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Many d = 2 phase transition problems have lines of critical points on which critical behavior

varies continuously as a function of a single parameter A. . In treating these problems, it is im-

portant to know how A. depends upon the other parameters in the Hamiltonian. This paper is

concerned with the developments and application of techniques for getting perturbation expan-

sions of A. in other system parameters. Two examples are described in detail: the Gaussian

model and its near relative the low-temperature planar model, The Gaussian model serves as a

kind of base problem in which the effects of marginality may be fully explored. We show expli-

citly how the planar model may be mapped into a Gaussian model and extend the Kosterlitz-

Thouless analysis to calculate the marginal parameter to fourth order in p'p.

I. INTRODUCTION

Such two-dimensional critical phenomena problems
as the Ashkin-Teller model, ' the eight-vertex model, '
the planar or XY Model, ' ' and models of surface
roughening " all have a line of critical points in

which the critical properties vary continuously as a
function of a single parameter, which we will call X.
For each model, A. has a different physical meaning.
It is important to know how in each case the critical
indices vary with A. and with variation of other
parameters in the critical poiht Hamiltonian 3C (X).
This knowledge would be a useful advance in extend-
ing critical phenomena methodology, even if each of
these problems were separate and distinct. But, this
kind of knowledge becomes even more useful when
we recognize that in many of their-aspects all of the
problems mentioned above are examples of a simple
soluble model, the Gaussian model. ""The latter
has a critical line defined by a simple parameter K.

A major step in treating all the models mentioned
above —and many other related problems —is to
"map" these problems onto the Gaussian model.
Universality implies that there exists a function K (h. )
which relates the Gaussian model K value to the
value of A. . Under this mapping the problems have
identical critical properties, i.e., for both problems the
asymptotic behavior of the correlation functions are
the same and, consequently, the sets of critical in-

dices are identical.
Evidence for this universality is given in the work

of Luther and Peschel' and Bander and Richard-
son. " Kadanoff and Brown'6 have built upon the
findings of these authors and derive presumably ex-
act mapping functions for the eight-vertex and
Ashkin-Teller models onto the Gaussian model, us-
ing the known results for these models. Another,
rather different example of universality is contained

in the theory of Berezinskii' and Kosterlitz and Thou-
less4 for the planar model, which also forms a major
subject of study in the present paper. According to
these authors and others, the low-temperature planar
or XY model exhibits continuously varying critical
behavior, which can be understood in terms of the
very same Gaussian model.

In this paper we construct a formalism for pertur-
bation expansion for critical points in the presence of
marginality. "' As such, this paper may be con-
sidered as an extension of the work of Kadanoff and
%egner. " The existence of varying criticality is fun-
damentally related to the presence of a marginal
operator in the theory. (A marginal operator is a
scalar under scale transforrnations, i.e., has scaling
index x = d. ) Indeed, the very notion of a marginal
operator can be used as an important tool in studying
critical lines. For instance, in case of the eight-vertex
model, we only have defailed knowledge about the
correlation functions for one point on the critical line,
namely, the point which corresponds to two decou-
pled Ising spin systems. However, by an expansion
in the marginal parameter, one can obtain the critical
properties of the Baxter line outside the decoupling
point. ' ' The first-order calculation of this type was
done in Ref. 18.

It turns out that the evaluation of the second- and
higher-order terms in an expansion in a marginal
operator is rather subtle. Reference 19 for example,
contains an error in its speculations about the
second-order expansion, produced by a mishandling
of the expansion;

Fortunately, however, there is an example for
which we can examine the effect of marginal opera-
tors quite precisely, namely, the Gaussian model. ""
For this model the correlation functions are exactly
known all along the fixed line.

In Sec. II we describe the Gaussian model and its
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g = I/2mK, ff (1.2)

critical-point Hamiltonian, X'(K). We construct a

set of marginal operators 'U& which all have the prop-
erty that a Hamiltonian [X'(K) + A.'U~] has identical
critical properties to one with Hamiltonian
X"(K(X)). However, the mapping function, K(X),
varies as the detailed structure of 'U~ is changed.
The various marginal operators have identical long-
wavelength properties. This difference in mapping
functions is entirely produced by irrelevant' terms in
the 'U~.

In this way we have an example of universality
which can be fully explored: The different marginal
operators can be viewed as being the generators of
critical lines, each line being in the same universality
class.

The calculations in this chapter are all explicit and
exact. For most problems of interest, however, we
cannot do exact calculations. We mentioned already
above that, in the usual case, we have only exact in-

formation about the correlation structure for special,
simple situations, such as the decoupling limit of the
eight-vertex or Ashkin-Teller models, or the Gaus-
sian model in Berezinskii's and Kosterlitz and
Thouless's theory for the planar model. Hence, in
Sec. III we develop a perturbation theory which is
based upon universality for critical lines. We start
out by introducing a criterion for universality, which
states the conditions under which two critical prob-
lerns with marginality exhibit continuously varying
critical behavior which lies in the same universality
class. Our exact calculations for the Gaussian model
then serve as a direct check upon these ideas. The
next step is to use this formalism in a perturbative
context. Provided the condition for universality is

satisfied we are led instantly to a way of calculating
the mapping function K(h. ) in a power series in A.

This calculation explicitly makes use of our exact
results for the Gaussian model.

In Sec. IV, finally, we focus on the Villain form of
the planar model. We report a detailed analysis of
perturbation arguments of a type originally employed
by Kosterlitz and Thouless. 4 These arguments are set
forward in a manner similar to that of Jose et aI. ' and
they tend to show that the planar model lies in the
same universality class as the Gaussian model. As a
result, the critical indices describing the sum (x+)
and difference (x ) of excitations with vorticity +1
and —1 are equal and are related to the lowest spin-
wave critical index q by

2xy= 2x -1

Moreover, we can write these indices in terms of the
Gaussian model K,rr as

II. GAUSSIAN MODEL

A. Generating functions

Several recent papers' ' have developed a gen-
erating function formalism for treating Gaussian
correlation functions in two dimensions. Here, we
bring together the results in a compact formalism
which will serve as the basis for the remainder of this
paper. Appendix B gives detailed examples of how
this approach may be used to calculate correlation
functions.

The basic generating function for Gaussian correla-
tion functions can be written in terms of a four com-
ponent vector field W(r ) and its transpose, W (r ).
The four components of the latter are u+, u, v+,
and v . The generating function is

r

Q [ W] =exp —, „~ dr d r'W (r )Mr(r —r') W( r')

(2.1)

This generating function is related in a rather intri-
cate manner to the previously defined"" Gaussian
model correlation functions. There are two kinds of
operators which were discussed in the earlier work:
"charged operators" 6„(r ) and uncharged operators
$&(r ). The charged operators have spin-wave quan-
tum number n and vortex quantum number m. The
allowed range of n and m depends somewhat upon
the particular application of the Gaussian model, but
in this paper we shall assume that both n and m are
positive or negative integers or zero. The uncharged
operator 7& is also described by two integers i and j,
but i and j must be non-negative. For us, the only
really interesting 5 is Sr r ( r ) which is a marginal
operator for the Gaussian model.

To begin the present work, we state a set of rules
for calculating Gaussian model correlation functions
from the generating function Q [ W]. These rules will

then give us a set of conditions upon Q which turn
out to be conditions upon the long distance behavior
of Mr( r —r '). The rules are essentially restate-
ments in a more compact notation of the data in Eqs.
(4.6)—(4.11) of Ref. 13.

As in this reference, we use the quantities u+( r )
and u ( r ) to generate correlations of the F&'s. In
particular, f;,( r ) is re.presented by the following dif-
ferential operator, which is to be applied to Q [ W]

5„-(r)—
su+(r) Su (r)

(2.2)

The most important of these is the marginal operator
which serves to generate motion along the critical line
which isi

Finally, we use the techniques developed in this pa-

per to expand K,qq to fourth order in yo, one higher
than the order previously calculated. 4' gu~(r) Su (r)

(2.3)
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The charged operators are also representable by dif-
ferential operators to be applied to Q, namely,

(r)=exp (n+m) 5 + (n —m)
5

gv+(r) sv (r)

I

The specific meaning of expression (2.4) is that

0„(r ) operating on a functional of v gives

6„(ro)P[~]=P[~']

(2.4)

(2.5a)

with

u'+(r) =v+(r)+5(r —ro)(n +m) (2.5b)

To calculate any correlation function, then, we apply
the appropriate differential operators to g [ W] and fi-

nally set W( r ) =0. The result of this operation is
the desired correlation function.

Given these definitions, the Gaussian model corre-
lation functions are fully defined if we state a value
for the four by four matrix Mr( r —r'). In doing
this we must make sure that we set the same answers
for large

~
r —r'~ as they appear in Ref. 13. This

identification determines the long-distance part of
Mr( r —r '), but leaves the short-distance part at our
disposal. Let us simply state the result of the com-
parison. (Some examples of correlation function cal-
culations are given in Appendix B.)

First we separate out an angular factor proportional
to 0( r —r '), where for large r = (x,y), 0( r )
= tan 'y/x. This angular factor describes correlations
between spin waves and vortices and appears in the
combination

W'(r )Mr(7 —r') W(r') = —,
' [u (r ) +u (r )]0(r —r') [u (r') — (7')]+ W'( r )M(r —r') W(r') . (2.6)

To write this in a convenient manner we visualize
combining u+ and u into a spinor u and also v+ and

.— v into a spinor v. Thence, each of the matrices can
be written in block form, for example,

in terms of a complex Fourier-transform variable,

g = Q'z / 7 3gy as

iq!2

(2.7)

, 0
r—iq/2

(2+K)

(2~K)
(2.10)

Within each of the four blocks, we rewrite subma-
trices like M„„ in terms of the unit matrix 1 and the
standard two by two Pauli spin matrices v~ and ~3.
Then, for large separations, we find

M„„(r—r') = —,(2vrK) 'In[r —r')

—.,i2 x —x' —r3(y —y')
M (r —r')= ——'(2~K) ~l

(2.8)

[x x r3(y —y') ]'
M„„(r —r') =-

gg 2 ~l

These expressions then give all the known facts
about asymptotic Gaussian model correlations.

For calculational purposes, it is more convenient to
employ a Fourier-transform representation of Eqs.
(2.8), defining

M(r —r') = t q e"" " 'M(q) . (2.9)
(2m)'

After one Fourier-transforms expression Eqs.
(2.8), one sees that the resulting M(q) can be writ-
ten as a product of three matrices, aba, times a scalar
factor, —2m/q2. The matrices a and a are expressed

while, b is simply

1
b=

1
1

2

(2.11)

To give a unique meaning to M ( r —r ') and to de-
fine its behavior fully for small

~
r —r '~, we also in-

clude in M (q) a scalar cutoff factor B (q) which
obeys

1 for small qB q)= 0 (1/q') for large q (2.12)

Then, all the data in Eq. (2.8) are reproduced by
choosing

M (q) = —(2m/q2) Baba (2.13)

(Go ( r ) eo ( r q)) ='exp[ —2mKm'L ( r
~

—r, ) ]

(2.14)

Later on we shall see that some marginal operators
generate a change in the detailed form of M. In par-
ticular, b will be slightly modified. However, the
most important part of b, its v-v matrix element, will

remain unmodified for small q. This matrix element
fully determines the most significant correlations in
the model, those among the charged operators t9„
From Appendix B we find, for example, that the
vortex-vortex correlation function is
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Here L (r) is a cutoff version of the logarithm

L( )
d'q B(q) (;q.-, 1)

(2m)' q' (2.15)

8. Marginal operators

The 6„(r ) correlations are determined fully by
the b„„term in b (q). The remaining portions of b

are important because they describe correlations
between marginal operators and among the marginal
operators and the 6 „(r ). For example, the Pl|( r )
defined by Eq. (2.3) has a correlation function which
can be formed as

which is equal to ln(r) for large r and finite for
small r. The appearance of the K in Eq. (2.14) shows
that the vortex critical index x = m Km' is propor-
tional to K. Hence, the K that appears in the expres-
sions for a and a is directly the marginal parameter of
the Gaussian model.

For large ~ r, —r 2], Eq. (2.14) reduces to the
known form of Gaussian model vortex-vortex corre-
lations. In fact, detailed calculations show that all
charged operator correlation functions obtained from
the generating function exactly match those of the
Gaussian model.

Here C (A. ) is a constant independent of W ( r ) and

Q& is exactly of the same form as Q, i.e., an ex-
ponential of a quadratic form in W, except that Q„ is
defined by a matrix M„( r —r ') which depends upon
the value of the marginal parameter X.

Equation (2.16) defines (in differential operator
form) a rather general marginal operator U~. Now
we wish to specialize this general operator by choos-
ing a very specific set of values of e~, e2, and e3. The
goal is to produce a marginal operator h which leaves
the form of M(q) as given in Eqs. (2.10)—(2.13)
completely invariant except that in M„(q) the margi-
nal parameter K in Eq. (2.10) is given some K and q
dependence. To see how to do this, imagine for
specificity that we choose e|(q) and e2(q) to be

0 0
e (q)=, e (q) = [—fB'(q)], (2.1g)

where f is a parameter which we shall adjust to our
convenience.

To see the effect of g take the logarithm of Eq.
(2.17) and differentiate with respect to X to obtain

dA.
C(~) + ' d7d r' —W'(r ) M„(r —r') W( r')

dA.

(&ii(r)&il(r')& =2
Su+(r) hu (r)

=g [W]V g„[W],

UM= dr dr
aJ

( I)
SW(r) SW'(r')

x2 g[W]
gu+(r') Su (r')

which may then be calculated in the limit of large
separations as

(r)F (r'))=ir —r'I ' .

This r 4 falloff is exactly the behavior expected of a
marginal operator. Hence, if we construct any opera-
tor UM, which is proportional to the spacial integral of
5„(r ) plus other quantities with smaller critical in-

dices, we should expect this operator to generate mo-
tion along the critical line-in effect to change the
value of K.

We shall consider a very specific form of the mar-

ginal operator defined by

7r 2
4

(2.20)

Given this choice M], does indeed have the form de-
fined by Eqs. (2.10)—(2.13), if K in Eq. (2.10) is re-
placed by K (A. ;q) which obeys

K (h. ;q) = K exp[2mXB (q) ] (2.21)

which then implies that M„(q) obeys
1

(') M~(q) o M"(') o o f (')1 d 7t 0 0
'dZ

(2.19)

To find this special operator 8, then, one substi-
tutes the forms (2.10)—(2.13) into Eq. (2.19) and as-
sumes that the only h. dependence in M„(q) is via
the K's which appear in Eqs. (2.10). One finds that
the resulting equation for M„will be satisfied if we
make the particular choice of f, namely,

+ W ( r )e2( r —r') W(r ')

+e, (r —r')

and then define the effect of UM by writing

(2.16)

Thus 8 is indeed a marginal operator which has as
its entire effect a modification of the marginal param-
eter K. The new generator g„[W], defined by Eq.
(2.17), generates new Gaussian model correlation
functions which are exactly of the same form as the
old ones in the limit of large separations except that
K is replaced by K,rr(X) given by

Mg [ W] ec(k)Q [ W] (2.17) K,rr(a) = K (X;q =0) = Ke' " (2.22)
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With this particular choice of f, e, and C are zero. Thence, from Eq. (2.16), (2.18), and (2.20), one can write

a differential operator for the density h( r ), defined as

b'=J drh(r)

with the resulting density being

g ( r ) = 2- + , 7r —J d r, d r 28 ( r —r, )8 ( r —r, ) u+( r, ) u ( r, )
gui(r) Su (r)

(2.23)

In Eq. (2.23), 8 ( r ) is the Fourier transform of
8 (q). It will be a short-ranged function of r

whenever B(q) is chosen to be sufficiently smooth.
Although the special marginal operator 8 is partic-

ularly simple, one can consider other marginal opera-
tors which equally will generate motion along the crit-
ical line. For example, one can define another opera-
tor F by the statement f = 0. This operator will have
a density which is

5( r ) = &()( r ) + const

+J d- (- -)
Su+(r) gu (r)

(2.24)

Since f =0, one can solve Eq. (2.19) in the form

0
M), ' (q) =M '(q) —2z 0' 0

Ho~ever, the only change of real importance to us is
the modification in the marginal parameter. Notice
that the marginal operator 5 gives the A. dependence
of Eq. (2.27) while the operator Sgives the different
dependences of Eq. (2.22). Thus, the two marginal
operators generate different mapping functions of K
onto A. . In generating motion along the critical line,
we must be very careful in our use of marginal
operators, by specifying clearly which operator is to
be employed at which time.

The difference between two marginal operators is
an irrelevant or even redundant operator. Nonethe-
less, in the higher-order effects of a given marginal
operator, the irrelevant terms have cross terms with
the truly marginal ones which renormalize the
strength of the marginal operator and thereby gen-
erate other marginal terms. Our job is to design a
formalism in which these cross effects are fully taken
into account.

K(„) K 1+)rrB(q)
I —ZmB(q)

Now, however, 6 changes its form to

(2.25)

1

[1 —[rr AB(q) ]2}'.
1

2

Once again, one can recast the solution so that

M„(q) takes the form given by Eqs. (2.10)—(2.13).
Once again, in this recasting one can structure the
result so that a and a have exactly the form (2.10)
except that K is replaced by the A. -dependent quantity

. III. DESCRIPTION OF FORMALISM

A. General structure

We start from some physical problem with a Ham-
iltonian 3C, and which we expect lies on a line of
critical points. The line can be described by a group
of Hamiltonians, parametrized by a coupling K,
which we write as X0 (K). Our job is to determine
which value of K describes X', i.e., to find the cou-
pling value K [3C"] such that at this coupling 3C' and

Xg (K) be in the same universality class.
To solve this problem assume that this K has al-

ready been found. Then for this special K write

(2.26)
x'=F0" (K)+'U . (3.1)

The —in the v-u entry of b guarantees that the
2

charged operator correlations remain form invariant
for large separations, with the effective marginal
parameter being

K„,(h. ) =K(A.;q =0) =K(1+orb)/(I —7rk) . (2..27)

The other parts of bq(q) produce a modification in

the short-distance form of marginal operator correla-
tions and an additional multiplicative factor which
modifies the size of these correlation functions.

Here, 'U must be a totally irrelevant perturbation, in

that it cannot modify any of the critical properties of
7C0" (K).

Wegner' has, in large measure, written down con-
ditions which ensure the irrelevance of 'U. To see
these conditions, write the extensive operator U as an
integral over a local density'U ( r ) and also write the
basic densities of scale invariant operators at the criti-
cal point Jg (K), as 0,( r;K). The scaling proper-
ties of the latter are determined by a critical index
x (K). They are termed relevant, marginal, and ir-
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whenever
~

r —r '~ is very large compared to any
short-distance cutoff or lattice constant in the theory.
Equation (3.2) must hold for all relevant 0 ( r;K),
the marginal operator 'VM( r ), and it is convenient to
demand that it be true for the 6 ( r;K) being the
unit operator as well.

We wish to extend Eq. (3.2) to the determination
of the conditions for an irrelevant U even when 'U is
not numerically small. We propose a condition which
is implicit in Wegner's work. To state this we write

'V" =
J d r 'V( r ) (3.3)

for the part of'U which appears in the volume O.
We choose 0' to be large compared with short-
distance cutoffs and r

' to obey

~r —r'(»n'l" r 60 (3.4)

An appropriate generalization of Eq. (3.2) to the case
of larger 'Q is

lim ~r —r'~ (I9 (r';K)[e —I]) ~ 0

(3.5)

for relevant or marginal 6 ( r;K). We claim that
whenever Eq. (3.5) is satisfied Xp (K) +'U and 3C'

lie in the same universality class. Justifications for
this claim are given in Appendix A.

B. Perturbation theory

To make use of Eq. (3.5), we must imagine start-

ing from a problem with Hamiltonian X and then
constructing a translation of this Hamiltonian into the
language of a known problem with a line of critical
behavior, i.e., into Xp (K). If, after appropriate
identification of variables X=3Cp (K), we have
solved our problem by reducing it to one with a
known solution. However, in general, one cannot
expect to be as lucky as this. The best one can ex-
pect is to have 3C in a form in which a piece of 3C

looks like the Hamiltonian of the known problem and

relevant depending upon whether x (K) is less than,
equal to, or greater than the dimensionality. In our
case, we assume that there is but one marginal opera-
tor, with density VM ( r ), but that VM ( r ) is
nonunique in that we can add any density of redun-
dant operators to it.

If'V is numerically small, the Wegner condition for
its irrelevance is easily stated, namely, that 'U( r )
contain no components of relevant or marginal
operators, i.e., that

(3.2)

a piece looks different. Hence, we might start from a
situation in which

3C =Xp (Kp) +X (X (3.6)

Here X~A. is the error term indicating the difference
between the soluble Hamiltonian and the one of in-
terest. We multiply this error term by X since we
shall eventually be interested in calculating the prop-
erties of 3C via perturbation expansions in the error
term and we will use X to keep track of orders in the
perturbation theory.

In general, there is no guarantee that 3Cwill in fact
describe any critical point. We may well have to ad-
just such parameters as temperature and magnetic
field to bring &to criticality. Mathematically this
process is represented by the subtraction of terms
from Xproportional to the relevant operators 6~
[i.e., the operator which has a density 0 p( r ) ], which
can force the system away from criticality. We
denote the necessary coefficients of these relevant
operators by Ap(X). As the notation indicates the
size of the terms to be subtracted depends upon the
size of the error term. Thus, at this stage we are
dealing with a system which we know to be critical
and which has a Hamiltonian

X'=Xp (K,)+) X, —XO,A~() ) . (3.7)

Here the sum extends over all relevant operators.
We still have not recast the Hamiltonian in the

form (3.1) in which the correction term is a com-
pletely irrelevant perturbation. For +[ could still in-
clude some marginal operator which could shift the
value of the marginal parameter Jt:. To take this shift
into account, add and subtract a term proportional to
the marginal operator for the problem 3Cp(Kp) of the
form AM(k)'VM. Here 'VM is a K-independent margi-
nal operator of the kind discussed in the previous
section which has the effect of shifting, the effective
value of the marginal parameter. Thus, we write

Xp (K) =3cp (Kp) + A (A. )UM (3.8)

~=}3C,—XO,A'(})
J

(3.9)

be completely irrelevant in the sense discussed in the
previous section. [In Eq. (3.9) and below, sums over

j cover all relevant and marginal operators. ] The ap-
pearance of a term proportional to OM =—UM in Eq.
(3.9) enables one to make 'V completely irrelevant by
an appropriate adjustment of the corresponding coef-
ficient AM(A, ).

Once AM(h. ) is known, K is known and the prob-
lem has been solved. The values of the coefficients
Ai(X) will be set by demanding that'V" satisfy Eq.

Thus, K is a known function of Ko and A~. To find
the value of AM(h, ) and hence, of K, we demand that
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(3.5). To convert this demand into a practical calcu-
lation, we expand everything in a power series in A. .

In particular, expand the unknown coefficients as

n-
(3.10)

Notice here that the subscript on A J describes the or-
der of the expansion, n = 1, 2, . . . , while the super-
script defines which coefficient is being expanded.
For example, j = M describes the coefficient of the
marginal operator while j =0 describes the unit
operator which has a density 8 0( r ) = 1.

To attack Eq. (3.5), expand Vn using Eq. (3.9) in
the form

Vn=) Wn- —A'+ —A'+ 6" . (3.»)
2f 23f 3 J

The index 0 indicates that the extensive operators
are defined by an integral over a large but finite
volume 0 as that in Eq. (3.3). Furthermore, we use
the convention of summation over a repeated index
j, i.e. , the sum over j in Eqs. (3.11) and (3.12) con-
cerns all relevant and marginal operators.

Next we consider the following Taylor series:

oo gn eypo
e~ =1+ X n!

(3.13)

Here the lowest-order term in the expansion involves

(3.12)

may be written as

M(r ~)'U(r~)'+'( r3)

=&i(R)C~vw(r ir~ (3.15)

Here R is the average position of the operators; i.e.,
if there are n operators in the product

R = (1/n) ( r ~+ r, + + r „) (3.16)

We actually employ Eq. (3.15) in making the state-
ment that as I r

' —R I goes to infinity

(Gi( r ') lt ( r ) )V ( r p) tlat( r 3) )

k
gik ~„C~„~v(r~rq . )

Ir' —RI" (3.17)

Now Eq. (3.5) can be expanded in a power series
in A. to read

lim (Gi(r')'tie„) (&
I' ~ oo

I R —r'I "i

This implies for n =1 that

A'= CJ (3.18)

This says that the lowest-order terms on the right-
hand side of Eq. (3.9) serve to cancel out the
relevant or marginal terms in ) f. To second order,
Eqs. (3.5) and (3.14b) give, via the operator product
expansion

Equation (3.5) implies that each 'N„" is irrelevant.
For the first few terms in this expansion we have
[using Eq. (3.11)]:

A', „dr t9, ( r )

rf+ r2=
Il J~i drdr, C»(r~ —r&)6, (3.19)

'~ o ~Q

~ Q ~Q~Q AJ g Q

~ o cttncltnqp (3~A AJ + AJ )g n

(3.14a)

(3.14b)

(3.14c)

Since tt( r ) has no relevant or marginal terms in it,
expression (3.19) is bound to converge in 0 and we

may write

+3'Akg o g Q (3.14d)

~ 0 cltnctto+ncltn (3t~n~nAi+4~OAi ) g n d r ( d r pC~~( r (
—r ~)~Q

=
~ d r CJ»( r ), f), (3.20)

In order to find a kind of cumulant expansion for the
A„, we define operator algebra coefficients C~&~.
which describe how a product'll ( r &), '0 ( r &),
W( r 3) may be expanded in a set of relevant and
marginal operators in the theory. This expansion

where the integration extends over whole space.
Thus A(X) is determined through second order.
Next, in order to obtain an expression for A3, insert
Eq. (3.19) in Eq. (3.14c). Equation (3.5) now im-
plies

(3.21)

with

A, ( r, r, r3) = C„'»(r ~, rq, r3) —C»(r (, rp)C~( —,(r )+ r)), r3) —C~~( rp, r3)Cki~( —, ( r, + r 3), r, )

(3.22)
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The terms that are subtracted in Eq. (3.22) cancel out
the marginal and relevant terms which arise from the
possible short-distance expansions in the product
'll ( r () 'It ( r 2) 'll ( r 3). As a consequence, we may
take the limit 0' ~ ~ in Eq. (3.21), such that

A3=0 '„„& dr(dr&dr3A3(r(r2r3), (3.23)

where the integrant is given by Eq. (3.22). Again,

J

the expression for A3 is bound to converge.
One continues along similar lines in order to get

the higher-order coefficients A~. The result for A4 is

A&4=0 '
~ dr~dr2dr3dr4Jo

(3.24)

where the integration is most conveniently written in

terms of the following quantities:

D, ( r, r(„r, rq) =C~&~(r„r p)~Ck~(2 (r, + r(), r„rq)+C~~(r„rq)!C~~(—, (r, + rq), r„r()
—C~(r„r()C~~(r„rq)Ck(( —,

' (r, + rb —r, —rg))

D2 (r, ;rqr, rq)= C~k(r, ;—, (rb+ r, + rq))A3(rb, r„rq)

(3.25a)

(3.25b)

such that

A4(r, r2r3f4) Ccglgg+(f(f2f3f4) D ((f(r2 'f3r4) D((f2f3 f4r() D((r(r3 r4r2)

—D2(r(', r2r3f4) D2(f2 f3747() D2(f3 r4r(r2) D2(747(f2f3) (3.26)

Hence, we have formal expressions for all of the ex-
pansion coefficients.

C. Alternative formulation

g o
(6~(r', Kp)(e " —1)) «( )

0,
g o

(6,(r';Kp)(e s —I))~», , 0,
. 0 0

for all relevant operators, 6~, including the unit
operator, and, in addition,

go go
(VM(r';Kp)(e " —e s )) 0

~0 (SC0)

(3.27)

(3.28)

for 33~ being the marginal operator.
We are not sure about the range of validity of this

formulation. By doing expansions, one can convince
oneself that it is derivable from the previous expan-
sion at least through lowest orders. It may be correct
to all orders. If it is, there are considerable advan-
tages to the use of Eqs. (3.27) and (3.28) rather than
Eq. (3.5). It is both conceptually and computational-

ly simpler to expand about E0 rather than K.
Further work is needed to establish the range of

validity of the alternative formulation.

Expressions (3.18)—(3.26) appear to be —and
are —rather complicated. There exists an alternative
and simpler approach which gives the same answers
as the method outlined above at least to low orders in

This formulation arises from replacing Eq. (3.5)
by the alternative statement that the two Hamiltoni-
ans3.'p (Kp) +V& and XJ (Kp) +V& lie in the same
universality class if for r' ~ and large 0:

IV. CALCULATIONS OF MAPPING FUNCTIONS

A. Gaussian example

In Sec. II, we described the effect of two marginal
operators E and 5, discovering that the perturbations
h. s b or )(s& added to the fixed-point Hamiltonian
Xp" (Kp), respectively, changed the system to ones
with effective coupling constants

and

2+k, gK(as) =Kpe

1 —mXp
K()(p) = Kp

1+m A. ~

(4.1)

(4.2a)

where Qp has coupling Kp and has the form given in
Sec. II. Then rewrite this expression as

i ~ -~~() )s

where

(4.2b)

(4.3)

Our job is to calculate A ()(.z) in a form which will

ensure that

a ~-h(z)8
e =e ~e (4.4)

will produce no motion along the marginal line.

Here we wish to see how these results agree with the
formalism described in the last section. Consider the
effect of X Write



5162 ADRIANUS M. M. PRUISKEN AND LEO P. KADANOFF 22

e~ =e ' exp[ —As(X, )S"—A'(Xs) II] (4.5)

where the last term is a reflection of the unit opera-
gO

tor and demands that e expands to unity plus
some irrelevant operators.

Correlation functions of S 's and & 's can be gen-
erated according to the prescription defined above.
Here S ( r ) and &«( r ) are simply

( ) 2
8 8

gu+(r) su (r)
(4.6)

Note the structure of Eq. (4.4). Here, 8 and f are
differential operators and are arranged so that 5 al-

ways appears to the left of and operates on $. In any
expansion of Eq. (4.4) we should always be sure that
the operators corresponding to 8 's and 5 's appear in

a form in which the 8 's and f 's are individually

symmetrized in order but all the 5 's appear to the
left of all the S s. With this prescription in mind, we

can calculate the operator algebra coefficients involv-
ingitl 's and $ 's, put them into Eqs. (3.18)—(3.26)
and calculate AS(hs ).

Products of 8 's and $ 's will generate via the
short-distance expansion more g 's and 5 's, but no
new relevant operators except for the unit operator.
Hence, we can follow the prescription of the last
section if we write

In(r) for large r:

G(r)~]x+iy~ '=r 4 (4.8a)

for large r, Then, the second-order correlation func-
tions take the form

(P~, (r, )$~~(r2)) =G(r~ —rq)

($(r ~)$~~(r2)) = (8(r ~)8(r2))
= G( r, —r, ) —4m'B'( r, —r, )

(4.9)

Equations (4.9) can be converted into two kinds of
statements about operator algebra expansion coeffi-
cients, as they are defined by Eq. (3.15). The first
statement arises from letting r

& go to infinity in Eqs.
(4.9). Since B is short ranged, we then learn that
Cs+= I or alternatively that ql(r) in Eqs. (3.11) and
(3.12) is simply

&(r)=S„(r)—8(r) . (4.10)

C,'„,„(r ) = G ( r ) (4.1 1)

In addition, we notice that Eq. (3.18) determines the
first-order mapping function to be A] =1.

Alternatively, one can read Eqs. (4.9) as if they
had inside the correlation functions a unit operator
I = Oo( r ). Then Eqs. (4.9) determine second-order
operator product coefficients as, for example,

b (r ) =&„(r) ——,m'u+(r )u (r )

where u + are related to u + via

rT+(r) = dr'B(r —r')u+(r') (4.7)
=47r2[B ( r ) ]2 (4.12)

The important product coefficient for our analysis is

C~~( r ) = Cz, ~, ( r ) —2C&~z ( r ) + Cgz( r )

B(r) = J
" e"'"B(q)

(2vr)"
The lowest-order "correlation functions" of 8 and &

are simply the statements that the averages of these
quantities vanish. Hence, if 6 0 represents the unit
operator, the first-order coefficient A~ vanishes. The
other correlation functions are given in terms of the
function G ( r ), which is defined in terms of the
L ( r ) of Eq. (2.15) via

Since all odd order correlation functions involving h
and 5 vanish we have Cg~ also being zero. Hence,
from Eq. (3.20) we derive that the appropriate expan-
sion coefficients inU are

(4.13)

1

G(r)= —, +i —i L(—r)1 Q . 8 6 . 6
9x By Bx By

(see Appendix B). Since L ( r ) is proportional to

(4.8)
The calculation of the third-order term in A~

proceeds along similar lines. From Eq. (3.22) we no-
tice that the only needed term is the one which is

directly an integral of C&~.„&which is

C~~~(0, r(, r2) = lim )r') ($(r')[P~~(0)—$(0)l[&„(f[) tt,'(r, )][3j,(rp) —8(r2)l)
~ oo

(4.14)

This expression is evaluated via a consideration of the fourth-order correlation function. After considerable
cancellation, the operator product expansion coefficient takes the form

C~&z(0, r ~, r 2) =7m''[B( r ~)B( r &) +B( r ~

—r 2)B( r 2)+B( r
~

—r 2)B( r ~)]
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Then the integral of this expression over r ] and r 2

gives

Af =2~'

so that to third order A~ is finally

As(h. a) =h.p+ —7r X3+ ~ ~ ~
2 (4.15)

1+mXq2~A'() .) =in
1 —m'A. g

(4.16)

To the requisite order, the third, the substitution of
Eq. (4.15) into Eq. (4.16) gives'an identity.

In the notation of Eq. (4.1) this mapping function
should obey

Its(As(xa)) =—Ks(ks)

so that we should have

C. Planar model

Il = $[6p &(r, )+ Gp —](7;)] (4.17a)

which may then be written as

The Villain version of the planar model can be dis-
cussed in exactly the same language as we have used
heretofore. This problem is essentially our Gaussian
model with thermally excited vortices at a set of lat-
tice sites r; separated by a spacing a on a square lat-
tice.

To get the thermally excited vortices, we make use
of the operator (2.4) which introduces a vortex of
vorticity m at the lattice site r;. If there is a fugacity

yo for the introduction of these vortices, an appropri-
ate form of the interaction term which brings in these
vortices, is 'U =y0%, with

8. Eight-vertex and Ashkin-Teller models 'lt = 2 g cosh 8 5

go+( r;) 5u ( r;)
(4.17b)

The work of these models will be reported in detail
in a later publication by Pruisken and Brown. Here,
we only mention that the methodology of Sec. III has
been applied to calculating the critical couplings and
critical indices to second order in the four-spin in-

teractions in these problems. The specific method
used is that of Sec. III C. The results agree with the
exactly known answers for these models.

In addition, we must set the cutoff to ensure the
proper vortex-vortex interaction for a lattice system.
To do this choose 8( r; —r;) to be exactly the same
as the form given in Refs. 7 and 13, and get L (r) to
have the same form as in this reference by taking the
cutoff function to be (inside and outside the first
Brillouin zone, respectively)

Qr +Qy
2 2

n &q„/ao&rr. —m&q»/ao&m
8 (q) = 4 —2cosq„—2cosq»

'

0.

(4.18a)

(4.18b)

The net effect of all of this is to ensure that

Q» [ W] = e o
Q p [ W] (4.19)

is a generating function for all the correlations of the
Villain planar models. To form correlation functions
for the planar model, one uses the differential opera-
tors defined in Sec. II, applies them to Q»[ W], then
sets H = 0 and divides by the partition function,
Q»[0]. In symbols, if X is such a differential opera-
tor

(X),=(Q, [0]) '(&Q, [W])a p . (4.20)

Actually, we make a small error in saying that Eq.
(4.20) describes exactly the same model as treated by
Villain and by Jose er a/. According to Eq. (4.20),
the situation in which two m = 1 vortices appear at
the same lattice site is a given statistical yo. In the
earlier treatment it is given a weight of yo. Thus, the
multiple vorticity excitations are handled differently
in the two formulations. [In Coulomb-gas language,

the partition function defined by Eqs. (4.17a) and
(4.17b) has the form

r

Q, = X exp X ~m (r, ) ( ]ny,
{m) r.

I

+mK g m(r;)L(r, —r, )m(r, )
I'. I'

i j

describing a system of interacting electric charges
m ( r ) located at the dual lattice sites. The sum over
(m] runs over all configurations with zero total
charge. Usually one has m'( r ) in the exponent in-

stead of ~m ( r ) ~. The two descriptions only differ in

the definition of the fugacity yp. ] However, this

difference will not produce any substantial change in

our results.
%e have performed quite extensive analyses in

which we expanded correlation function expressions
of the kind symbolized by Eq. (4.20) in power series
in yo, through order yo. As with Kosterlitz and
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Thouless and with Jose et al. , the resulting expres-
sions were sums of Gaussian correlation functions of
the form

yo X X (eo, ,
(r ) 6o,.(r )X')„, .

'1[/ ~ ~ ~ pi Ill ]J ~ ~ ~ jm

(4.21)

Here we want to view X'as a product of local dif-

ferential operators like 8( r ) or 6„(r ).
Initially the position sums in Eq. (4.21) looked im-

possibly complex. However, if e stick to the low-

temperature phase in which

2mKp & 4 (4.22)

detailed analysis can give considerable information
about the structure of the correction terms [Eq.
(4.21)]. If Eq. (4.22) is satisfied, then the vortex
operators are irrelevant, at least in perturbation
theory. This implies that the positional sums in Eq.
(4.21) get their main contribution when the r s are
either (a) close to the positions of the operators in X,
or (b) close to each other.

By employing short-distance expansions we can
then select out the contributions which decay at least
as fast as the zeroth-order term (&) Ir . The task'

0

one now faces is to collect all these contributions and

see whether and hov they reexponentiate to a simple
power-law behavior. Such an analysis turns out to be
rather complicated, due to interference effects
between the various short-distance expansions. We
have nevertheless succeeded in performing the ex-
pansion in yo to order yo, In what follows, we will

briefly mention the main effects of the contributions,
described under (a) and (b) above.

When the r s in Eq. (4.21) lie close to the coordi-
nates of the operators in X the resulting terms in the
expansion can produce a considerable modification of
the initial correlation functions. However, this
modification can be undone by a simple process of
redefinition of the basic operators. That is, there ex-
ists a set of new operators 6„(r,yo) and f,, ( ryp),
which are given in terms of linear combinations of
the original operators in the theory. These linear
combinations are of the form

t3 ( r;yo) = $ fa (yo) Qs( r ),
P

where fr (yo) is 5& plus a power-series expansion in

yo. This renormalization of the operators is a state-
ment which holds within the expectation brackets and
in the limit of infinite separations.

The main effect of the terms in which the r s are
close to one another is to change the value of the
critical indices. A product of two or four nearby vor-
tex operators with total vorticity equal to zero, generates
terms proportional to the marginal operator. These
marginal terms then modify the value of the effective

coupling Ko into K,rr(yo) in all the correlation func-
tions. Presently, we shall calculate K,rr(yo) following
Kosterlitz and Thouless and Jose et al. ' but going to
order yo. But before we embark on this calculation
we should notice the primary quantitative result of
this qualitative discussion.

By detailed calculations including terms of order up
to yo and by qualitative arguments about all terms in

perturbation theory, we have convinced ourselves
that one can introduce renormalized operators
I9 ( r,yo) such that the Villain model correlation
functions of these operators have exactly the Gauss-
ian form with a new coupling parameter K,rr(yp).
These arguments apply whenever

277Kgff(yo) ) 4 (4.23)

The index connected with the lowest spin-wave exci-
tation is x~ o= (4mK, rr)

' so that g (q„=2x„) is

given by q~ 0= (2mK, rr) '. Similarly the Tt's associat-
ed with the vortex operators 60 ~+ 60 &

are equal
and given by qo,-~' = 2+ K,qq.

D. Calculation of E«f(yo)

Now choose some marginal operator g ( r ).
Rewrite Eq. (4.19) as

Q~[ W] —e"e o Qo[ W] (4.24)

and write instead of the general equation (3.9) the
specific one which applies to this case:

U =yolt A (yo)~ A (yo) t9o (4.25)

These three operators are sufficient because operator
products of 'U( r ) lead to only two nonirrelevant
operators, the unit operator 6 o( r ) and the marginal
one g(r).

For this problem we can directly use Eqs.
(3.18)—(3.26) in order to obtain an expansion for As

and Ao in a power series in yo. The'lt In Eq. (4.2&)

has a density

'tt = Jf d r 'tt( r )

with [see Eq. (4.17a)]

'll ( r ) =
Q 8 ( r —r;) [60 ~ ( r; ) + Qo ~ ( r;) ], (4 26)

I

where the sum runs over all (dual) lattice sites r;.

Specifically these qualitative arguments support the
notion that the usual relationships between the criti-
cal indices which hold for the Gaussian model also
hold for the planar model, e.g. , that the renormalized
S( r,yo) remains marginal and that I9„(r,yo) has

critical index

x„=m2mK, rr+ n2/47r K,rr
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The correlation functions containing an odd number of '4 s vanish, so that to order yo the nonvanishing
coefficients are

ro

A3 = d r C~~( r )

A$= d r C(~(r )

Af= n-'

(4.27a)

(4.27b)

(4.27c)

with

A4 ( r, r, r, r 4) = C~~„~( r
~

r 3 r 3 r 4) —Df ( r
~ r 3, r 3 r 4) —D

~ ( r 3 r 3, r 4 r ~ ) —Df ( r ~ r 3, r, r 4)

(4.27d)

and

D ( ( r;; r ~, r „r,) = Czz( r; —r
&
)Cg~~( —,( r; + r &), r „, r,) + C~z( r „—r I )C~s( r; r &, —,( r k + r I ) )

—C$~( r, —r &) C~S~( r k
—r, )C&~(—( r; + r J

—r „—r ~)) (4.27e)

We are free to choose any marginal operator 8 for
this problem. Let us make the choice

2+A~(y, )
K ff(yp) Kpe (4.29)

It is noted that the expansion coefficients of As(yp)
[Eqs. (4.27)] are expressed in terms of operator alge-

bra coefficients which are to be evaluated at the ef-
fective parameter K,rr(yp) in the generating function.
This makes the expansion coefficients A ~ effectively

tt,'(r) =2 —,'n'u+—u (r) . (4.28)
su~(r) gu (r)

Thus the 8 ( r ) is the same as the previously con-
sidered operator b(r) [see Eqs. (4.6) and (4.7)],
with a specific choice for the cutoff function, 8 (q),
namely, Eq. (4.18~). According to the analysis in

Sec. II, the exponential exp[As(yp) g] effectively re-

places the Gaussian parameter Ko by a K,ff, such that
[see Eqs. (2.22) and (4.1)]:

a function of yp. However, the expansion of Ag(yp)
becomes simpler (at least to order yp ) if we in addi-
tion expand the operator algebra coefficients in a
power series in yo around Ko. In order to do this, we
have to go back to the original Eqs. (3.14). Recall
that the coefficient A2 is determined by the require-
ment that the operator

g 0 ~o~o AJCA (4.30)

is irrelevant, in the sense of Eq. (3.5). If one now
wants to evaluate the expansion of the operator pro-
ducts in'U 2" at Ko rather than at K,ff, one then has

„A&(yo)8" .
to demand'U 2"e is irrelevant. In the present
case, one has

'Qneh s (~n+0 Assn AQ6 0 )e ~p

(4.31)
In expanding to order yo, this leads to the follow-

ing result for A(

2 fO re 't

A)=& dr C~(r)p+, f 0 '„„„dredr3d r,CI„„(r,r, r3)p —QA& + (4.32)

The index "o"on the operator algebra coefficients indicates the point Ko on the Gaussian fixed line. Thbs, col-
lecting the terms in Ag(yp) up to order yp, one has

2 p p 4

(4.33)

with
W

Az(r~r3)Q=C4a(7~73)Q=C~(7~ r3)p

Af( r ~ r3r3r4) = C„~~( r~ r3r3r4)p —C~~( r ~ r3)QC~„( r3r4)p —C~~( r~ r3)QCg~( r3r4) p

C a~( 7g73 )Q C a~ (7/ T4 )Q C~(7$73 )Q C'la~ ( r ] "4 )p

—C~~( r3r ~)QC~~( r4r3)p —C~~( r3r ()QC~,„(F473)p (4.33a)
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Note that the coefficient C8» has disappeared in Eq.
(4.33). It follows that the expansion around Ko, as
given above, is independent (to order yo ) of the par-
ticular choice of the marginal operator S( r ). (This
is a direct consequence of: Css = 0, I' g. ) We re-

mark that Eqs. (4.33) exactly correspond to the ex-

pansion, derived from the alternative formulation
which is described in Sec. III C.

The operator algebra coefficients in Eq. (4.33) can

be calculated by straightforward application of the de-

finition (3.15). As a result, Eq. (4.33) can be written

as (see Appendix 8):

As(yo) =nKO —', X' 2!(r)—r, )'x, ,'+—' $' 3!(r)—rg+ r3 —r4)' " " " " " "- +0(yo )' 2! 4t X ]PX $3X34X4]
F] fp f ]y ~ ~ ~ y f 4

r„=o (4.34b)
If

and the sums run over all the sites r; of the (dual)
square lattice. The L (r) represents the lattice
Green's function4 ~

i' r
L(r)= »

—"
2K 4 2 cosq» 2 cosqy

which has the asymptotic value

L (r) = const+ lnr

(4.34c)

Finally we remark that the sums in Eq. (4.34) give
finite results for 2n Ko & 4. We have convinced our-
selves of this fact by a detailed analysis.

E. Concluding remarks

Equation (4.34) forms the central result of this
section. We have presented a systematic scheme for
expanding in the vortex parameter yo. We have
furthermore proven (at least to order yo ) that the
low-temperature Villain model has continuously vary-

ing critical behavior which is essentially given by the
Gaussian model with a renormalized value of the
parameter K (i.e., K,ff).

Our perturbation expansion holds as long as
2m K,«& 4. This region is characterized by the pres-
ence of only one marginal operator in the theory.
This marginal operator is generated by sets of nearby
vortex operators with zero total vorticity. At exactly
2+K,«=4, which defines the Kosterlitz-Thouless
critical line, the vortex operators 60 +] become mar-
ginal themselves. This situation has a more compli-
cated nature and needs separate consideration. For
2mK,«4+ the operator algebra coefficients in our
original expansion [Eqs. (4.27) j tend to diverge;
more study is needed in order to give an adequate
description of this limiting situation. Several au-
thors"" ' have dealt with this problem, using dif-

with

(4.34a)

The prime on the summation signs denotes the re-

striction

(4.34)

ferent methods and different points of view. The
commom conclusion is in agreement with Kosterlitz's
result. Namely, that the line 2+K,«=4 exhibits
universal values for critical exponents, in particular,

It would be a useful advance to see whether]

K.osterlitz's conjecture can also be derived in a more
systematical way, using the methods developed in
this paper. We mention also the recent work of Amit
et al. ' which is in several aspects parallel to our
work. These authors give a field theoretic treatment
of the sine-Gordon theory and derive higher-order
corrections to Kosterlitz's renormalization-group
equations.

In conclusion we can say that we have set up a
theory which provides us with an expansion scheme
for marginal operators. The scheme essentially re-
lates different critical lines which are members of the
same universality class. We have given a detailed
study of marginality for the Gaussian model. The
results are put into practice for Villain's version of
the planar model: to order yo we have calculated the
mapping of this model onto the Gaussian model.
The same techniques can be used in order to expand
the Baxter and Ashkin-Teller critical lines around
their decoupling point. "

The results give stronger evidence for the conjec-
ture that all of these models are members of one and
the same universality class.
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APPENDIX A: JUSTIFICATION OF
BASIC EXPANSION FORMULA

In order to justify Eq. (3.5), imagine that we can
write for the perturbation, instead of 'U

Jl, 'U(6)d(, &(g)=XV(r;g) . (A

Here we adjust 'U($) so that the perturbation [Eq.
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where the expectation, ( ~ )„, is taken with respect
to the Hamiltonian

3.'(p) =Se'+, V(g) dg .

The dots in Eq. (A2) stand for correction to scaling
terms, which show that although X' and X'+'U are
in the same universality class they do have different
nonasymptotic behavior.

We assume that 'U( r;p, ) contains no critical opera-
tors with scaling indices x ~ d. This irrelevance con-
dition for 'U( r;p, ) can be formulated as

lim R &(U(0;p)6~(K;p, ))„=0 (A3)

for every value of p, and for all relevant and marginal
operators 6& in the theory. (For simplicity we will

consider only scalar operators, The conclusions of
this appendix, however, are unchanged by including
nonscalar operators in the analysis. ) We will study
the consequences of Eq. (A3) by applying the dif-
ferentiation d„—= d/d„ to both sides of the equation.
First, however„we consider the more general case of
Eq. (A3):

d„(6 (r;p, )6s(rp, p))„

d„+XU(r;rr) 0.(r.; )8rr(r r; )r)„rr. (A4)
r

In order to evaluate Eq. (A4), we assume that the
operators 6, defined for different values of p. , are
related to one another via the transformation

8 (r;p+I„)
= 6,( r;p, ) + hg)' (p, ) 6a( r;p, )+, (AS)

where the sum over P runs over a complete set of
scaling operators. The ~ refers to redundant opera-
tors which have correlations which fall off with ex-
ponential rapidity. To see the meaning of Eq. (AS),
consider the sum over lattice sites r in the right-
hand side correlation of Eq. (A4). Let us, for specif-
ity, define spheres of radii p and p& around the posi-
tions r and r ~ of the operators 6, and 6~, respec-
tively, such that p, p& is much larger than a lattice con-
starxt, but much less than the separation ~ r —r&~.
In this way we can separate out the short-wavelength,

(Al}] obeys Eq. (3.S) for all values of p, . We shall
essentially prove Eq. (3.5) by showing that it is true
term by term in a power-series expansion in JM, .

If Eq. (Al) is to be an irrelevant perturbation to
the critical Hamiltonian, 3.'", then we must be able to
construct for every value of p. a set of critical opera-
tors 6,( r;p, ) with p, -independent scaling indices

(6 ( r;p, ) 6&( r&,p) )„=a a~ r —r&l
"

(A2) =r s
~ ~B(p,/r, &,p&/r &)+, (A6)

where we used the abbreviation r &= ~ r —r a~ and
where, for the moment, we assumed that 'U ( r;p, ) is
a single scaling operator with scaling index x~ & d.
The dots in Eq. (A6) represent all terms, arising
from correction to scaling.

On the other hand, when the r in Eq. (A4) is
close to the positions r or r&, we assume that the
resulting products of nearby operators 'U and 6, 6&
can be expressed in terms of a complete set of critical
operators

Q(r;p)6 (r;p, )
l r -T' l(p

C~r ( r —r )6~( r;0) (A7)
lr -T l&p

and a similar expression with 6&(r&,p), Equations
(A6) and (A7) determine the first-order change in
the operators as written down in Eq. (AS). We de-
fine renormalized operators as follows:

d„6,( r;p, )

X C~& (Z) —S„' (p ) 6„(r;p,) (Ag)

and a similar result for d~6s. The term S~~ (p ) in

Eq. (A8) is such that it subtracts off all p depen-
dence from the sum over the operator product ex-
pansion coefficients. As we have taken p, p& much
larger than a lattice constant, the surface terms
S~r (p ) and S~Y& (p&) are determined by the long-
wavelength behavior of the correlations. In fact, the
leading behavior is determined by scaling and we may
write

r

d„+
lr-T l(p

'U(r;p) 8 (r;p, )

=X(a v,p. &+ )o,(r.;p) (A9)
'y

and a similar expression involving 6&.
By inserting Eqs. (A6) and (A9) into Eq. (A4) we

can see that the renormalized operators [Eq. (A8)]

model-dependent parts and the long-wavelength parts
in the correlation. Notice that the terms in the sum
of oq. (A4) with r far from r and r& lead to a
power-law behavior of which the leading term is
determined by scaling

(g(r)6 (r; p)6 s(r s; p)),lf-f
1 &Pa a

0-~pl & pp
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Z +X
p P y

+ X opg~Q~y
I'aP

(A10a)

indeed have the desired properties

d„(r3 (r;P, )Gir(ra ,IR, ).)„
=br p~ ' P((r p s, (A10)

where the amplitude b equals
' d-x —x +x'U a y

+ + a ~yOyP
pa pie ~ pa

I'ap I ap y, pap,

tion of the operators. Note that in the amplitude b

all p, p& dependence is collected together such that b

itself is a constant, independent of these parameters.
On the other hand, all short-wavelength behavior is
contained in the renormalization of the operators
[Eq. (A8)].

We next apply these results to Eq. (A3) by replac-
ing 6 by 'U and 6 & by 6, . Notice that the condition
which arises upon 'U(r;p, ), is actually contained in

expression (A9), with 19 replaced by'U. Let us first
write 'U as a linear combination of irrelevant opera-
tors'U; with scaling indices x; & d:

From Eq. (A10) we see that asymptotic behavior of
the correlations is unchanged (remember that

xv, ) d) and that the only effect of changing p, is con-
tained in corrections to scaling and in a renormaliza-

'U (r;p, ) = $~, (p, )g;(r;)M, )

then we learn from Eq. (A9) that

(A11)

d —X. X I +X

d„+ X 'U(r;p, ) U(0;p) = X [co, (p. )co,(p)a, (p)pg
' ' '+. ]6,(0;p)

r&pg~ .I I l
l, l

)

(A12)

Notice that all the coefficients of the relevant operators on the right-hand side of Eq. (A12) vanish in the limit

p~ ~, for all values of p, . In fact, by repeatedly using Eq. (A9) one is easily convinced that the same conclu-

sion holds for the expression
I 'n
d„+ g U( r;p, ) 'U(0;p, )

r&pp
(A13)

for arbitrary n. Thus we can form the generating expression
) p. +A,

exp)). d~+ g 'U(r;p, ) U(0;p, ) ='U(0;p, +)).) exp $ &
.'U(r;g) dg

r &p~ r &pg
(A 14)

The specific meaning of Eq. (A14) can be formulated by saying that if 'U( r;p, ) is to be an irrelevant perturbation
for all p„ then expression (A14), which is defined for a volume of radius p~ around the lattice position 0, will

not have any marginal or relevant terms in its expansion, in the limit pz ~. In terms of correlation functions,
we can write

(
p. +L

, exp $ 'U(r;g) d(—
r&p~

)

pr, , l9(R;R)) =c,(p, ', ).R)R + . R

)

(A15)

The condition for irrelevance of the operator '0 can
now be formulated as

l

defined by

(I:)=KQ[Kla -p, (Bl)
lim c&(~', ))., p) =0

p ~oo
RU

(A16)

APPENDIX B: CALCULATION
OF CORRELATION FUNCTIONS

for all values of A. , p„and all subscripts j, referring to
a marginal or relevant operator.

i. X=+6, (r, )
I

In this case, the imaginary part of Mr( r ) does not
contribute and we only have to consider the part
M„„(r ) [see Eqs. (2.5) and (2.6)]. Thus

r I

(X) =exp —, J J d r~d r f) (r)M„„(r —r )f)(r )

In this appendix we will work out in some detail
some correlation functions for the Gaussian model,
using the generating function formalism of Sec. II.
Let us denote a product of operators 6„(r) and

P»( r ) by the symbol X, then the expectation of X is

with

'U+

u(r)=
V

1

Xm, g(r —r, )
t

(B2)

(B3)
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The matrix elements M„„follow from Eqs.
(2.10)—(2.13):

)

d2
M..(-)=-'(2 K) ' — ' — B(q)

(2m) q

with L ( r ) given by Eq. (87). Note that

0 asf=0
OR++(r ) =

Z+ aS f ~oo (812)

—= —,
' (2mK) 'H ( r ) (84)

Using Eq. (812), the average of scan easily. be ob-
tained:

Substituting Eqs. (83) and (84) in Eq. (82) leads to:

(X) =exp —Xm;m/2mKH(r; —rj)
ij

t

(85)

Note that the expression for H ( r ) [Eq. (84)] shows
an infrared divergence. We can separate out this
divergence by writing

(&) =exp 2mK X m;mjL(r; —rj)
I') J

+-,'2~K Xm, H(0) (86)

~here

and

L(-„)=H(-„) H(0)=
' d'q B(q) (1,--)

2m q
(87)

H(0)
e )

The potential L ( r ) is well behaved; for small r it is
zero and it becomes logarithmic for large r. It fol-
lows that the expectation (86) vanishes, unless the
total vorticity of X, i.e. , X,. m, equals zero. Therefore

(X) =8~ exp 2nK X m, m/L(r, —rj)
I i&j

(88)

2. X=5,j(r )Sk)(r )

We start out by giving a precise definition of the
operator fj ( r ):

I )

which is the desired form. ' ' Furthermore, by
choosing the cutoff function B (q) as in Eq. (4.18),
then Eq. (88) describes precisely the square-lattice
Gaussian model with thermally excited vortices at the
(dual) lattice sites r;. '3

(X) =8,„8/)9R++(r r )0R (r —r ), (813)

(I) 8,8, ) r r )-2(i+j)e2(i —j)9( r —r ) (814)
r

fr —r f-~ .

Thus the operators%, /( r ) exactly have the properties
which they are supposed to have", i.e., they forn. a
canonically normalized set with scaling —angular-
momentum indices

xj =i +j, (i, ),j ——i —j (815)

r

(X) = S(((R)exp —, Jl Ji d r d r ()) M„„))+))M„„u

where

+u"M„„))), (816)

'8+
))(r) =

U

1
Xm;8(r —r;) (817)

The i-)) part in Eq. (816) will lead to a factor which
is given by Eq. (88), together with the charge-
neutrality condition ( X,. m; = 0). Furthermore, ac-

cording to Eqs. (2.10)—(2.13)

M„„(r)
)

2%e' ' — B (q) iq (2rr K)——q ]/2

(2n) q

3. ~=%„(K)+go (r;)
I

The average of this quantity will be calculated in view
' of Sec. IV 8, where we need the operator product
coefficients Ce . . .6 ( r, r, r 3r4) and

O, ml O, m 4

Cg 4) ( r ( r &). In keeping only the contributing
O, m] O, rn2

matrix elements of M~, we can write

( r ) 2(i+j)/2(i) ))1/).
su+(r) Su (r)

. (89)
which can be written as

(818)

1n this case, the important matrix element of Mr( r ) is

M„„(r ), which according to Eqs. (1.10)—(2.13) equals , QR+ 0
M„„(r)= —,

'
0 ~ (2mK)

2

M (-)= I' 'q
NN J ( )p

,
')I+,(r )

2 0

21TB( ) )

q2 4
)

)

pit (r )
(810)

)

0 asf=0
5R+(r) =2 L(r)

3 ) (819)+

with L (r ) given by Eq. (87). Using Eq. (819) and
the equality

9R++(r —r ) =2 L(r —r ), z+=x +iy8
BZg

(811)

1
(2mK) ' )) ( r ) = (2mK)( '

1 pm, 5( r —r;)
(820)
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we find

I

—, J~ (v M„„p+ u M„„v) dr dr = —,(2mK)' 'QJI d rm[u+(r )OR+(r —r;) —u (r)OR (r —r, ) J . (B21)
I

Using Eq. (BS) for the v-v part and using Eq. (B21) we finally get for Eq. (B16):
r t

(X) = —rrKg exp $ m;m, 2mKL (r; —r, ) Xm;DR+(R —r;) Xm,ZL(R —r, )
I

I' &J j

Equation (B22) can be used to obtain the operator product coefficient

Ce" . . . (r~rq r;) = lim R ( QQO (r, )$„(R))
I I

By expanding the 3R+(R —r;) to first order in r; in Eq. (B22) one obtains

2

Ce" . . . e (r~r2 r;) = —mKB~ $m;r, exp $ m m2rrKL(r, —r, )
I I I'&j

t

Equation (B24) is used to obtain the mapping function [Eq. (4.34)] in Sec. IV B.

(B22)

(B23)

(B24)

'Present address: Institut fur Theoretische Physik der
Universitat, Philosophenweg 19, 6900 Heidelberg, Federal
Republic of Germany.

'J. Ashkin and E. Teller, Phys. Rev. 69, 178 (1943)~

R. Baxter, Phys. Rev. Lett. 26, 832 (1971).
V. L. Berezinskii, Zh. Eksp. Teor. Fiz. 59, 907 (1970)

[Sov. Phys. JETP 32, 493 (1971)];61, 1144 (1971) [Sov.
Phys. JETP 34, 610 (1971)].

4J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181
(1973).

5J. M. Kosterlitz, J, Phys, C 7, 1046 (1974).
J. Villain, J. Phys. (Paris) 36, 581 (1975).
J. V. Jose, L. P. Kadanoff, S. K. Kirkpatrick, and D. R.

Nelson, Phys. Rev. B 16, 1217 (1977).
S. T. Chui and J. D. Weeks, Phys. Rev. B 14, 4978 (1976).
H. Van Beyeren, Phys. Rev. Lett. 38, 993 (1977).

' H. J. F. Knops, Phys. Rev. Lett. 39, 766 (1977).
"J.M. Kosterlitz, J. Phys. C 10, 3753 (1977).
'2L. P, Kadanoff, J. Phys, A 11, 1399 (1978).
' L. P. Kadanoff, Ann. Phys. 120, 39 (1979).
'4A. Luther and I. Peschel, Phys. Rev. B 12, 3908 (1975).

'~M. Bander and J ~ Richardson (unpublished),
' L. P. Kadanoff and A. C. Brown, Ann. Phys, 121, 318

(1979).
'~K. Wilson, Rev. Mod. Phys. 47, 773 (1975).
' L. P. Kadanoff and F. Wegner, Phys. Rev, B 4, 3989

(1971).
' L. P. Kadanoff, Phys. Rev. Lett. 39, 903 (1977). The fol-

lowing sentence (between brackets) on p. 905 is wrong:
"(To get a line of fixed points, one must allow for a

second term in K —4. )"
F. Wegner, in Phase Transitions and Critical Phenomena,

edited by C. Domb and M. S. Green (Academic, New

York, 1976), Vol. 6.
2'H. J. F. Knops (University of Nymegen, 1978) (unpub-

lished);
P. B. Wiegman, J. Phys. C 1. 1, 1583 (1978).

23D. S. Amit, Y. Y. Goldschmidt, and G. Grinstein, J. Phys.
A 13, 585 (1980).

24A. P. Young, J. Phys. c 11, 453 (1978).
25A. M. M. Pruisken and A. C. Brown (unpublished).


