950 and later by Bowers, Brewer, and
Mendelssohn. " Since that time an enormous amount
of work has been devoted to the study of ever
thinner, unsaturated superfluid films. ' For example
recent experiments performed at Cornell' have ob-
served the superfluid properties of 4He films with a
thickness of only 0.01 active atomic layers. There-
fore, if the concept of a two-dimensional system has
any meaning in an experimental sense then there ap-
pears to be a contradiction between theoretical expec-
tation and experimental observation with regard to
superfluidity in two dimensions.

There has been much work to reconcile this grow-

ing discrepancy between theory and experiment. " In
1953 Ziman' examined the Bose gas in a slab
geometry. He found that in a two-dimensional sys-
tem of extent L, and thickness D, that the condensa-
tion temperature varies as (lnL) ' as L ~. Thus a

true two-dimensional Bose system of finite thickness
and infinite lateral extent has a transition tempera-
ture equal to zero. He speculated that superfluidity
in thin films might be due to some finite upper limit
on the size of the cooperating superfluid regions of the
order of 700 A. Work was done by Mills, '9 Khorana
and Douglass, Goble and Trainor, "Dewar and

Frankel, and Penrose to further develop this idea.
Ho~ever, a different approach was taken by other

workers. Lasher, ' Berezinskii, "and Kosterlitz and
Thouless defined a different type of order to be as-
sociated with superfluidity in two dimensions. Long-
range order of the conventional sense which was as-
sociated with superfluidity in three dimensions is im-

possible in a two-dimensional system. They defined
a new type of order. This new type of order to be as-
sociated with superfluidity in two dimensions is re-
ferred to as long-range coherence by Lasher and as
topological long-range order by Kosterlitz and Thou-
less. These theories can be applied to the XY model
of magnetism, the solid-liquid transition, supercon-
ductors, and the neutral superfluid, but not the
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Heisenberg ferromagnet.
In the Kosterlitz-Thouless model' the two-

dimensional superfluid is populated by a system of
bound vortex-antivortex pairs. At low temperatures
isolated vortices cannot occur because their energy
increases logarithmically with the size of the system.
However, pairs of vortices with equal and opposite
vorticity have finite energy and must occur because
of thermal excitation. Such pairs, however, do not
destroy the topological long-range order of the system
because the net vorticity is zero. At finite tempera-
tures the phase of the order parameter varies with
position and the type of long-range order defined by
Penrose and Onsager" does not exist. However, as
long as the order in the system exists locally, the
phase can be correlated from region to region. It is
this type of order which is associated with the super-
fluidity in the two-dimensional system.

At higher temperatures a fraction of the pairs dis-
sociate and superfluidity is destroyed. Kosterlitz and
Thquless derived the relation between the superfluid
density at onset p, (T, ) and the transition tempera-
ture T, . Their result is

p, (T, ) 2k m'

Tc
8

This equation is the central result of the Kosterlitz-
Thouless theory.

Experimentally there has also been much work on
this problem. However. the results have been more
ambiguous than the predictions of the theory. In
1968 there was evidence that the superfluid density
in two-dimensional helium films might be nonzero at
the superfluid onset. For example third-sound stud-
ies by Rudnick's group at UCLA' showed that the
third-sound signal disappeared while the third-sound
velocity was still finite. Also persistent current mea-
surements on helium films indicated that the super-
fluid critical velocity was becoming zero while the su-
perfluid density was still finite. An attempt was
made to explain the anomalous third-sound attenua-
tion scen in the UCLA experiments by applying a
macroscopic quantum uncertainty principle to the
flow of superfluid helium. '

Unfortunately, neither third-sound nor persistent
current measurements can be used to pursue the
question of the superfluid density behavior in the
transition region, since third-sound signals become
heavily damped and do not propagate, and persistent
currents decay away. The first experiments which
were able to examine the superfluid density continu-
ously in the transition region were the quartz micro-
balance experiments of Chester and Yang. ' In these
experiments, which are similar in concept to the
present work, the superfluid density throughout the
entire critical region could be measured. Unfor-
tunately these quartz microbalance experiments and

later ones by Herb and Dash ' failed to measure the
dissipation in the system and were performed in the
MHz frequency range and showed, as would now be
expected on the basis of the dynamic theory, consid-
erable broadening of the transition region. Therefore
until recently the experimental situation remained
ambiguous. The third-sound results were subject to
two interpretations, either at T„p,(T, ) was finite, or
for T & T„ the dissipation in the system became very
large. The quartz microbalance experiments shed no
light on the question of a finite p, at T, because of
the broadening of the transition due to the high fre-
quency of the quartz microbalance in accord with the
predictions of recent dynamic theories. In addition
another vital clue, the peak in superfluid dissipation
at the transition, was missed by the experimentalists.
They failed to measure both the in- and out-of-phase
components of their oscillator signals and therefore
did not simultaneously measure the superfluid densi-
ty and dissipation.

In 1975 a modified version of the Andronikashvi-
li" method incorporating a high-Q torsional oscillator
was used to measure the superfluid density of thin
He films adsorbed on Vycor glass. '" At the transi-

tion the superfluid density was seen to go continu-
ously to zero characterized by a bulk critical exponent
and was not accompanied by any superfluid dissipa-
tion. This was interpreted as a result of the three-
dimensional charactei' of the substrate with the 4He

film behaving as a dilute three-dimensional surface
gas.

In 1977 the current 4He film experiments were
started using a two-dimensional Mylar substrate in a
high-0 Andronikashvili torsional oscillator. At the
transition a precipitous superfluid density and a sharp
peak in the superfluid dissipation were observed. We
were able to follow these features through the transi-
tion region with high resolution. We feel that these
experiments provided the first unambiguous indica-
tion of the precipitous nature of the superfluid densi-
ty at the critical transition for two-dimensional 4He

films. This paper is a discussion of our observations
and our analysis of the data through the dynamic
theories of Huberman, Myerson, and Doniach4 and
Ambegaokar, Halperin, Nelson, and Siggia. '

II. EXPERIMENTAL METHOD

In this section we will describe the Andronikashvili
technique used in the present series of experiments.
The method due initially to Andronikashvili, ' has
been modified by us for use in our thin-helium-film
experiments. The technique makes use of the two-
fluid nature of superfluids. In Andronikashvili's ori-
ginal experiment a stack of disks at the end of a tor-
sional fiber was placed in a bath of superfluid helium.
The plates are closely spaced such that the normal
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long wound as a spiral on the axis of a torsional oscil-
lator. The helium for the experiment is admitted
through the hollow torsion rod. The oscillator is in-

corporated into a feedback loop consisting of an am-

plifier, active filter, phase shifter, and zero-crossing
detector. 6 In such a circuit the torsional oscillator is
the frequency-determining element. Hence by simply
counting the resonance frequency of the loop of
about 2.5 KHz we can determine the moment of in-

ertia to five parts in 109.
In operation, helium is admitted into the cell and

the cell is allowed to anneal at a high temperature
(—10 K). This gives the helium an opportunity to
distribute itself uniformly. The cell is then cooled
and the period and Q are measured as a function of
temperature. At each point the temperature is regu-
lated to +10 p, K and the period allowed to stabilize
to several parts in 109 before a reading is taken.
Equilibrium time is approximately 30 min. When the
oscillator is cooled below the transition temperature,
the superfluid decouples from the torsion pendulum
and the period of the oscillator decreases (see Fig. 2).
In addition, one sees a pronounced narrow peak in
the dissipation of the superfluid at the transition
(seen in Fig. 2 as a dip in the Q of the system). This
dissipation remains at a nonzero level as the tempera-
ture is lowered well below the transition temperature.
The width of the transition region where the period
changes rapidly and the peak in dissipation occurs is
less than I'/o of the transition temperature.

In practice the quantities in which we are interested
are the period shift due to the superfluid and the su-
perfluid dissipation. Shown in Fig. 3 are the shift in
period AP which is proportional to the superfluid
mass and the superfluid dissipation Q . The nar-
rowness of the onset features can be seen in this pic-
ture.

fluid is clamped to them and dragged by them as they
oscillate. The superfluid component of course is not
affected by the plates. Sy measuring the resonant
frequency of the system one can determine the
amount of normal mass that is trapped by the plates
and determine the superfluid density of the liquid.

Our modification involves using an extremely
high-Q torsional oscillator (see for example Refs.
1—3, 16, 34, and 35). By using an oscillator with a

Q & 10', we are able to resolve the moment of iner-
tia of the system to better than five parts in 10 .
Thus, even though we have an extremely thin-4He
film (a few atomic layers) we have enough resolution
to resolve the superfluid mass of these films to one
part in.104. This technique of course allows us to
measure the superfluid mass through the transition
region. Other techniques used to investigate super-
fluid 4He films in a two-dimensional geometry such
as third sound, persistent currents, heat transfer, and
mobility suffer from loss of signal and/or low preci-
sion in the critical region. The quartz microbalance
of Chester and Yang ' does allow one to measure the
superfluid mass through the transition region. How-

ever, the precision of our experiment is much higher
owing to the larger surface area of our cell and the
high Q. In addition we measure the dissipation of
the superfluid film which provides a crucial piece of
information.

In the experiment reported here, helium films are
adsorbed on a substrate of Mylar45 film. The sample
cell (shown in Fig. 1) contains a strip of the plastic
film 6 x 10 4 cm thick, 1.0 cm wide, and about 21 m
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FIG. 3. Shift in period, hP, and the change in dissipation
attributable to the superfluid, Q ', are shown as a function
of temperature at the superfluid transition.

These features in the dissipation are unique to the
two-dimensional superfluid. Neither the Androni-
kashvili experiments in bulk helium nor the experi-
ments performed for the films adsorbed on the
three-dimensionally connected substrate, porous
Vycor glass, '4 exhibit any excess dissipation associat-
ed with the superfluid transition. The peak in dissi-
pation in the present experiment points to a funda-
mental difference between onset phenomena in two-

and three-dimensional superfluids.
To further emphasize this difference, shown in Fig.

4 are the superfluid masses as measured by Vycor
and 20 Mylar Andronikashvili cells. Note that the
Vycor results show a continuous superfluid density at
onset. For Vycor the superfluid density (or period
shift) obeys a power law of the form

SJ (T) =W (1 —T/T, )&

where ( assumes its bulk value of
3

(see Ref. 34).2

The Vycor is a three-dimensionally interconnected
system and hence the 30-like behavior of the super-
fluid density. in contrast however one sees that the
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FIG. 4. Superfluid period shift for He in a Vycor and

Mylar Andronikashvili cell.
FIG. 5. Dissipation peak for a single film at three dif-

ferent values of cavity velocity (arbitrary units).

superfluid density in the two-dimensional geometry
changes much more sharply at the transition. There-
fore both systems have fundamentally different
behavior at the transition as regards both the super-
fluid mass and the dissipation. This emphasizes the
crucial role substrate geometry plays in determining
the nature of the superfluid transition in thin 4He

films.
In practice the dissipation peak shown in Fig. 3

(and to a lesser extent the period shift) are depen-
dent on the velocity of the cell as is shown in Fig. 5.
%e show the dissipation peak for the same thickness
film for three different drive velocities. As the drive
velocity is increased, the dissipation peaks broaden
out, become larger, and move to lower temperatures.
At low velocities (less than 10 3 cm/sec) we find that
the period and 0 are velocity independent, while at
larger velocities nonlinear effects set in, and the tran-
sition region and dissipation peak are broadened.
This is shown in Fig; 6. %e have plotted for a single
film thickness the width of the dissipation peak as a
function of cavity velocity. Note that for velocities
less than 10 p, m/sec, the width is independent of
velocity. However as the cell velocity is increased
beyond some critical value the height and width be-
come a function of velocity.

The dynamic extension of the Kosterlitz-Thouless
theory described in Appendix A is inappropriate to
model the data in the high-velocity regime. The ver-
sion of the theory by AHNS5 worked out in Appen-
dix A assumes the validity of linear response. Unfor-
tunately this assumption is no longer valid in the --.

high-velocity regime. Therefore the fits to theory can
only be made using the low-velocity data. As we
understand it, work on a more complicated version of
the theory allotting for high-velocity effects is
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highest points in Fig. 7 have been so corrected.
In Sec. III we discuss the Kosterlitz-Thouless static

theory and its extension to include dynamic effects
by Ambegaokar, Halperin, Nelson, and Siggia and by
Huberman, Myerson, and Doniach.

III. KOSTERLITZ-THOULESS THEORY

l

)OO.G
l

10,0
Velocity

FIG. 6. Width of the dissipation peak as a function of
cavity velocity {in arbitrary units).

&.0

currently underway. '
In Fig. 7 we display the thickness dependence of

the transition temperature T, for the two-dimensional
superfiuid. Note that we observe a very good linear
dependence. The nature of the cell design is such
that it has a large open volume (1.2 cm'). This re-

quires that at higher temperatures allowance be made
for gas admitted into the cell which remains vapor,
not absorbed onto the Mylar substrate. The three

In the Kosterlitz-Thouless model, which we wish
to use to interpret our measurements, the two-
dimensional superfluid is populated by a system of
bound vortex-antivortex pairs. At low temperatures
isolated vortices cannot occur because their energy
increases logarithmically with the size of the system.
However, pairs of vortices with equal and opposite
vorticity have finite energy and must occur because
of thermal excitation. Such pairs, however, do not
destroy the topological long-range order of the system
because the net vorticity is zero. At finite tempera-
tures the phase of the order parameter varies with

position and the type of long-range order defined by
Penrose and Onsager' does not exist. However, as,
long as the order in the system exists locally, the
phase can be correlated from region to region. It is

this type of order which is associated with the super-
fluidity in the two-dimensional system.

At higher temperatures a fraction of the pairs dis-
sociate and superfluidity is destroyed. In a simple ar-

gument Kosterlitz and Thouless derived the relation
between the superfluid density at onset p, (T, ) and
the transition temperature T, . Their argument goes
as follows:

The energy and entropy of a single vortex both
depend logarithmically on the size of the system,
The energy term will dominate the free energy at low

temperatures and the probability for the appearance
of a single vortex will be very small. However, at
some point the entropy term will dominate the free
energy and vortices will appear spontaneously. The
critical temperature is given by the point at which the
free energy changes sign.

An isolated vortex has a velocity field given by
(n =1)

where a is the size of the vortex core, R is the size of
the system, and Z is normal to the surface. The ener-

gy of such a vortex is given by

G.G
25 30 35

Film Thickness (p mol&m l

40
A R

p
' d f p =p 7/in

FIG. 7.' Transition temperature as a function of film
thickness. The open squares have been corrected for the
vapor pressure of the 4He gas in the cell. The intercept po is

24.91 p, mol/m2.

The entropy of a free vortex is given by

R5 =kg ln—
0

(4)
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We set the free energy (E —T,S ) equal to zero and
obtain the final result

p, (T, ) =—ks-, T,
Pl

(5)

This is the central result of the entire Kosterlitz-
Thouless static theory. This result was derived in
their original paper (see Ref. 26) as a result of a
more sophisticated calculation.

In a subsequent publication Kosterlitz" rederived
this result in a renormalization-group calculation. He
also first pointed out that Eq. (5) implies that the su-
perfluid mass is nonzero at onset. This was verified
by another renormalization-group calculation by Jose,
Kadanoff, Kirkpatrick, and Nelson. ' Further, as has
been emphasized by Nelson and Kosterlitz, '4O Eq. (5)
implies that the ratio of the superfluid mass per unit
area at onset to the transition temperature, is a
universal quantity, independent of film thickness. It
is this central prediction of the Kosterlitz-Thouless
theory which we will address in our discussion of the
experimental results.

In the Kosterlitz-Thouless static theory the super-
fluid density near the transition is given by (see, for
example, Ref. 40)

p, (T) = p, (T, ) [I + b (I —T/T, )' 1 (6)

5.0

4.0

E
~ ~.0E

'0
2.0

In this formula, the superfluid density at onset
p, ( T, ) is given by Eq. (5). The square-root cusp at
the transition is due to interactions among vortices
which were ignored in the original calculation of Kos-
terlitz and Thouless' but which were later taken into
account in a calculation by Kosterlitz. The quantity
b determines the strength of the square-root cusp in
Eq. (6). As the result of a mean-field calculation,
Nelson and Kosterlitz estimate b to be of the order
of 0.5. However, its value is expected to be
nonuniversal. Shown in Fig. 8 is the prediction of the
static theory for the superfluid density for various
thickness films using the results of Ref. 40.

Unfortunately, present techniques for the determi-
nation of the superfluid mass in thin-helium films
cannot test the static theory directly, since they all re-
quire measurements at a nonzero frequency and su-
perfluid velocity. As a result, one does not expect to
see the discontinuous jump in the superfluid mass in

the static theory, but to find a continuous variation
with temperature at the transition. In addition, one
expects to find considerable dissipation associated
with the vortex motion induced by the superflow re-
quired for the superfluid mass measurements.

The problem of dissipation at the phase transition
in a two-dimensional superfluid has been treated re-
cently by Huberman, Myerson, and Doniach4 and
Ambegaokar, Halperin, Nelson, and Siggia (AHNS). 5

These authors have extended the static Kosterlitz-
Thouless theory to the case of finite frequency and
nonzero superfluid velocity.

The behavior of the two-dimensional superfluid as
seen in our experiment can be understood in terms
of the dynamic theory of Ambegaokar, Halperin,
Nelson, and Siggia' (AHNS). In their theory, as well

as in the calculation of Huberman, Myerson, and
Doniach4 dissipation is associated with the diffusive
motion of two-dimensional vortices driven by the os-
cillating superflow. The more comprehensive form
of the dynamic theory given by AHNS' is directly ap-
plicable to the data in the high-frequency regime
where the present experiment is performed. The
theory of Huberman et al. is valid in the limit of zero
frequency and finite amplitude while the theory of
AHNS is valid for finite frequencies and small ampli-
tudes. Because our experiments were performed at
finite frequencies it is the theory of AHNS that we
have used in our analysis.

In the analysis performed by AHNS the dissipation
of energy is due to the diffusive motion of free vor-
tices and the polarization of bound pairs. Contribu-
tions from free vortices and bound pairs enter in the
various regimes. Using the results of their theory
they have derived the observed period shift and dissi-
pation for a "He film adsorbed on an oscillating sub-
strate, The details of the derivation are given in Ap-
pendix A.

In brief, the reduced period shift 25P/P and the
superfluid dissipation Q

' are related to a frequency-
dependent dielectric constant e by the following rela-
tions:

p, (T, ) Re(e ')

1.0

0.5
T(K)

1.0
I

1.5
0 '= —p, (T, ) Im( —e ')

FIG. S. This figure shows the superfluid density for three
different thickness films as a function of temperature ac-
cording to the Kosterlitz-Thouless static theory.

The real part of e is taken as due to bound pairs ac-
cording to Eq. (9a) of AHNS. It is calculated by a
numerical integration of the Kosterlitz recursion rela-
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tions (see Appendix A for details). For the ima-

ginary part of e contributions due to bound pairs,
free vortices, and a constant background (to account
for the dissipation remaining well belo~ the transi-
tion) are added together. The static theory contains
three parameters p, (T, ), T„and b. The dynamic
theory contains three more parameters in addition to
those in the static theory. There is a dimensionless
parameter In(2D/cuba~) related to the vortex diffusion
constant D, the vortex core radius a, and the fre-
quency of the osci11ator co. There is a coefficient of
the free-vortex dissipation and a background term,
mentioned above, which plays almost no role in the
transition region.

In Eqs. (7) and (8), the term (A /M) is the ratio
of the area of the Mylar substrate A to the effective
mass M of the pendulum bob when the pendulum is
treated as a linear oscillator. The ratio is obtained
from a knowledge of the area of the substrate and a
measurement of the sensitivity of the oscillator
period to changes in the mass per unit area of the ad-
sorbed helium. This calibration is described in Sec.
IV.

In the analysis of our data taken for different cov-
erages of adsorbed helium, we allow the value of the
Kosterlitz-Thouless jump p, (T, )to be a fre. e param-
eter to be determined by an optimization of the fit of
relations (7) and (8) to the data. This is later
described in more detail.

IV. OSCILLATOR CALIBRATION

To fit our data to Eqs. (7) and (8) we need to mea-
sure the quantity (A /M) for our system, where A is
the area of the substrate and M is its effective mass.
The area is taken to be the geometric surface area of
the Mylar film which is 0.428 m'. The effective mass
of the pendulum bob is obtained by treating the sys-
tem as a linear harmonic oscillator.

The measurement of the oscillator effective mass
or the calibration of the sensitivity of the oscillator
period to changes in the mass per unit area of the ab-
sorbed helium is obtained from a separate experi-
ment. For the calibration measurement, we hold the
temperature of the system constant and observe the
period of the oscillator as the mass per unit area of
adsorbed helium is increased (this is shown in Fig.
9). When the coverage of helium is less than a criti-
cal amount, which depends on the temperature at
which the observations are made, the adsorbed heli-
um is entirely locked to substrate and contributes its
entire moment of inertia to the pendulum bob. By
measuring the amount of helium adsorbed on the
substrate we determine the sensitivity of the period
to the adsorbed mass per unit area at a nonzero fre-
quency and superfluid velocity. The slope (d,P/b p)
of the line in this region where normal fluid is being

added to the system is related to the effective mass
M of the oscillator by

=5.09 g,hP
hp

AP p+Pp,
lip

where (AP/b p) is the slope of the normal-fiuid re-

QOOB73

a00869

g0,00865

~ 0.00861

~0.00857
I

Xl

0,00853

I l I l I l I l I l I l I

0,00849

0.00845

Q00841
24 26

l

28
l I l I l

30 32 34
Film Thickness (p. rIIol/rn )

2

FIG. 9, Period as a function of film thickness at a con-
stant temperature. The solid and dashed lines are the
results of the static theory for two different values of X, the
roughness factor,

where v is the period. This effective mass is used in
conjunction with the area to calculate the prefactors
of Eqs. (7) and (8).

When the film coverage is increased above a criti-
cal amount, superflow becomes possible and a nearly
discontinuous drop in the period of the oscillator is
observed (see Fig. 9). Of course the variation of
period with coverage is actually continuous, but to
trace out the continuous variation, as is done in the
temperature sweeps (see Figs. 2 and 3), would be
very tedious, since steps of 10 of total coverage
would be required.

The solid line in Fig. 9 is a theory curve using the
static-theory formula given in Eq. (6). As previously
pointed out this sort of measurement represents a
fairly low resolution picture of what is happening at
the transition. The difference between the static and
dynamic theory when viewed in a picture such as Fig.
9 represents a difference about equal to the sipe of
the dots in the picture. Therefore we can safely
make use of the static theory to analyze this particu-
lar measurement.

Starting with the static-theory formula, Eq. (6), we
obtain the following formula for the period during a
constant temperature measurement (see Appendix I3

for details). The jump occurs at density pI, and tem-
perature T&. p is the total density.

For p& p~
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x 1+ — —,11

AC

r
1 1/2~

P —Pi

P —Po
+Pp, (10)

gion of Fig. 9 and Po is the intercept and p is the to-
tal density.

For p~p&
r

p —(1 —X)AC (p —pp)
hP .

Ap

~ 4.20
P

C

3.60

I—Dynomic Theory—- Stotic Theory

where A is the slope of the transition temperature
versus density line and po is the intercept. C is the
value of the Kosterlitz-Thouless jump and X is the
fraction of superfluid coupled to the surface.

In our formula X is the only adjustable parameter.
(I —X) represents the fraction of superfluid inertia
which decouples from the oscillator. Shown in Fig. 9
are the formulas (9) and (10) for two different
values of X. By fitting our data in an experiment
such as this we can measure the roughness of the
Mylar surface. For example, a good fit is obtained in

Fig. 9 with X =0.17. Also shown in the figure is the
theory for a X =0.0. This case would correspond to a
perfect Andronikashvili experiment in which all of
the superfluid decouples from the surface. Presum-
ably this inertial coupling of the superfluid in our ex-
periment is due to wrinkles and other imperfections
on our Mylar substrate.

In Sec. V we discuss the fits of our data to the
Kosterlitz-Thouless theory using the dynamic exten-
sions of AHNS. The value of the Kosterlitz-
Thouless jump p, (T, ) is determined and compared
with previous third-sound values.

V. FITS TO THE DATA

In this section we discuss the fits to the data using
the dynamic extension of the Kosterlitz-Thouless
static theory due to AHNS. In the first part of this
section we discuss fits to the period shift using a
linearized version of the Kosterlitz relations. In the
second part we discuss a fit to the dissipation using a
numerical integration of the Kosterlitz recursion rela-
tions. Derivations of all formulas used in this part
are given in Appendix A.

In the low-velocity regime AHNS obtain the fol-
lowing relations for the reduced period shift Eq. (7)
and superfluid dissipation Eq. (8), where
p = p'+ i (p" + pp').

In the linear approximation (see Appendix A):

2.40

1.80

o 1,20-
O

~~ 0.60—

0.00
1.18

l

1.1 9

I

f

I

I

I

I

l I

1.20 1.21
Temperature (K)

I

0
0
0
0
0
0

IOSI
1.22 1.23

square-root cusp [see Eq. (6)l, ln(14D/a2pI) is the
dynamic parameter, and eq' is the vortex friction
coefficient to account for dissipation remaining well
below. transition. When T & T„sin and cot appear
instead of sinh and coth.

We have used this linear approximation to fit the

E5

4
|2

O

vp 2

FIG. 10; Reduced period shift, 2AP/P, and dissipation

Q
' are shown for a superfluid transition of 1.215 K. The

solid lines are fits using the linearized version of the dynam-
ic theory of AHNS. The dashed curve is the result of the
static theory.

e'= 1+x coth x ln —,14D
a eo

= —Ir (ox) slnh x ln'14D
2 0 OJ

where x =b(~1 —T/T, ))' 2, b is the strength of

0 I I I I I I I I I I

0 .2 .4 .6 .8 I.O l2 l.4 l.6 I.8 2.0 2.2
c(K)

FIG. 11. Results of all our data, in addition to previous
third-sound results for the discontinuous superfluid density
jump p, (T, ) as a function of temperature. The solid line is
the Kosterlitz-Thouless static theory.
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period shifts measured in our experiment. Using for-
mula (7) in a nonlinear-least-squares fitting routine4'
we have obtained values of p, (T, ), b, and T, for our
films. An example of such a fit is shown in Fig. 10.
The linear approximation is not expected to be valid
near the region where 4P goes to zero. Therefore
the fit to the dissipation peak must be viewed as for-
tuitous. However, for temperatures lower than that
temperature the linearized theory is valid, and we
may use it to fit the 24P/P data to obtain values for
the static parameters b, T„and p, (T, ) in the theory.

Shown in Fig. 11 are the most significant results of
our experiment. We have plotted in that figure the
values of p, ( T, ) obtained from our fits for our data.
Also plotted in that figure are the values of the
Kosterlitz-Thouless jumps obtained from experiments
at constant temperature (see for example Fig. 9).

The older third-sound experiments can also be
analyzed in terms of our present understanding to
obtain estimates of the Kosterlitz-Thouless jump in
the superfluid mass per unit area at the two-
dimensional phase transition. Although it is not pos-
sible to follow a third-sound signal right through the
transition region, it can be followed to the point
where the dissipation begins to rise rapidly. If the
third-sound signal disappears at this point, then as
can be seen in Fig. 3 the value of the superfluid mass
is still up on the shoulder of the curve and a reason-
ably good estimate for the static value of the
Kostef'litz-Thouless jump can be obtained. Recently,
Rudnick ' has reanalyzed his third-sound data using
his latest estimate of the van der Waal's constant,
and has obtained values for p, (T, ) which are in

good agreement with the value predicted by the
Kosterlitz-Thouless theory s6, 38

In Fig. 11 we have plotted as a function of the
transition temperature, the values for the static jump
in the superfluid density obtained from the two anal-

yses of our data using the dynamic and static theory.
We have also included in Fig. 11 the estimates ob-
tained by Rudnick4~ and additional values provided
by Mochel ' and Hallock ' from their third-sound
work. The solid line drawn in the figure is the
theoretical prediction given by Kosterlitz and Thou-
less. As is clear, the data from all the different ex-
periments are in good general agreement with the
theoretical prediction and therefore provide strong
support for the Kosterlitz-Thouless picture of the
phase transition in the two-dimensional superfluid.

Roth, Jelatis, and Maynard44 have also published
measurements of the third-sound velocity and super-
fluid onset of 4He films adsorbed on- Grafoil. The
values they obtain for the universal jump p, (T, )/T,
are in agreement with the experimental results
presented here and with theoretical expectations.
Their data provide further evidence for the universal
nature of the superfluid onset in two dimensions.

As was pointed out by Nelson and Kosterlitz a

4.80
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----- Stot&c Theory
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FIG. 12. Reduced period shift, 2AP/P, and dissipation

Q
' are shown for a superfluid transition of 1.215 K. The

solid lines are the fits using the dynamic theory of AHNS
using the full Kosterlitz recursion relations. The dashed
curve is the result of the static theory.

measurement of the quantity p, (T, ) also represents
a measure of the two-dimensional exponent q. They
find that

(13)

We measure p, (T, )/T, to be 3.5 X 10 g/cm'

K+15%. Therefore we have experimentally deter-

mined q to be

q =0.25 + 15% (14)

Finally we would like to discuss a fit performed us-

ing the full integrated Kosterlitz recursion relations.
Teitel et aI. have performed a fit of the data using re-
lations (7) and (8), but without the linearized dielec-
tric constants in Eqs. (11) and (12). This is

described in detail in Appendix A. The results are
shown in Fig. 12. Unlike the linearized version,
these relations should be valid throughout the entire
critical region. Note the very good fit to the entire
curve. As before, the dashed line in Fig. 12
represents the static predictions. The discrepancy
between the solid and dashed lines indicates the mag-

nitude of the dynamic effects observed in our experi-
ments.
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VI. 3He-4He MIXTURES
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FIG. 13. This figure shows the superfluid period shift and
superfluid dissipation for a pure 4He film (lower graph) and
for the same film with 10 at. % He added (upper graph),
Note the presence of third-sound resonances (which can be
seen only in a superfluid) below T, in the pure film and in

both lower-temperature phases in the mixture film. These
resonances indicate the superfluid nature of the two low-

temperature phases in the mixture data.

In this section we ~ould like to show some prelim-
inary results on 'He- He mixtures in the two-
dimensional Mylar ' cell. Shown in Fig. 13 are the
superfluid period shift and dissipation for a pure 4He

film (lower graph) and for the same film with 10
' at. % 'He added (upper graph).

The pure 'He film had a thickness of 36.5
p, mol~/m'. Several features should be noted. For
all 4He films studied there were observed third-sound
standing waves in the superfluid dissipation below T, .
These correspond to numerous third-sound modes
which coincided with the oscillator frequency as the
temperature was changed. These third-sound reso-
nances can be seen as apparent scatter in the super-
fluid dissipation data below T, . However the instru-
mental scatter in the data is quite small (less than the

width of the dots in Fig. 13) as can be seen by the
data above T, Therefore these resonances'are an in-
dicator of the superfluid nature of the system we are
studying. In the pure film shown in Fig. 13 we see
the third-sound resonances in the dissipation below
T„ the dissipation peak at T, and a quiet dissipation
signal above T, . The period shift drops precipitously
at T, . The bulk of this paper is devoted to a discus-
sion of these features. This film had a T, of 0.91 K.

However the addition of 10 at. % He to this film
produces several startling effects. These are shown
in the upper graph in Fig. 13. The single superfluid
transition in the pure film which was accompanied by
a precipitous change in superfluid mass and a sharp
dissipation peak was replaced by two transitions in
the 3He-4He film. We call the pure transition type A.
In the pure-film transition type A occurs at 0.91 K.
However in the mixture film transition type A is
lowered to 0.80 K and is replaced by a second transi-
tion (at a slightly higher temperature) which we call
type 8. Therefore in the 'He-4He film we see evi-
dence of two superfluid transitions. The first type A

is the conventional Kosterlitz-Thouless transition
with a sharply dropping superfluid mass and a dissi-
pation peak. The distinctly different type of transi-
tion type 8 has a continuously and slowly changing
superfluid mass at onset and no dissipation peak.
The presence of third-sound resonances indicates that
both regions below A and between A and 8 are su-
perfluid. The film was heated and cooled several
times and the features always reproduced. Therefore
we conclude from these preliminary results that we
have seen evidence for two superfluid phases in two-
dimensional mixtures.

In recent quartz-microbalance studies by Webster,
et al." the Kosterlitz-Thouless jump for 'He- He
mixtures was measured. Up to concentrations of 30
at. % 'He they measured no change in the value of
the Kosterlitz-Thouless jump. Our data qualitatively
supports this result. The height of the shoulder of
the superfluid mass curve in our data which is a mea-
sure of the Kosterlitz-Thouless jump does not change
upon the addition of He. Therefore we support their
conclusion that the Kosterlitz-Thouless jump is
universal under the addition of 3He. However, the
quartz microbalance experiment by Webster et al. has
less resolution of the superfluid mass and does not
measure the superfluid dissipation at all. Therefore it
is possible that they have missed these effects which
we have observed.

In conclusion we stress that these are preliminary
results but they do show some interesting features
which, if borne out by further experiment, will bear
on such questions as two-dimensional phase separa-
tion. In any event these results point out the rich-
ness of films of mixtures of 'He- He as an experi-
mental system for studying various ideas of two-
dimensional physics.
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VII. CONCLUSIONS

In conclusion we have measured the superfluid
density and dissipation of a thin two-dimensional
helium film at its superfluid transition. We observe a
peak in the superfluid dissipation and a sharply
changing superfluid density which, when analyzed in
terms of the dynamic theory of Ambegaokar, Halpe-
rin, Nelson, and Siggia support the Kosterlitz-
Thouless picture of the phase transition in a two-
dimensional superfluid. The value for the jump in

the superfluid density pt the transition given by Kos-
terlitz and Thouless as p, (T, ) = 8n ks(m//r )'T„ is

in good agreement with measured values from exper-
iment. We have observed finite velocity effects in
our experiment. The dynamic theories of Refs. 4
and 5 seem capable of describing the data in the
low-velocity regime.

oo =o(414D/ru)+i ( —,'rr) r
, r~414D/(y

(A3)

where o(r ) is the static length-dependent dielectric
constant.

We now show how the dissipation Q
' and period

shift 25P/P are related to this o(ru). The time aver-

aged power dissipated per unit area is given in AHNS

Eq. (6) as —,pov„'cu Im[ —o '(co)1.
Since the energy stored is —,M v„', ~here M is the

total mass of the system, and the period of oscilla-
tions is 2m/&u, we have

~here D is the diffusion constant of vortices, m is the
mass of the helium atom, po is the unrenormalized
superfluid density, and nf is the density of free vor-
tices.

Furthermore, '4'
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where A is the surface area of the substrate, 6' is the
power dissipated per cycle, and E is the energy
stored.

The period shift is determined by considering the
force on the substrate due to the motion of the heli-

um film. The momentum density of the film is

g = pous + (p po) vn = [p po/o(~) ]vu()

where p is the density of the helium film, This pro-
duces a force on the substrate equal to

F(co) =i ouA g (ou) = i(uA [p —po/e(a)) ] v„(ru)

APPENDIX A

&n = 'U„—
llew6( fd)

(AI)

This dielectric constant o(ru) is composed of two

parts: a contribution due to the motion of free vor-

tices, and a contribution due to the motion of bound
vortex pairs. We denote these pieces as ef and 6b,
respectively. The additive contribution due to free
vortices has the form [AHNS Eq. (7)l

In order to relate the measured dissipation and

period-shift curves to the theory proposed by AHNS,
we first summarize the main results of that theory.

For a helium film being driven by a small oscillat-

ing external velocity of strength v„and frequency co,

we relate the average superfluid velocity u, (t) to v„
by defining a dynamic dielectric constant o(ru) as fol-
lows: Kco=Re

M —A po/o(a))

& 1/2'

t

1+ Re[a '(cu)]
IM 2M

If we call o)o= v E/M then the period shift is

25p 2~ ~o Apo ~ [ (( )]
0

Viewing the substrate as a simple harmonic oscillator
of mass M—pA and spring constant K we can write
its equation of motion as

—ru'(M —pA )X(o)) +KX((u)
= ru'A [p —po/s(ru) ]X(ou)

where X is the displacement along v„(X= u„).
Solving this gives a frequency of oscillation

iDh po

~m2k, r"' ' (A2)

We now discuss the numerical calculation of the
dielectric constants. First we consider the contribu-
tion due to bound pairs.
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To compute eq we need to calculate the static
dielectric constant ~(r). In the notation of Kosterlitz
and Nelson ~o

where

K ( I =

inr�
/a )

K(I =0) (A6)

II Pp 2 Pp

m' ksT n p, (T, )T

In the last equality, we have used the central result of
the static scaling theory, described below, namely

p, (T, ) = (2/n)m'ksT, /II' For t. he numerical fits it
is convenient to express K (0) in terms of p, (T, ).
This permits the adjustment of the parameter
A p, (T, )/M to fit the experimental data, and thus a
confrontation of theory and experiment, as described
in the text.

K and the activity y satisfy the nonlinear scaling re-
lations

dv—=4m'y', -"—=2(2 —mK)y' .
dl dl

If we introduce the parameter x related to E ' by

K = —sr(1 ——x)1 1

2 2

FIG. 14. Trajectories of Eq. (A12) for various values of t.

to the equations are

(A14)

x (I ) = xp coth(xpl + coth 'x;/xp)
I &0, A13

4ny (I) =xpcsch(xpl + coth 'x/xp)

x(I) =xpcot(xpl+eor 'x/xp)
t &0

4my(I) =xpcsc(xpl +cot 'x;/xp)

—= —(4my ),dx 2

dl

—2x
y

1 ——x
2

Then the scaling equations (A7) in terms of x and

y become:
where xp= , b [I )'I' —and x, =x(I =0).

If we assume I is much larger than 1/x; then we
may drop the x; dependent piece in Eqs. (A13) and
(A14), which then reduce to

Using Eqs. (A3) and (A6) —(A9) we can write ab in

terms of these variables as

Re(tb) = — [1——x(I ) ]
Po ~t;

p, (T, )

x ( I ) =xp coth(xpl )
t &04' (I ) =xpcsch(xpl )

x ( I ) =xp cot(xpl ) t&04'(I) =xpcsc(xpl)

(A1S)

(A16)

Im(eb) = —,'w ' ' [47ry(I)]',
ps Tc

(A10)

evaluated at I =1 n[(1 4D /a' sp)' 'I].
For smail values of x and y the scaling Eq. (A9)

may be linearized to give

—= —(4my ), = —2xy
dx 2 dy

dl dl
(All)

These equations imply

x' —(4vry)'= —,
' b'I— (A12)

where b is some constant and t =1 —T,/T, and thus
the trajectories for small x and y are a set of hyperbo-
las. These are sketched in Fig. 14 with the arrows in-
dicating the direction of increasing l. The solutions

In these equations the information as to the start-
ing point of the renormalization process has been
lost.

lf in the first formula of (A10) [1——,x (I ) ] is re-

placed by [1+—,x(I) ] ' and the result is inserted

into Eqs. (A4) and (A5) with x andy given by Eqs.
(A15) and (A16), one obtains the "linear approxi-
mation" of Eqs. (11) and (12) of the main text.
The replacement is of course only valid when
x (I ) « 1. However, the peak region of curves such
as Fig. 10 corresponds to x & 1, with both x and. y
rapidly increasing on the high-temperature side of the
peak. Thus the fits based on the linear approxima-
tion are somewhat spurious.

The precipitous drop at the high-temperature end
of these curves is due in part to this approximation,
and in part to the neglect of the free-vortex contribu-
tion (A2). In spite of these limitations, the "linear"
fits have the advantage of being easy to use for ob-
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ng
——F/g+' (A17)

where F is some constant of O(1). g+ can be related
to the parameter b introduced earlier by

taining values of p, (T, )/T, and b from experimental
curves. The values so obtained differ only slightly
from the results of the more elaborate fitting pro-
cedure we now describe.

The calculation referred to as "nonlinear" in the
main text will now be described. [It should be em-
phasized that this calculation, leading to a response
function a(ot), is still linear in the driving velocity
u„.]

Since for small t ( 0, x andy remain small as t in-
creases (x «xo, y 0), the linearized Eqs. (A15)
are valid and were used in Eq. (A10) for determining
eb for T & T, . For T ) T, however, xandy become
large for large I and the linearized equations will

breakdown. The procedure adopted for determining
eb in this case is as follows.

In order to integrate out to a value I, the linearized
Eqs. (A16) were used to go out an amount lo= rt/2xo
to the point x(lo) =0, y(lo) = (I/8m)b (t[' '. The
linearized equations are still good here as x and y
have not yet grown large. Starting with this initial
point x(lo),y(lo) we then continue an additional
amount t —Io by numerically integrating the non-
linear differential equations (A9). The values of x(l)
and y (I) thus obtained are then used in Eqs. (A10)
to determine ~b.

Since the scaling Eqs. (A7) were derived only for
the case y & 0 (I), one cannot use the above pro-
cedure for T so large that y (I = In(14D/a'Ot)' ')) 1/4n Abov. e the temperature T" at which
y(l =ln(14D/a'at)'I ) = I/4n, Re(et, ) was left at the
value it had at T", and Im(eb) was replaced by zero.
The condition y (I ) = I/4rt is equivalent to the condi-
tion I = ln(g+/a ) where g+ is the correlation length.
Thus the modification has the physically sound in-
terpretation of cutting off the contribution due to
bound pairs when the separation, J14D/cu, of those
pairs which are most effective in the dynamical
screening is equal to the average distance between
vortices. Clearly, a pair of larger separation should
actually be considered to be two free vortices. This
discontinuous cut in eb has little effect on the shape
of the Q

' and 25P/P curves as ef is already dom-
inating eb at these high temperatures. However, a
small discontinuity is introduced into the calculated
curves for 23,P/P and Q . This artificial discon-

- tinuity has been smoothed out in Fig. 12.
We now turn to the calculation of ef. The density

of free vortices nf can be related to the correlation
length g+ by

It should be pointed out that these fitted parame-
ters should apply for a wide range of frequencies if
the basic ideas of the theory are correct. (The
parameter e', whose physical origin has not been clar-
ified may have a frequency dependence, but e' contri-
butes little to bP/P and Q

' in the interesting T ) T,
region. ) It may also be worth noting that the value
of the dynamical parameter ln[(14D/a'cu)' '] is not
inconsistent with D being related to microscopic
quantities, D —11/m, and a —10 s cm.

APPENDIX B

To derive formulas (8) and (9), we first start with

T, =A (p —po)

p, (0) = (I —X)(p —po)

(BI)

(B2)

where (1 —X) is the fraction of a superfluid helium
which is able to superflow at T =0. X is the fraction
of superfluid which remains effectively locked to the
substrate by its inertia:

them into Eq. (A2) gives

ef=I, , exp(-4n/bv t )
. Fpo~' 14D
14m'kT a'co

i-, rtF', exp( —4rt/Mt ), (A19), . 4 po Tc 14D

p, (T, )T a'at

where, as in Eq. (A6), we have expressed the result
in terms of p, (T, ). This completes the description
of the method by which ~b and ~f are calculated.
Note that the po in Eqs. (A4) and (AS) for Q

' and
2LLP/P cancels the po in Eqs. (A10) and. (A19) for tt,
and ef. Also, for the range of temperatures being
considered, T,/T = 1 in Eqs. (A10) and (A19).
Thus the free parameters of the theory- are
p, (T, )A/M, b, 14D/a'~, F, and T, .

In order to fit the experimentally observed low-
temperature background dissipation, an additional
fixed constant ~' was added to the imaginary part of
e(a&) Usin. g e(co) =I a'+at, +Sf in Eqs. (A3) and
(A4), curves were generated for Q

' and 2LLP/P.
These curves were then fitted to the data by varying the
six free parameters. The values obtained for the-fit-
ted curve shown are (Fig. 12).

p, (T, )A/M=3 4x10 6, b =5 5

ln[(14D/a'~)' '] =12, F =1.2
T, = 1.2043, ~' = 0.07 .

/+= a exp(2rr/bJt ) (A18)

Combining these last two equations and substituting

p (T)=p (T )[1+b(1—T/T )' ']

p, (T, ) = (1 —X)CT,

(B3)

(B4)
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where C is the Kosterlitz-Thouless static value of
8.75 p, mol/m~K. Taking Eq. (83) and setting
T = 0 we obtain

p, (0) =p, (T, )(1+b)
Using Eq. (82) we obtain

(1 —x)(p —po) = p, (&, )(I+6)

with Eq. (81) this becomes

(85)

(86)

face. Therefore Eqs. (812) and (813) describe the
experiment in Fig. 9 with one adjustable parameter X.

APPENDIX C

For a summary of the data see Table I.

TABLE L Summary of data.

(I x)r,—/A =p, (r;)(I+b) .

Using Eq. (84) we obtain

(87)
T, (K)

p, (T, )/p

(10 g/cm )

or

(1 —x)T,/A =(1—x)CT, (1+b)

b = (1/AC —1) (Bg)

Using Eqs. (88), (81), and (84) we see that Eq. (83)
becomes

p, (T) =(I —x)AC(p —po)
r ' 1/2'

1 T-T
x 1+ —1 (89)

The jump occurs at p = p~, T = T~. Using Eq. (81)
we find

2'i =A (pi —po) (810)

Therefore using Eqs. (810) and (81), Eq. (89) be-
comes

p, ( T) = (1 —x)AC (p —po)
't ]/2

'

1
1

P P
AC '

p —
po

(811)

The final result is now at hand. For p ( p~ we find
that

't

AP p+Po,
Ap

(812)

where (bP/bp) and Po are the slope and intercept of
the normal-fluid region in Fig. 9. For p ) p~ we find
that

1 t

p+ Po — (I —x)AC (p —po)
hP 4P
5p Ap

Bishop and Reppy, 7; =const

Bishop and Reppy T =const

0.330
0.353
0;355
0.390
0.470
0.498
0.522
0.540.
0.543
0.58&

0.587
0.590
0.593
0.698
0.835
0.882
0.886
0,896
0.908
0.909
0.909
0.908
0.911
0.914
1.079
1.088
1.090
1.092
1.093
1.094
1.189
1.192
1.600

0.350
0.312
0.520
1.230

0.860
1.117
1.427
1.535
1.546
1.803
1.710
1.424
2.013
1.867
1.875
1.801
1.783
2.607
2.703
3.794
3.108
3.429
3.105
3.026
2.934
2.945
2.698
2.807
4.418
4.123
3.958
3.954
3.961
3.986
4;294
4.400
5.040

1.23
1.42
2.73
4.97

1
1

P P
AC p —

po

& 1/2'

(813)
Hallock, 3rd sound 1.721

1.675
6.32
5.80

where A is the slope of the transition temperature
versus density line. It is 0.08696 K m'/p, mol; C is
the Kosterlitz-Thouless jump and is given by 8.75
p, mol/m K; p is the density of adsorbed film; po is
the solid layer density, given by 24.91 p, mol/m',
and X is the fraction of superfluid coupled to the sur-

Mochel, 3rd sound 0.460
0.681
0.972
1.040
1.160
1.330

1.10
2.42
3.44
3,66
4.39
4.82



22 STUDY OF THE SUPERFLUID TRANSITION IN TWO-. . . 5185

'-Present address: Bell Laboratories, Murray Hill, N, J.
07974.

'D. J, Bishop and J. D. Reppy, Bull. Am. Phys. Soc. 22, 638
(1977); 23, 532 {1978).

2D. J. Bishop and J. D. Reppy, Phys, Rev. Lett. 40, 1727
(1978).

D. J, Bishop and J. D. Reppy, J. Phys. (Paris) 39, C6-339
(1978).

4B. A. Huberman, R. J. Myerson, and S. Doniach, Phys,
Rev. Lett. 40, 780 (1978).

5V. Ambegaokar, B. I. Halperin, D. R. Nelson, and E. D.
Siggia, Phys. Rev. Lett. 40, 783 (1978).

F. Bloch, Z. Phys. 61, 206 (1930).
7R. Peierls, Ann. Inst. Henri Poincare 5, 177 (1935).
M. F, M, Osborne, Phys. Rev. 76, 396 (1949).
N, D, Mermin, Phys. Rev. 176, 250 (1968).

' N. D, Mermin and H. Wagner, Phys. Rev, Lett. 22, 1133
{1966).

"P.C. Hohenberg, Phys. Rev. 158, 383 (1967).
' B. V. Rollin, Actes du 7e Congr. Intern du Froid (La

Haye: Amsterdam), 1, 187 (1936).
' J. G. Daunt and K. Mendelssohn, Proc. R. Soc. London,

Sect. A 170, 423, 439 (1939).
'4E. Long and L. Meyer, Phys. Rev. 79, 1031 (1950); 85,

1030 (1952).
'5R. Bowers, D. F. Brewer, and K. Mendelssohn, Philos.

Mag. 42, 1445 (1951).
' E. N. Smith, D. J. Bishop, J. E. Berthold, and J. D. Reppy,

in Ref. 3.
' See, for example, J. G, Dash, Films on Solid Surfaces

(Academic, New York, 1975)„Phys. Lett. C 38, 177
(1978); D. F. Brewer, in The Physics of Liquid and Solid

Helium, edited by K. H. Benneman and J. B. Ketterson
(Wiley, New York, 1978); J. M. Kosterlitz and D. J.
Thouless, in Progress in Low Temperature Physics, edited by

D. F. Brewer (North-Holland, Amsterdam, 1978), Vol.
VII b.

' J. M, Ziman, Philos. Mag. 44, 548 (1953).
' D. L. Mills, Phys. Rev. 134, A306 (1964).

B. M. Khorana and D. H. I3ouglass, Phys. Rev. 138, A35
(1965).

'D. F. Goble and L. E. H. Trainor, Phys. Lett. 18, 122

(1965); Can. J. Phys. 44, 27 (1966); Phys. Rev. 157, 167
(1967).
R. L. Dewar and N. E, Frankel, Phys. Rev. 165, 283 (1968).

2 O. Penrose —a paper presented at the conference in honor
of Professor Lars Onsager's 70th birthday held at Univer-

sity of Miami, Nov. 27—28, 1973 (unpublished).

24G. Lasher, Phys. Rev. 172, 224 {1968).
V. L. Berezinskii, Sov. Phys. JETP 32, 493 (1970); 34, 610
(1971).

J. M. Kosterlitz and D. J. Thouless, J. Phys. C 5, L124
(1972); 6, 1181 (1973).

O. Penrose and L. Onsager, Phys. Rev, 104, 576 (1956).
I. Rudnick, R. 'S. Kagiwada, J. C. Fraser, and E. Guycn,
Phys. Rev. Lett. 20, 430 (1968).
H. P. Henkel, G. Kukich, and J. D. Reppy, in Proceedings

of 11th 1nternational Conference on Low Temperature Physics,

St. Andrews, U. K., 1968, edited by J. F. Allen, D. M.
Finlayson, ~nd D. M. McCall (St. Andrews University
Press, St. Andrews, Scotland, 1969).

OS. J. Putterman, R. Finkelstein, and I. Rudnick, Phys.
Rev. Lett. 27, 1697 (1971).

'M. Chester and L. C. Yang, Phys. Rev, Lett. 31, 1377
(1973).

J. A. Herb and J. G. Dash, Phys. Rev. Lett, 29, 846
(1972).

E, L. Andronikashvili, Zh. Eksp. Teor. Fiz. 16, 780
(1946).

~J. E. Berthold, D. J. Bishop, and J. D. Reppy, Phys. Rev.
Lett. 39, 348 (1977).

35D. J. Bishop, J. E. Berthold, J. M. Parpia, and J, D. Reppy
(unpublished).

See D. J. Bishop, Ph. D. thesis (Cornell University, 1978)
(unpublished).

E. D. Siggia (private communication).
J. M. Kosterlitz, J. Phys. C 7, 1046 (1974).
J. V. Jose, L, P, Kadanoff, S. Kirkpatrick, and D. R. Nel-

son, Phys, Rev. B 16, 1217 (1977)~

D. R. Nelson and J. M. Kosterlitz, Phys. Rev, Lett. 39,
1201 (1977).

O'See for example P. R. Bevington, Data Reduction and Error

Analysis for the Physical Sciences (McGraw-Hill, New York,
1969).

42I. Rudnick, Phys. Rev. Lett. 40, 1454 (1978).
J, Mochel (private communication); R. Hallock (private

communication}.
44J. A. Roth, G. J. Jelatis, and J. D. Maynard, Phys. Rev.

Lett. 44, 333 (1980).
4&Mylar is a trade name registered to the E. I. Dupont de

Nemours Company, Inc,
46E. Webster, G. Webster, and M. Chester, Phys. Rev. Lett.

42, 243 (1979).
47V. Ambegaokar and S. Teitel, Phys. Rev. B 19, 1667

(1979),


