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Correlation functions for simple hopping among the octahedral and tetrahedral sites
in a body-centered-cubic lattice
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The correlation functions for one and a pair of specific particles are calculated for an ensemble
of particles making nearest-neighbor simple jumps among the tetrahedral and octahedral intersti-

tial sites in a bcc lattice. These correlation functions are used to obtain diffusion coefficients
and NMR relaxation times due to I-S (unlike-spin) and I-I (like-spin) dipolar interactions. Our
results are compared to previous theories and to existing experimental results.

I. INTRODUCTION

In previous publications" we have used our hop-

ping formalism to obtain expressions for the correla-
tion functions describing the motion of a single and a

pair of specific (distinguishable) particles in an en-
semble of particles making nearest-neighbor simple

jumps in sc and fcc lattices. These expressions were
then used to calculate NMR T~ spin-relaxation times
which were compared to experimental results on met-
al hydrides. In this paper we apply our formalism to
perform similar calculations and comparisons for par-
ticles occupying the octahedral (0) and tetrahedral
(T) interstitial sites in a bcc lattice. Thus the results

apply directly to a number of transition-metal hy-

drides in the o. or o,
'

phases.
As in our previous work, the calculations described

in this paper are based on the "simple hopping
model" which is defined in Ref. 3. In this model
one assumes that the probability per unit time that a

particle at the site u will hop to a nearby vacant site P
is given by the hopping rate I & and that this rate
depends neither on the time nor on the occupancy of
sites other than n and P. Obviously there is a ques-

tion of whether this is a good model for any given
substance. We note that the 0 sites and especially
the T sites in bcc transition-metal hydrides are very

close together and thus are prime candidates for look-

ing for the effects of repulsive interactions. Howev-

er, in order to make meaningful comparisons of
theory and experiment, one needs accurate theoreti-
cal predictions. As discussed in detail in earlier
work, ' there are a number of approximations used
when working with the simple hopping model. These
approximations include the single-relaxation-time
(SRT) approximation, the random-walk (RW) ap-

proximation, the mean-field (MF) approximation,
and the multiple-scattering (MS) approximation. The
MF approximation is exact at low concentrations (c)
of particles and high frequencies and the MS approxi-
mation is good to about 1'/o at all concentrations. On

the other hand, even at small concentrations of parti-
cles, the SRT and RW approximations introduce er-
rors of 300'/o and 30'/o, respectively, in calculations of
Ti due to like-spin dipolar interactions for the lattices
under consideration here. At higher concentrations
these errors increase.

In the rest of this section we shall briefly discuss
the relevant correlation functions and their relation-
ship to T~ dipolar relaxation. Section II contains a

description of the calculation and may be omitted by
readers not interested in the calculational details.
Section III contains a discussion of the results and a

comparison with existing experimental data.
The necessary correlation functions are discussed

in detail in Refs. I and 2. The single specific particle
correlation function is defined as

D(K, Rtt, t) = (p,.(t)p;p(0))O(t), p; =&'t'p;tt,
(l)

where o. is a lattice site, N is the number of sites in

the lattice, p, is a stochastic variable whose value is

one if the particle i is at the site o. and zero if not, 0
is the step function, R the position of the site n, and

( ) denotes an ensemble average. The correlation
function for a pair of specific particles, labeled
i and j, is defined as

6(R, R-, R&, R&)
=' (p; (t)p& (t)p;tt(0)pttt(0-))O(t),

Since we only want the. correlations between the par-

ticles, we shall ultimately use a form 6 which is aver-

aged over all initial and final center-of-mass posi-
tions. In this paper we consider the spin-relaxation
time T~ of the hopping spins due to the motionally
altered dipolar interaction. There are two contribu-
tions to this quantity and we write

(iIT'&) = ll/T&(1-1)1+ llIT (I&))-
The quantity T~(l-I) is due to the dipolar interaction
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among the I spins which are hopping and T~(I S)-is
due to the dipolar interaction between the hopping
(or I) spins and the stationary (or S) spins if any ex-
ist. T~(l S) is -not explicitly dependent on c, the
concentration of hopping particles, but it does depend
on c through the correlations described in D. The
quantity I/T~(l-I) is explicitly proportional to e and
has a further c dependence through the correlations
described in G. We would expect T~(l-I) to be af-
fected by interactions among the hopping particles
and, even at small concentrations, would be drastical-
ly affected even if T~(l-S) was not. This point will

be discussed further in Sec. III.
Finally, as a matter of notation, c is defined as the

number of hopping particles divided by the number
of available sites. On the other hand in formulas
such as M —H„, x denotes the number of hopping
particles (hydrogen) divided by the number of host
atoms (M). In the case of the 0 and T interstitial
sites in a bcc lattice, c = —,x and —x, respectively, be-

cause a unit cell contains three octahedral sites or six
tetrahedral sites.

II. CALCULATION
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In this section we describe the calculations for the
correlation functions and for the spin-lattice relaxa-
tion times. The two approximations that we use in
this section, the MF and MS, have been extensively
discussed in earlier publications. " Thus, in this pa-
per, we shall mainly focus on the computational com-
plications' that arise for non-Bravias lattices.

The 0 and T lattice sites can be described as a bcc
lattice with a basis with three basis sites for the 0
case and six for the T case. In both cases the
number of nearest neighbors is four. The location of
these sites is shown in Fig. 1 which also shows our
convention for numerically labeling these sites. Each
site o. is designated as

FIG, l, (a) Position of the octahedral interstitial sites in a
bcc lattice. The solid dots represent the host lattice and the
interstitial sites are denoted by x. The thred octrahedral
sites which belong to the unit cell at r = (0, 0, 0) are circled
and labeled l, 2, and 3. (b) Position of the tetrahedral in-

terstitial sites in a bcc lattice. The solid dots represent the
host lattice and the interstitial sites are denoted by x. The
six tetrahedral sites which belong to the unit cell at r =
(0, 0, 0) are circled and labeled 1—6.

n=(T., i ) (4)

A;; (q) = XA &exp[ —iq (I —I&)]a'
I

(5)

The results for the 0 sites are

I';;(q) =0

r,, (q) = I",;(q) =2I'OcosQk exp[i(Q; —g, ) ]

Q= —, qao,

where 1 is a lattice vector for the unit cell and i is
the basis index. The four-nearest-neighbor sites to a
given basis site in the cell at 1=0 are listed in Table I.
From this table the hopping rates I' &=I';; ( I, I&)a' P
can be constructed and Fourier transformed according
to the usual prescription

I,i(q) = I'p
e,
'

ey

1 e, 0 e~' 1

0 1 ey' 0 e„
1 0. 1 e„0

e~ 1 0 1 e,
'

0 e„' 1 0 1

e„' 0 e, 1 0

(7)

e„=exp[i (g„—g» —g, ) ]

with cyclic variations.

where i, j, and k are cyclic variations of 1, 2, and 3,
and I 0 is the rate for a particle at a given site to hop
to an unoccupied nearest neighbor. For the T case,
using the notation in Fig. 1 and Table I, we obtain
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TABLE I. Tables show the four possible hops a particle at ( 1 =0, ip) can make. (a)
shows the possible hops between 0 sites and (b) shows the possible hops between T sites.

1 IThe bcc lattice vectors I„, lz, and I, define the unit cells at 2ap( —1, 1, 1), —ap(1, —1, 1), and
I

2 ap(1, 1, —1), respectively.

Position
before hop

Ip

Position after hop
12, i2 14 &4

(a) 0 sites

Iy, 2

Iz 3

lx, 1

lg, 3

I z I

ly. 2

lx, 2

—I, 3

—I, , l

]x' 3

—I, , 2

(b) T sites

0, 2

0, 3

o 4

o, 5

o, 6

o, l

o, 6

o, l

0, 2

0, 3

o, 4

o, 5

—1„3
ly, 4

—lx, 5

1,, 6

Iy, 1

lx. 2

ly, 5

lx, 6

—ly, 2

1„,3

—l, , 4

First we consider D„(q, o&) the cor"relation function
for a single specific particle. As in previous work, it
is convenient to define this correlation function in

terms of a self-energy or memory function K;, (q, rp)

by the equation

In the MF approximation the equation for K is par-
ticularly simple, taking the form

metal hydrides M —H„, x is usually less than one in

the n or n' phases. This' means that c & —, if the 0
sites are occupied and c (

6
if the T sites are occu-

pied. For concentrations that are this small, we have
found that rather simple corrections to Eq. (9) yield
almost as good results as the much more complicated
MS approximation. In fact, within the concentration
limits stated above, the lowest-order Pade approxi-
mate yields results that are good to 1%. This approx-
imation takes the form

K,i(q, rp) = crp„"(q, rp)

co,, (q, cu) = 41'p8;, —I'„(q)
(9)

K 'J (q, co ) = c co J' ( q ) [ 1 —c n p/ ( 1 —2i n p(u/ 1 p ) ], ( 1 0)

np = 2/(6 —c)

where c =1 —c is the concentration of vacancies. In
this approximation any site neighboring the site that
the specific particle occupies is assigned a probability
of c of being occupied. The inversion of Eq. (8) is
straightforward but even in the MF approximation,
somewhat messy. Readers interested in such algebra-
ic details should consult Ref. 4.

As noted earlier, the mean-field approximation for
D is exact in the limit as c 0. In the transition-

Next we consider the correlation function for a pair
of specific particles. G (n, P;n, P;co) is Fourier
transformed in space as

Gii(q, q';rp) = N 2
X 6 (n, p;n, p)

xexp[ —iq (1 —
1 )
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where

a=( l, i), P=(lpJ), =(l-,i), P=(l-,j)
and the summation is over all four 1's. Thus the ini-

tial and final center-of-mass unit-cell positions are
averaged over but not the basis indices. We have
found it convenient to express G as

G. .—.. (q, o&) = D-(q, ~)D-(—q, cu —~)
—(0) d co

IJi~

where D is the correlation function for a single
specific particle. The first term in Eq. (12) describes
a situation where each of the specific particles prop-
agates independent of the other and b, G contains
the corrections to this picture. In the limit as c 0,
the MF approximation for D is exact and is

equivalent to the RW approximation. The RW ap-
proximation for G consists of the first term in Eq.
(12). However, this approximation is in error even
as c 0. In earlier work we have found that AG in-

troduces corrections of order 1/z where z is the
number of nearest neighbors to a given site. This
rule is also true in the present case.

Our approximation for AG is the same as that used
in earlier publications with appropriate modifications
for the present lattices. It can be written

(13)

AG,,„"(q,q;co) =2c X G,jkpr'(q, pp)

kl, kl

x [r«(q)~«k-, (~)r«(q )1

G,,,&(q, q;pp) =NS, G,J,, (q, I—)+AG,.,&(q, q;pp)

(12)

make comparisons with existing experimental data.
These results are good to about 1'/0.

Since we are dealing with a lattice with cubic sym-
metry the results can be conveniently expressed as'"

1/r](1 I) =-(A/N) [gp(Nr, ) +/lg](ppr, )]
(16)

1/ TI ( I-S) = (B/(0) [ fp(torz) + bf i (coTz ) ]

where

A =1(1+1)tyIc/a

= S (S + 1 )tzy~~yszQ /a p&

b=Xy,4--', .

In these equations the mobile atoms have a spin I
and gyromagnetic ratio yl while S and yq are the cor-
responding quantities for the host spins. The quanti-
ty ao is the length of a cube edge, c is the concentra-
tion of mobile atoms, and Q is the concentration or
natural abundance of host spin S. The y; are the
direction cosines of the static magnetic field with
respect to the cubic axes and the angular average of h

is zero. Finally, co is the frequency of experiment
and the correlation time ~, is defined in terms of the
basic hopping rate I 0 by

1/r, =4cr, .

The functions go and g ~ depend only on the dimen-
sionless variable cur, but the functions fp and f~ also
depend on the ratio of the gyromagnetic ratios 5,
where

~ = ys/yI (19)

where

(14)
For example, 5 =0.244 for NbH„.

In many cases only the asymptetic forms of the f 's

and g's for large and small cov, are of interest. ' In
these limiting cases it is convenient to express the
results as

Equations (14) and (15) give a complete, albeit com-
plex, description of our approximation. Some addi-
tional comments on making the matrix inversion
more manageable can be found in Ref. 4.

Finally, after obtaining D and G, they can be in-
serted into standard expressions for T~(1 S)-
and TI(l-l), respectively. This is straightforward
but tedious manipulations are again described in Ref.
4. We shall present the results of the numerical
evaluations in Sec. III ~

g (x) b (~)/x
x )) 1

f (x) a (~)/x (20)

and

g (x) —b (0)x x ((1
f (x) a (0)x

(21)

where m =0 or 1. The quantities b~(0) and a, (0)
are zero and ap(0) is independent of b while a (~)
are proportional to k (5) where

III. RESULTS

kp(A) =0.6(1+6) z+0.3+0.1(1—5) z

k I(5) = (1+6) —2+ (1 —dl)
(22)

In this section we present the results of the calcula-
tions described in Sec. II, discuss these results, and

The nonzero a and b are compiled in Table II. For
purposes of comparison we have included the values
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TABLE II. The dimensionless constants b (0), 6 (~), a (0), and a (~) defined by Eqs. (20)
and (21) for various theories of hopping. The a's and b's are listed for both the octahedral (0)
and tetrahedral (T) models of site occupancy. The abbreviations SRT, RW, MF, and MS are used,
respectively, for the single-relaxation-time approximation, the random-walk approximation, the
mean-field approximation, and the multiple-scattering approximation. Only the MS approximation
depends explicitly on the atomic fraction x, The quantities a&(0) and b&(0) are zero for all

theories and k~(h) is given by Eq. (22).

Theory p(0» p(-» i(-) ap(0) ap( ~)/kp( 5 ) a, ( )/k, (b, )

SRT
RW (any x)
MF (any x)
MS (x=0)
MS (x =0.3)
MS (x =0.6)
MS (x =0.9)

2485
5178
6478
6478
6589
6705
6829

3976
3117
2298
2298
2298
2298
2298

660
468
468
468
468
468

T sites

195.2
712.0
712.0
712.0
724.2
737.0
750,5

195.1

100.0
100.0
100.0
100.0
100.0
100.0

3.36
3.36
3.36
3.36
3.36
3.36

0 sites

SRT
RW (any x)
MF (any x)
MS (x =0)
MS (x =0.3)
MS (x =0.6)
MS (x =0.9)

376.7
852.0

1029.0
1029.0
1065.0
1107.0
1156.0

588.3
449.9
347,5

347.5
347.5
347.5
347.5

-483.3
—310.9
—214.9
—214.9
—214.9
—214.9
—214.9

226. 1

460.0
460.0
460.0
476. 1

494. 1

514.1

226. 1

178.1

178.1

178.1

178.1

178.1

178.1

49,3

49.3
49.3
49.3
49.3
49.3

,f, = (6 —3c)/(6 —c) (23)

for the SRT and RW theories as we11 as our results.
Since the concentration of hopping particles is rather
small in all the cases considered, the dependence of x
or c is not very great. Further, the tracer correlation
factor in this regime is given by the formula

approximately the same in both models. This fact
that T~ at the T& minimum is nearly the same for any
hopping model (even the SRT approximation) has
appeared in every system we have studied. The
second point to note about Fig. 2 is that the MF
curve appears shifted from the RW result by nearly a

As mentioned in Sec. II, the random-walk model
does not adequately describe the hopping of a pair of
specific particles even when the concentration ap-
proaches zero. The effect of these correlations on
T~(l-I) can be studied by examining the behavior of
go in Eq. (16). ln Fig. 2 this function go is plotted
using a random-walk model for hopping and our
mean-field theory which is exact as c 0. The
mean-field correction to the random walk, hgp, is de-
fined by

I200
l000

800
o 600

400
200

0
-200—

0.0 l

t i ~ ~ r teil ~ ~ ~ ~ s crit

O. l I.O l0.0 l00.0
go'(MF) =go(RW) + ~go (24)

J

The first point to note about Fig. 2 is that the max-
imum value of go [ minimum value of T~(1 I) ]is-FIG. 2. A plot of gp(A&7, ) in the mean-field (MF) and

random-walk (RW) approximations assuming tetrahedral oc-
cupation in a bcc lattice. The difference between them, h, gp,
is defined by Eq. (24).
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constant amount. This can be physically interpreted
as a shift in the hopping rate due to the correlations
between the two particles. If the two hopping spins
are nearest neighbors, the effective hopping rate for
one of them out of its present site is reduced from
41o to 3I o. This obtains because hops to neighboring
occupied sites are not allowed. These short-range
correlations are extremely important since 1/T~
depends on d, where d is the distance between the
two hopping spins. Keeping the above two points in

mind, it is clear that T~(I I) in t-he asymptotic region
is strongly dependent on correlations in the motion
but that T~(1 I) at th-e minimum is not.

The discussion to this point ignores the possibility
of interactions between the hopping particles except
for the exclusion of double occupancy. Since the in-
terstitial sites in a bcc lattice are quite close together,
one might easily expect interactions, especially
nearest-neighbor repulsion, to be important. Howev-
er, at low concentrations, we would expect relatively
minor effects on D, which describes the motion of a

single specific particle. Thus we would expect only
small changes in T~(I S). On th-e other hand, we
would expect strong interactions to have a dramatic
affect on G and thus on T~(l I). This sh-ould be ob-
tained even at small concentrations because the larg-
est part of the T~(l I) relaxatio-n occurs when pairs
of particles are nearest neighbors.

Usually measurements of the dipolar part of TI for
a metal hydride in the n or n' phases cannot be car-
ried out over a wide temperature range. This occurs
because at high temperatures the conduction elec-
trons will dominate the spin relaxation and at low
temperatures the n or n' phases cease to exist. Fur-
ther, a serious comparison of theory and experiment
would involve an independent measurement of ~, .
For these reasons, the ratio D/T~ is especially impor-
tant since it is independent of ~, if co~, && 1. For
the two lattices considered this ratio is

D/T) =aao2 f, [Bao(0)+Ah ( o)0j (25)

where n =
48

for the T sites and —„ for the 0 sites.

Although it is generally agreed ' that hydrogen in

the n and n' phases of Nb and V occupy the T sites,
we shall include the possibility of 0 site occupation in
our comparison with existing experimental results.
For example, Table II can be used to reinterpret the
work of Zogel and Cotts on NbHo6 at high tempera-
tures. ' Table III contains various theoretical and ex-
perimental values of D/T~ at 103'C. The Torrey9
theory is a random-walk theory with a number of ad-
ditional mathematical approximations.

The first point to note about Table III is that ex-
cept for the SRT approximation, D/T, is nearly the
same for either model of site occupancy. This occurs
because both TI and D for the T sites is about one-
half the value of the corresponding quantity for the 0

TABLE III. A comparison between theory and experi-
ment of D/T~ in the high-temperature limit for NbHO6.

Experimental values of T
~

have been corrected by subtract-

ing off the electron contribution.

Lattice SRT

D/TI (10 cm /sec )
Approximation

Torrey MS

0 sites
T sites

Experiment

0.67
0.41
1.5+ 0.2

1 ~ 27
1.14

1.44
1.33

sites. This coincidence occurs largely because of the
difference in the I-I interaction. Unfortunately both
models of site occupancy give values in the MS ap-
proximation which are within the experimental error.
Although from these data alone it is difficult to deter-
mine the site location of the hydrogen, it does show
that any possible repulsion between hydrogen must
be smaller than expected by using the Torrey theory.
Zogal and Cotts describe a modified Torrey model in
which the probability of two-nearest-neighbor sites to
be simultaneously occupied is zero. This modifica-
tion appears to be necessary to bring the Torrey
results in agreement with experiment. However this
modification is unnecessary to bring the MS results
within experimental error. The T, (l I) contribution-
to D/T~ assuming T site occupation is about —, of the

total.
The high-temperature asymptote may also be ap-

plied to TI measurements' of Lutgemeier, Arons,
and Bohn in NbHo o3 in the temperature range
200—475 K at 44.4 MHz. The hopping rate for this
system is so great that no minimum of T~ appears.
The analysis of their data is further complicated by
the fact that the electron contribution dominates over
much of the temperature range. Also, measurements
of the diffusion constant by Schauman, Volkl, and
Alefeld" indicate that the diffusion constant has a
change in activation energy which occurs at around
300 K. Although there is considerable scatter in the
T~ data making a precise evaluation of the electron
contribution difficult, the experimental ratio of D to
T, is D/T, =1.9+0.2 && 10 ' cm'/sec'. This ratio was
taken in the temperaturte range of 200—300 K where
T~ is dominated by dipolar interactions. The MS ap-
proximation gives D/T~ = 1.38 x 10 ' cm'/sec' for
the 0 sites and 1.08 x 10 ' cm'/sec' for the T sites.

This large discrepancy between theory and experi-
ment is very difficult to understand. Since the con-
centration is small, the interaction is almost entirely

' I -S and the hopping may be described as a random



22 CORRELATION FUNCTIONS FOR SIMPLE HOPPING AMONG. . . 5141

walk. The disagreement is not altered substantially if
the hydrogen occupation is not totally random due to
a slight attraction or repulsion. The electron contri-
bution appears to have been taken into account prop-
erly since the experimental D/Ti is constant to
within 5% in the region 250—200 K;

To agree with experiment, the theory needs to in-

crease the diffusion constant or increase the relaxa-
tion rate. The diffusion constant may be increased if
longer jumps occur such as jumps to next-nearest
neighbors. An increase in the relaxation rate is ob-
tained if other relaxation mechanisms are important
such as paramagnetic impurities. -A relaxation
mechanism unique to interstitial sites is that caused
by different static magnetic environments at intersti-
tial sites of the unit cell. An effect similar to this has
been discussed in connection with quadrupolar relax-
ation caused by changes in the electric field gradients.

Since the interstitial sites are not sites of cubic sym-

metry, the static magnetic field due to polarization of
nuclear or electron spins does not vanish at these
sites nor is each site equivalent. Thus a particle hop-

ping within the unit cell sees fluctuations in the mag-

netic field allowing it to relax. It is difficult to esti-
mate the size of this effect, however, it must be pro-
portional to (XHo) where X is the static susceptibility
and Ho the static field. Unlike the high-temperature
limit of the I-5 dipolar coupling which we considered,
this mechanism depends on the magnetic field or eo.
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