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Two models of disorder in two dimensions are discussed. The first is a localization theory

that treats noninteracting particles by perturbation theory in the weak scattering limit. A weak

magnetic field is found to have strong effects on the previously predicted logarithmic rise in

resistivity at low temperatures. No logarithmic divergence is found for the Hall constant. A

second model treats the disorder scattering by conventional diagramatic technique but includes

the effects of interactions. In a short communication it has previously been reported that the

resistivity and Hall constant both show a logarithmic increase at low temperatures. The details

of the calculation are reported here, together with an extension to thin wires which shows a

T '~ divergence in the resistivity.

I. INTRODUCTION

p (g)

Special interests have been focused on two dimen-
sions, where Abrahams et al. argued that p 0 for
large g. Furthermore they proposed that p is a

smooth monotonic function, so that it has an expan-
sion for large g of the form

p(g)— (1.2)

Equations (1.1) and (1.2) have the physical conse-
quence that all states are localized in two dimensions,
no matter how weak the disorder. The localization is

logarithmic at first, changing over to exponential on a
longer length scale. Equation (1.2) is supported by a
perturbation theory" based on the summation of a
certain class of diagrams which reveals contributions
to the conductivity of the form —(2n') ' lnL. Thus
the perturbation theory is consistent with

In the last year there have been a number of in-

teresting contributions towards our understanding of
electronic localization in disordered systems. ' ' It
has been proposed' that there exists a one-parameter
scaling theory for the localization problem and that
the appropriate scaling parameter is g (L), a dimen-
sionless number defined as the conductance in units
of e'/g of a sample of size L. If such a scaling theory
exists, the behavior of the conductance as a function
of L is determined by the following scaling equation:

a = (2rr2) '. This consistency is checked to second
order with the demonstration' that conductivity di-
agrams of order g '(lnL)' sum to zero. The coeffi-
cient b has recently been shown to vanish by sum-
ming terms of order g ' lnL. These results are in

agreement with those obtained by %egner' using a
quite different approach.

%e should mention two pieces of work that are in

disagreement with the above references. Using the
memory-functional approach, Gotze and co-workers'
obtained a result different from the above in that
a =0 and b is finite. %e comment that Gotze did
not consider the class of diagrams included in Refs. 1

and 3, so that it is not difficult to understand why he
obtained a =0. Furthermore his finite b comes from
singular contributions to the conductivity of the form
g ' lnL which arises from the vanishing energy
denominator of the diffusion pole. A direct calcula-
tion4 (rather than via the memory-functional ap-
proach) shows that all g

' lnL terms arising from the
diffusion pole alone also cancel, in contrast with the
b AO result of Ref. 5. A second work that is in
disagreement with the one-parameter scaling theory is
a numerical implementation of the general scaling
idea. The numerical results are more consistent with
p=0 for g greater than a certain critical value. How-
ever the numerical approach is an approximate one,
valid for small g, and is subject to systematic error
for intermediate values of g.

Commenting further on the perturbation theory, it
has been found that the cancellations that 1ed to the
logarithmic singularity in the perturbation theory is
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extremely delicate. For example, introduction of a
random local magnetic field (to simulate magnetic
impurities) is sufficient to cut off the singularity. 7

These calculations have also been done for spin-orbit
scattering. ' While spin-orbit scattering does not cut
off the divergence, its effect is to produce a leading
contribution to the P function of the opposite sign,
i.e., a = —(4n') '. Such a result implies an infinite
conductivity for g greater than a certain critical value.
At the very least, such a strange result means that a
much deeper understanding of the structure of the
perturbation theory is required.

A logarithmic rise in resistivity at low temperatures
has been observed in thin films and in the silicon
inversion layer. ' Many features are in agreement
with predictions based on Eqs. (1.1) and (1.2). How-
ever the experimental systems all involve a Fermi sea
of interacting electrons whereas the localization
theory is a strictly single-particle theory. The effects
of interactions on a disordered system in the metallic
regime (i.e., kFI )) 1, where I = vrr is the electron
mean-free path) must be investigated. The result""
shows that interactions effects alone (without the ef-
fects of localization) also produce a logarithmic rise
in resistivity consistent with the experimental obser-
vations.

This paper is divided into two parts. In the first
part we try to develop further understanding of the
perturbation theory of localization by extending the
work of Refs. I and 3 to various physical situations.
We consider the effects of a magnetic field on the
logarithmic singularity in the resistivity. The Hall
coefficient is then calculated. In the second part we
focus on the interaction effects while ignoring locali-
zation. The Hall coefficient is calculated and con-
trasted with the localization theory prediction. In the
course of our presentations, the conductivity calcula-
tion will also be reviewed so that details omitted in

earlier brief communications will be supplied. We
also present results for the resistivity in 1D that is

appropriate for thin wires. The predictions for the
two theories are very different and it is hoped that
this work will help clarify the comparison between
theory and experiments.

I

P

(b) (c)

FIG. 1. (a) Lowest-order logarithmic correction to the
conductivity diagram; (b) Fig. 1(a) redrawn to emphasize
the ladder diagram in the particle-particle channel; and (c)
the same diagram in real-space representation.

The most direct way to see Eq. (2.3) is that if the ar-

row on one of the particle lines is reversed and its
momentum replaced by its opposite sign, the diagram
is identical to a particle-hole ladder which is well

known to have a diffusion pole of the form shown in

Eq. (2.3). From Eq. (2.3) it is readily seen that upon
integration over p, p' to obtain the conductivity, the

I
region of integration near p = —p leads to a loga-
rithmic term lnO in 2D

(2.4)

I

P(p+ p, 0) which satisfies the Dyson equation

P(p+ p, 0) =u'+u'Po(p+ p, Q)P(p+ p, 0)
(2.1)

where v
' =2mN]u' is the scattering rate, N] is the

single spin density of states, and u' represent the
mean-square impurity potential. The kernel

Po(p+ p, fl)

=XG (p), e)G~( —p, +p+p, e+n)
P)

=2mW~r[1-rD(p+p )~+i Or], (2.2)

where G+(p, co) = [co —e(p) + il2r] ' and D = —,vF'r

is the diffusion coefficient in 2D. Combining Eqs.
(2.1) and (2.2), we obtain

P(p+ p, 0) = u'r '[ —i 0+D(p+ p )'] '

(2.3)

II. MAGNETORESISTIVITY IN THE
LOCALIZATION THEORY

We begin by reviewing the perturbation theory"
for the conductivity at frequency 0 that leads to the
logarithmic divergence in the absence of a magnetic
field. The divergence occurs in the summation of the
set of maximally crossed diagrams shown in Fig. 1(a).
It is instructive to show the diagram in an equivalent
way shown in Fig. 1(b). The maximally crossed di-
agram in the particle hole propagator becomes a
ladder diagram in the particle-particle propagator

where s is the spin and other, such as orbital, degen-
eracy.

While the diffusion pole in the particle-hole propa-
gator follows from particle conservation the same
cannot be said of the particle-particle propagator. In
particular if the particle-hole transformation just dis-
cussed is violated, it is possible that the pole in Eq.
(2.3) may be cut off. This is what happened in the
case of spin-flip scattering. ' As we shall see, applica-
tion of a magnetic field also introduces a cutoff,

In the presence of a magnetic field the conductivity
transverse to the magnetic field should be calculated
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in the coordinate representation as shown in Fig.
1(c). Impurity averaging effectively introduces a
short range interaction between electrons and it suf-

I

fices to study the propagator P ( r, r, n) which satis-
fies the Dyson equation

P(r, r, n)
=u~8(r —r )+u2XPp(r, r, , n)P(ri, r, n)

and 6 is the Green's function in a magnetic field. If
the Landau orbit is much larger than the Fermi
wavelength, we can use the quasiclassical approxima-
tion 13

i

G(r, r )=exp ie A(T) d l G(r —r )4 r

(2.7)

where

Pp(r, ri)=G (r, ri, e)G+(r, ri, e+n)

(2.5)

(2.6)

where the integral is along a straight line connecting
r and r . The quantity Po is well known in the
theory of dirty superconductors. Its calculation is

shown in Appendix A for completeness, and we ob-
tain

t

Pp(r, r, n) =2nIiiir Xiii„(r )ili„',(r ) 1 —4rD (n + —) +i nrfc (2.8)

where ili„denotes the set of Landau orbits for a

doubly charged particle. Combining Eqs. (2.5) and
(2.8) we obtain

ili„.(r)y„',.( r )
P (r, r, n)= —"

~ ..4D(eH/tc)(n+-, ') -in
(2.9)

The conductivity can now be. calculated by combining
Eq. (2.9) with

G+(r, , r, e+ n)G+( r, r 2, e+ n)
x G (r2, r, e)G ( r, r i, e)

Noting that 6 has a range in space given by the
mean-free path t, the important region of integration
is for I r —r

~

= I. On the other hand the nth term
in the sum in Eq. (2.9) is slowly varying on a length
scale small compared with the cyclotron radius of the
nth Landau orbit. We can then limit the sum to
n ( n where n = (tc/2eH) I ' and set r = r . The
integration over the four 6's is the same as in the ab-
sence of a magnetic field. Upon integrating P ( r, r )
over r, we obtain

s~ (n)
s e2 4H X& 4DeH(

4n2 fc fc, gc

(2.10)

The magnetic field of interest is usually sufficiently
small so that n » 1 in which case Eq. (2.10) be-
comes

I i 1 'I

So.n= —'
ili

—— +ln 4 Drs e2 i i 0 hc eH
Ac

J i i i

4eH, /tc =(Dr,„)-' (2.12)

Equation (2.12) states that the size of the lowest
Landau orbital is comparable to the diffusion length
in the time 7;„. Note that H, can be extremely small.
For instance, a diffusion length of 10 4 cm corre-
sponds to H, =10 G.

III. HALL EFFECT IN THE LOCALIZATION THEORY

The Hall current is the current response that is
linear in an electric field and a magnetic field. Let us
define i OA& = E and i k x A2 = H. The kinetic ener-

gy is of the form

H= [p+e(Ai+A2) ]2
2m

2 e ~ ~ e 2

+ —p (Ai+A2) + (Ai+Ap)2
2m m 2m

I

where ili is the digamma function. If n (tc/4eH)/D» I, ili approaches a logarithm, arid we recover the
Innr divergence in Eq. (2.4). In the opposite limit,
the second term in Eq. (2.11) dominates and a loga-
rithmic dependence on H is predicted. The sensitivi-
ty to a magnetic field is a consequence of the peculiar
structure of the maximally crossed diagram (Fig. 1);
the particle and hole move along opposite paths in

space so that the phase factors in Eq. (2.7) add in-

stead of cancel.
Let us now adopt the interpretation' "that at finite

temperatures 0 is to be replaced by the inelastic
scattering rate r;„' Equation .(2.11) then yields a
critical H, given by



22 MAGNETORESISTENCE AND HALL EFFECT IN A DISORDERED. . . 5145

The Hall current is proportional to E x A which can
be written as Q[A2(k ~ A~) —k(A, ~ A2)]. We note
that the term A2(k ~ A~) can be obtained from a
second-order perturbation theory in the second term
in Eq. (3.1) whereas the term k(A~ ~ A2) also has
contributions from a first-order perturbation in the
last term in Eq. (3.1). Thus it is simpler to look for
the former term.

Our strategy is to write down the usual conductivity
diagram, and then insert a magnetic field vertex
which carries a momentum k into each Green's func-
tion G (p). Each magnetic vertex is assigned a value
eA2 (p+ k/2)/m =eA2 p/m. It is instructive to
test this on the lowest-order diagram shown in Fig. 2.
Figure 2(a) makes the following contribution to the
current

j,=, XG+(p)G (p+k)G (p)(A& p)(A2 p )( p + k/2) (3.2)

We want to keep terms to first order in k A~. This can come only from an expansion of G+(p+ k) since the
contribution from the last term in Eq. (3.2) will be proportionai to (A~ Aq) k. Upon expansion we can do the p
integration by separating the angular and radial components

inc F pdp 4 1 1

m
' " (2m) p /2m —ez+i/27 (p /2m —Ep i/2r)

(3.3)

where

F)= (A) p)(A2 p)(k p)p
2m

= —[(A) k)Ap+ (A( A2) k+ (A2 k)Ag]

0.4)

Again, only the first term in Eq. (3.4) is of interest to
us. The p integration in Eq. (3.3) can now be done,
giving

usual transport theory (s is the spin and other degen-
eracies).

Now we are ready to calculate the Hall effect in the
localization theory. Figures 3 are generated by insert-
ing the magnetic vertex in every possible way into
Fig. 1(a). (It is easy to show that insertion into op-
posite sides of the particle-particle ladder cancel each
other. ) We expand the k dependence in G (p + k)
as before. Figures 3(c) and 3(d) equals minus the
complex conjugate of Figs. 3(a) and 3(b). Together
we have

i 0 e 3

j,=—— —(A( k) A2r ap—
2 2 Ip m 'r

(3.5)
ise30~jH=
277m

(3.7)

Jh

jH=aHH x E (3.6)

where oH =s(e'H/m)cqr'/2m in agreement with the

Note that care must be taken to evaluate the p4 term
in the numerator in the integral at the pole, yielding
the second term in Eq. (3.5).

Diagram 2(b) can be calculated in the same way,

and we obtain jq = —j, . Thus we obtain the Hall

current

where

P XP( I1) Q lnOl'
4mDv

q

p+q

-k+q

I

Ig

)t fN,
I

(3.g)

+k

I

p/k

(a) (b)

(a)

$k
I

(b) (c)

FIG, 2. Diagrams for the Hall effect. Dashed line carries
momentum k and represents linear response in the magnetic
field.

FIG. 3. Diagrams for the Hall effect obtained by inserting
the magnetic vertex (dashed line carrying momentum k) in

Fig. 1(a).
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is from the particle-particle ladder as in the conduc-
tivity calculation, and

and

II (q, i co„)= sN ~Dq'/( I co„ I + Dq 2) (4.2)

P, =—X2[G+(p)G'(p) —c.c.l
m

x(A, p)(A, ~ p)(k p)( —p)

Here N~ = m/2m is the single spin density of states.
In the small q, ao limit, and subject to the condition
DKq )) Ice„l where ~ = e'sN~ is the screening con-
stant

= —i4m eFr (A~ k)A2 (3.9) (4.3)

Sje=80.HH & E (3.10)

where

(3.11)

Here the angular and radial p integration is evaluated
as in Eq. (3.5). The result is that

and is independent of the bare coupling e'.
As in the last section we calculate the Hall current

by inserting an additional vertex irito the conductivity
diagrams. The conductivity results have been report-
ed before"" but we take this opportunity to supply
some details. The important feature is that vertex
correction as shown in Fig. 4 gives rise to diffusive-
like divergence for small q and eo

Comparing with Eq. (3.6) we have

&OH 2 Inln. l .
g~ 2%OFT

(3.12)

(l~ I+Dq') 'r ', if e„(e„—co ) (0I ~Q~ m~ &n j = '

1 otherwise.

(4.4)

5R~/RH = 0 (3.13)

where R is the resistance per square. In the free
electron model, RH = (nec) ', so that a naive in-

terpretation would state that the logarithmic correc-
tion is in the scattering rate, and not in the carrier
density. This result for the Hall constant was first
obtained by Fukuyama. '

IV. HALL EFFECT IN THE INTERACTING
FERMION SYSTEM

Experimental measurements of Hall effect are usu-
ally expressed in terms of the Hall constant
R~ = E~/j„H = oH/(o'H. ) Combi. ning Eqs. (3.12)
and (2.4) we obtain

The diagrams that contribute to the conductivity are
shown in Fig. 5. These diagrams are generated in a
conserving approximation from an exchange self-
energy diagram [Fig. 7(a)1. In Appendix C we show
that the sum of diagrams (a), (b), and (c) is exactly
zero so that the conductivity correction comes only
from Figs. 5(d) and 5(e). In the following we
present the calculation for zero temperature. The
finite temperature case proceeds along similar lines
and we simply give the result.

We begin by doing the momentum sum in the
electron Green's function. The sum factorizes into
two parts on either side of the impurity ladder. Let
us label by M the left side of Fig. 5(d). Note that in
order to obtain the divergence given in Eq. (4.4), we
must have e, e+ 0 positive and e+ 0 + cv negative
and vice versa. Thus we obtain

In this section we purposely ignore the complica-
tions due to the crossed diagrams treated in earlier
sections. We assume that such diagrams have been
suppressed by any one of the mechanisms already
discussed, such as magnetic field and spin-flip
scattering. (This point is further discussed in Appen-
dix B.) Instead the impurity scattering is treated by
the conventional diagrammatic technique in the
kFt » 1 limit and we include the effects of electron
electron interaction to lowest order. "' The interac-
tion is taken to be the dynamically screened Coulomb
interaction

M(q)=„,G'(p)G (p+q)~

G+(p)G'(p) q ~ ~
(2')' +

m m

3= 26FT (4.5)

, 6-Cu

Next we note that the integrand for diagram (d) and

u, (q, a&) = va(q)/[I +u (s)IqI( cd)] (4.1)

where ws(q) =2vre /lq I is the bare interaction in 2D FIG. 4. Vertex correction.
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(e) are the same, except that (d) is proportional to
Q(q)Q(q) while (e) is proportional to M(q)
x 9(—q) = —M(q)M(q) so (d) and (e) are oppo-
site in sign. However, care must be taken in writing
down the region of integration. For e & 0, we denote
the contribution from Figs. 5(d) and 5(e) by d+ and
e+, respectively, and it turns out that the region of
integration is the same so that d++ e+ =0. For

e & 0, however, the conditions are

e+ 0 & 0, a+co+ 0 & 0 for d

and

e + 0 ( 0, e+ co & 0 for e

Thus the sum is

d + e =ise2
" de ' dr» ' d'q ' M(M A)u~ I&, (q, ~)

2w '-n 2n " (2rr)2 " —I'((»+ II)+Dq ( —I'r»+Dq )
(4.6)

In Eq. (4.6) the first diffusion pole comes from the impurity ladder and the ( —i r»+Dq') ' comes from the ver-
tex correction to u, . Equation (4.6) must be combined with the other pair of diagrams similar to Figs. 5(d) and
5(e) but with the dressing of the particle and the hole line interchanged. In this case it is the s & 0 part that can-
cels while the s ) 0 part exactly equals Eq. (4.6). Thus we obtain

, '" d~ " d~ M(M A)u'
S j =2ise2 "" 2~ " -" 2~ —I'(r»+ f1)+Dq' ( —ir»+Dq')'r'

e note that the expression Eq. (4.4) is valid only for r»r « 1 so that the r» integration must be cut off.
Since the integrand is independent of ~ we can rearrange the integration as follows:

(4.7)

Woa 9c faoo

d0) = ' d6~ A ~c-0 Jp' Jg
+0 Woo fa1/v facu

l A r 1j~
d(o =~ dec de+ des~ de =~ deuce+0 „do)Jp JP ~O ~su —0 ~0 ~o (4.S)

The second term in Eq. (4.8) is more singular in the small r» limit and is the dominant term. Using the asymp-
totic form Eq. (4.3) and Eq. (4.5) into Eq. (4.7) we obtain

I'Q ~~ d d2q i (2Epr ) q(q ' A)ll
2m «2m " (2m)' [ —i (r»+0)+Dq']( —i~+Dq')sN~Dq2r'

'(4.9)

The use of Eq. (4.3) is justified because the impor-
tant region of q integration is Dq'= ao due to the
divergence of the integrand, so that the condition
Dq K » eo is satisfied. %e remark that this is not
the case in the density of states calculation, in which
case the full Eq. (4.1) must be used, leading to the.
(lnQ)' result given in Eq. (10) of Ref. 11. Return-

S j =i AASo. (4.10)

where

(4.11)

I

ing to Eq. (4.9), the integrai is clearly logarithmically
divergent, giving

p, w4

p, 6'

The above computation can easily be performed at
finite temperature by using imaginary frequencies and
analytic continuation to the real axis. Not unexpect-
edly the result is

(b) (c) e2
Sa. = — lnTv

Ac 2+2
(4.12)

p, 6

q,cu

p, 6

p4q, ~Wc +Q
when T » O.

In Ref. 11 we have shown that for a short-range
interaction the Hartree term also becomes important.
Diagrams similar to Fig. 5 can be generated and the
total conductivity correction is

p-q, E

(e}
e2 1So.=— (2 —2F) in)Or [
hc 4~2

(4.13)

FIG. 5. Diagrams contributing to conductivity to first or-
der in interaction (wavy line).

where F is given in Appendix B.
In view of the experimental interest in thin wires, "
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we digress to discuss the one-dimensional situation.
In a strictly one-dimensional system, the localization
length equals the mean-free path I, and the treatment
here is not adequate. However in a thin wire of cross
section d && d, the localization length ( can be much
greater than I. The cutoff length scale of the present
treatment is (D/T)' '. If this length is much less
than g, the effects of localization are not yet ap-
parent, and the present treatment is valid. Further-
more the divergent contribution in Eq. (4.9) comes
from the small q limit. If (D/fI )'~' or (D/T) v2 is

much greater than d we must replace the usual

p tk

/
p

(b) (c)

FIG. 6, Different ways of inserting a magnetic vertex
(dashed line) into the M factor thalf of the conductivity di-

agrams shown in Figs. 5(d) and 5(e)].

dq,

vol d2 4 2n
q

(4.14)

even though other aspects of the prob1em that in-

volve short distances, such as the diffusion constant
D, should remain three dimensional. The integral in

Eq. (4.9) is easily done and we obtain

i/2
1 e'2 D

d2hc ~ 2T
(4.15)

1/2
1 e' 1 D5(r =——— (4 —2F')

d' hc 2n 2T
(4.16)

where F' is given by Eq. (Bl) but evaluated for a 3D
Fermi surface. I" also approaches unity if 2kF/~ 0
and zero for large 2kF/~. Whereas in 2D the conduc-
tivity corrections cancels for short screening length,
the divergence in 1D survives even in this limit.
From Eq. (4.16) we also see that the correction to

Equation (4.15) is the exchange contribution to the
conductivity. We must add the Hartree contribution
just as in Eq; (4.13). We recall that in 2D the real
and imaginary part of v, (q, co) make equal contribu-
tions to the exchange term, whereas only the real
part contribute to the Hartree correction. Putting in a
factor of 2 for the spin in the Hartree term, we ob-
tain Eq. (4.13). An interesting difference arises in

the 1D case. A simple calculat. ion shows that the
imaginary part of u, (q, ru) contributes three times as
much as the real part to the exchange term. Inclu-
sion of the Hartree term thus gives

the cnnductivity is inversely proportional to the
cross-sectional area d'. This is in agreement with ex-
perimental observation. " Again it is interesting to
note that Eq. (4.16) has the same functional form as
the prediction of localization theory if T is replaced
by r;„'. Eq. (4.16) says that if T » v,„', interactions
effects will produce corrections to the conductivity on
a length scale such that localization effects are not yet
significant. Furthermore, unlike 2D, Eq. (4.16) pre-
dicts a quite different absolute value for the correc-
tion compared with the localization theory and could
easily be tested experimentally.

It is worth pointing out that in 3D the situation is
reversed, so that the real part of u, (q, cv) contribute
three times as much as the imaginary to the exchange
correction. Inclusion of the Hartree term thus gives
a correction to the conductivity of the form
T'r'(4 —6F'). Thus the correction can change sign
depending on the screening length.

Now we are ready to compute the Hall current. As
in Sec. III, we insert a magnetic vertex in all possible
ways into the conductivity diagrams. Insertions into
the particle-hole ladder are found to cance1, just as the
case for the particle-particle ladder. In Appendix D
we show that the diagrams derived from the conduc-
tivity diagrams [Figs. 5(a), 5(b), and 5(c) j also cancel
each other. So we are left with diagrams derived
from Figs. 5(d) and 5(e), which can be broken up
into two pieces, each of which was labeled by M ear-
lier. %e first consider the electromagnetic vertex
which carries no momentum. Figure 6 shows the
possible ways of inserting a magnetic vertex into M.
Recalling that M is linear in q, we must look for
terms linear in both q and k, i.e., terms of the form
(A2 q) k. Figures 6(a), 6(b), and 6(c) have the fol-
lowing values:

M, =(A, p)(p —q)G (p —k)G (p)G+'(p —q) (4.17a)

=(A, p)q k ~ G'G+'+2(A, p)p k ~
m m

(4.17b)
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The firstterm in Eq. (4.17b) is proportional to A2 k upon the angular p integration and therefore vanishes.

Mb = (A2 ~ p) ( p + k) G (p +q) G+(p )G+ (p + k)

=(A2 p) kq + G'6+3+(Ag. p)p 2q & k + G'G+
m m m

(4.18)

1 1 1

M, =(Ap p)pG (p+g)G+(p)G+(p+k) =(A2 p)p cf ~ k ~ ~ O'G+4
m m

(4.19)

The total contribution is
't 'I

M, +My+M, = (A2 p) k q ~ G2G+3+(A2 p) p k ~ q ~ (2G G++3G G+) =0 (4.20)

The cancellation is shown by a direct evaluation in
the way done in Eq. (3.5). Similar considerations
show the cancellation of the current vertex Q which
carries a momentum k.

The conclusion of the above rather involved calcu-
lation is that

perature, but at a rate equal to twice that of the resis-
tivity. It is hoped this work will help decide which of
the two models is more closely related to experi-
ments.

ScrH =0 (4.21)
ACKNOWLEDGMENT

SRH =2 SR
R~ R

(4.22)

The conclusion is not changed when the Hartree
terms are included. In terms of the Hall constant, we
have
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Joint Research Group in Condensed Matter Physics
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Technological Cooperation that met in Lake Sevan,
Armenia, USSR.

This result is to be contrasted with the localization
theory Eq. (3.13) and also with the naive single parti-
cle picture of a resistivity rise due to a carrier number
reduction. In that picture RH = I/nec and
SR~/RH = SR /R.

V. CONCLUSION

In this paper we studied the effects of a magnetic
field on two very different models. Both models
predict similar logarithmic rise in resistivity at low

temperatures. The first model deals with the localiza-
tion of noninteracting electrons. %e find that the
temperature-dependent resistivity is suppressed by
very small magnetic fields. Furthermore a strong
negative magnetoresistance is predicted. This latter
prediction appears to be observed experimentally in
the silicon inversion layer. " On the other hand no
logarithmic correction in the Hall constant is predict-
ed at low temperatures in the localization model.
The second model deals with interacting electrons in
the presence of weak impurity scattering. Since the
divergent resistivity comes from particle-ho)e diffu-
sion, a static magnetic field is not expected to have
strong effects on the divergence. The Hall constant
is predicted to increase logarithmically at low tem-

APPENDIX A

In this appendix we compute Po defined in Eq.
(2.5). To do so requires solving the integral equation

I

J~PO(r, r )y~(r )dr =i(q)y„(r) (Al)

By combining Eqs. (2.5) and (2.6) we obtain

Pp(7 7 ) exp 2ie l A(s) 'd s Q&(7 )d7

= A. (g)P„(r ) . (A3)

This simply shows that to this order, the effect of a
magnetic field is represented by V/i V/i +2eA.
Using Eq. (2.2) we readily see that Eq. (A3) is the

= h. (q) g„( r ), (A2)

where Po is the zero-field propagator with a Fourier
transform given by Eq. (2.2). Equation (A2) can be
converted to a differential equation of infinite order
and solved. ' For our purpose it suffices to expand
A ( s ) and Q„( r ) about r to second order to pro-
duce the following differential equation:

I

1 ~'Po V
Po(q =0) + —

~ 0
—+2' P„(r )

2 Qq' (
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Landau equation for a doubly charged particle in a
magnetic field. Equation (2.7) follows immediately.

that Eq. (Bl) becomes

d8 j
I + (2kF/K) sine/2

(B3)

APPENDIX 8

I II

( )
+ p — p.""—," ' G (-")G (-") . (Bl)

I rl
In the limit v

' 0, the magnitude of p and p are
near the Fermi wave vector. Only the angular in-

tegration remains, where 8 is the angle between pfl
and p . In two dimensions the static screened
Coulomb interaction is

( )
rr

I ql+ K
(B2)

where K =2me'sN~ is the inverse screening length.
II

The momentum transfer ~ p —p ~

= 2kF sing/2, so

P P

(o) (b)

In this appendix we examine some consequences of
using the divergence in the particle-particle channel
in the interaction theory. Let us consider the self-
energy correction. We have an exchange contribu-
tion shown in Fig. 7(a). In Ref. 11 we pointed out
that the Hartree diagram 7(b) may also be important
if the interaction is short range. In the Hartree term
the momentum transfer in the interaction line is not
small and must be integrated over. Separating out

II
the integration over p, p in Fig. 7(b), we see that
the Hartree term is reduced from the exchange term
by a factor

F =u' $ G+(p )G (p )
P i P

Clearly F approaches unity if 2kF/~ 0 and zero for
large 2kF/K.

It is natural to consider next the Hartree term
shown in Fig. 7(c) which makes use of the diver-
gence in the particle-particle channel. It equals Fig.
7(b) in the absence of any delocalizing factors, such
as spin-flip scattering or magnetic fie1ds. The corre-
sponding exchange term is shown in Fig. 7(d). How-
ever it is different from Fig. 7(a) in that the momen-
tum transfer in the interaction line is not small.
Clearly Fig. 7(d) is smaller than Fig. 7(a) by the
same factor F given in Eq. (83).

We thus conclude that if the interaction range is
long (2KF/k ~), the exchange diagram 7(a) dom-
inates over the singularity caused by the particle-
particle channel as well as the Hartree term. In the
opposite limit of a short-range potential, the Hartree
term becomes important as well as the particle-
particle channel. Ho~ever, the latter can be
suppressed by spin-flip scattering or a magnetic field.

At this point we also insert a note on the effects of
orbital degeneracy in the Hartree term. Such ques-
tions may be relevant to the silicon inversion layer.
Let us consider a model with two degenerate valleys
located at + K. In the absence of intervalley scatter-
ing, the Hartree term clearly has an additional factor
of 2 from the orbital degeneracy. -In practice a
short-range impurity potential can produce intervalley
scattering. Let us say that the electron is initially in
valley +K. Then the electron loop in Fig. 7(b) can
either be in the + K valley but these will have dif-
ferent values. If the closed loop is also +K, interval-

ley scattering can take the particle-hole pair to the
—K valley. Qn the other hand if the loop is —K, in-
tervalley scattering does not operate because of the
conservation of momentum on the average. In the
latter case the diffusion pole and therefore the loga-
rithmic divergence is cut off if the intervalley scatter-
ing rate vo' is greater than 0 or T. In this case the
orbital dependency does not appear in the Hartree
term.

APPENDIX C

(c)

FIG. 7. Self-energy correction from (a) exchange and (b)
Hartree diagrams. Figure 7(c) shows the Hartree diagram
with the ladder sum in the particle-particle channel and Fig.
7(d) is the exchange counterpart.

( ) [ d'q
(2m )' ( —i a)+Dq')' (Cl)

Let us first consider Fig. 5(a). It is necessary to

In this appendix we demonstrate the cancellation
between the conductivity diagrams [Figs. 5(a), 5(b),
and 5(c)]. The diffusion pole plays no role in this
cancellation, and we represent it by
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break up its contribution depending on the sign of e
and ~+ A. We adopt the notation a++ as the contri-
bution from Fig. 5(a) when e&0and e+0 &0, etc.
For a++ we note from Eq. (4.4) that in order to get
the diffusion pole, we must have e+ao+ 0 & 0.
This gives

a++= de desf( cu) —Xpi;G+(p) G (p)
P

(C2)

Similarly
+oo ~1/T

a =„de„do)f(a)) XpF'G'(p)G, (p) . (C3)

Integration by parts yield the following equalities:

P=xpFG+G =XpF'G+G'= ——, XpF'G~G'

Next we consider Fig. 5(a) with e &0 and a+0) 0.
+1/T

a ++a'+ =2~ da J druf(co) XpFG~G
P

~Q
=-4P de~0 4e du) f(o)) . (C8)

Finally we have Fig. 5(c) which is a correction to the
scattering rate due to the density of state correction

n1/'
gr '= u'„des f(a)) XG+(p )G (p )

P

I 7'
4g deaf(u)), (C9)

where we have used r '=2mN'u'. In Fig. 5(c) only
the case e & 0, e+ 0 & 0 contributes, giving

rQ
c ++c'+ =2 daSr '(e) XpF'G+G

~Jo
P

= —2mPF N1V2 3 (C4) foo 1+1/g
=—4mNir pF' da deaf(co) . (C10)~0 ~e

In addition to Fig. 5(a) there is the diagram with the
self-energy correction on the hole line. We denote
its contribution by a++, etc. We find that

Combining Eqs. (C7), (C8), (C10), and (C4) we see
that all the diagrams sum to zero.

I I
Q++ —g 0 a++ ~ (CS)

APPENDIX D

Next we consider Fig. 5(b). The only contribu-
tions are b++ and b and we find

91/r
b++=b =„de~ deaf(co) XpF2G+3G2 . (C6)

P

Combining Eq. (Cl) to Eq. (CS) we have

a+++a +a++ + a ' + b+++ b

'Q ~1/'
=2P„de„d(uf(co) . (C7)

In this appendix we show that the Hall diagrams
generated from the conductivity diagrams considered
in Appendix C also cancel.

First we note that diagrams generated from Fig.
5(b) occur in pairs [Figs. 8(b~) and 8(b3)] so that
their sum is even in k and therefore vanishes. Fig-
ures 8(a~) to 8(a4) are the diagrams generated from
Fig. 5(a). First we consider the case a &0,
a+0 &0. Then a1 +a2 is also even in k. We
are left with

a3 =XA~ (p —k)(p A3) p ——G'(p —k)G'(p)G+(p)
2

= —X(A& k)(p A&)pG'G+ —X(A~ p)(A, p) k ~ p(2G'G+),
~P m

3

« =X(A~ p)(A3 p) k ~ p(G'G+'+G+'G'),
P m

(Dl)

(D2)

where we have kept only terms that will produce
(A& ~ k)A2 as discussed in Sec. III. Next we consider
the diagrams with the self-energy on the hole line.
According to Eq. (CS) the diagrams with the same
limits of integration are those with e & 0 and
~+ 0 & 0. Denoting these by a3++ and a4++ we find

that a3++ —a3' and a4++ = —a3' so that

+3—+~4——+03++ + a4++ (D3)

is purely imaginary.
These diagrams are now to be combined with

X2—= a3+++a4+++a3 +a4 . As seen from Eqs.
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~pik
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Op 04 bi bp
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I

Cp

FIG. 8. Hall Effect diagrams generated by adding magnetic vertex (dashed line) carrying momentum k into Figs. 5(a), 5(b),
and 5(c).

(C2) and (C3), X~ and X2 have different limits of integration. Furthermore the integrands of X~ and X2 are
complex conjugates of each other. Since Ll is purely imaginary, we find

X +X, = J de i dcof(cu) g —(A, k)(p A )pG'G+
0 ~c

p

4

+(A~ p)(p A2) k ~ p(G+'G4 —2G'G4. ) —c.c.
fP1

(D4)

Next we perform similar calculation for

Y=al ++Q2 ++Q3 ++Q4 ++Ql

+Q2 + +Q3 + +Q4

Again al' + = —al'+, etc. , and we find

(D5)

p''
(G4.G5 —c.c.) =4ni F.Fr4/V )

2 foal

$G G =6rri 7 jV/

we obtain

(D8)

(D9)

r 0 f 1/~

Y=
~

de ~ d~f(~) $(k A))(p A2)p40 4e
P

x (G+G' —c.c.) . (D6)

Using the following identities

2
2

(G+G —c.c.) = —87ri eFr N, , (D7)
2 t?1

f 0 f 1/v

X)+X2+ Y= de 'i dcuf(co)(A) k)A2eF8rrir
&0

(D 10)

Finally we are left with diagrams generated from
Fig; 5(c). It can be shown that insertions of the mag-
netic vertex inside the irhpurity-scattering self-energy
part are canceled, so that we are left with cl, c&, and
c3 and the corresponding c l + c2 + c3 which equals
c ] + c 2 + c 3 ~ The total contribution is

f 1/~

2(c, ++c, ++c3 +) =2Jl de J draff(ru)(gr ') X(A~ p)(Aq p) k ~ p(3G 6+4 —G'G') . (Dll)
0 m

P 4

Using Eq. (C9) and upon evaluation of the integrals we find that Eq. (Dl I) exactly cancels X~ + X2+ Y given by

Eq. (D10).
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