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Multiphonon processes in a quantum-statistical theory of desorption
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A complete fourth-order quantum-statistical calculation of the isothermal desorption time t„ in a gas-solid system

is presented showing localized physisorption including all one-phonon and two-phonon processes in fourth order.
The multiphonon interaction terms arising from higher-order derivatives of the surface potential turn out to
contribute significantly to the desorption rate. Extensive numerical work confirms that the relaxation time approach
to desorption phenomena is acceptable for weakly coupled systems for which hI ~E,

~
gr, where E, is the energy of

the bound state. Second-order calculations are sufficient as long as
~
E,

~

& ks T & fiaiD, where fieiD is the Debye

energy of the solid. Fourth-order contributions become important for
~
E,

~
& ficoe and ks T ~ Aeon. Moreover, for

fiaiD &
~
E,

~

& 2Saie fourth-order terms are essential because second-order contributions are zero in this region

of bound-state energies.

I. INTRODUCTION

We have recently formulated, and worked out
the details of a quantum-statistical theory of the
adsorption' and desorption' ' of a gas at the sur-
face of a solid in systems which show localized
physisorption, i.e. , in which no chemical reactions
take place during the adsorption process and in
which lateral diffusion in the adsorbate along the
surface of the solid is negligible. So far we have
restricted ourselves to systems in which the sur-
face potential, i.e. , the net static interaction be-
tween the particles of the gas and solid phases,
develops just one shallow bound state, as is the
case, e.g. , for the helium-constantan system. '
For this and related systems we have calculated
isothermal and flash desorption" times for
phonon-mediated desorption.

The term "shallow bound state" refers to a
bound state whose energy E, is, in magnitude, less
than the maximum phonon energy of the solid (the
Debye energy A~ or some maximum energy of
optical phonons), i.e. , for which ~E,

~

- Bein. In
such a situation a particle of the adsorbate (the
latter being defined as the sum total of those gas
particles trapped in the bound states of the sur-
face potential) can leave the surface, i.e. , make a
transition from a bound state E, into the gas-par-
ticle continuum of energy E~ by absorbing one
(thermal) phonon of energy h+=Es -E,. We can
therefore calculate desorption times in second-
order time-dependent perturbation theory, thus
taking account of one-phonon processes only.

Let us next look at a gas-solid system with a
surface potential such that a "deep" bound state
develops at an energy E, with hie &

~

E,
~

& 28&c .
A gas particle trapped in such a bound state can
obviously not desorb unless it absorbs at least
two phonons whose combined energy (hie, + htcs)
& ~Ee~. To calculate desorption times for such

a system all two-phonon processes must be in-
cluded which we will do in this paper by developing
a fourth-order time-dependent perturbation
theory. Before we do this, let us mention that a
gas-solid system with a deep bound st&te will
most likely have other bound states; e.g. , in the
H-NaC1 system the surface potential develops four
bound states' at energies E,/kn = -215 K, E,/kn
= -247 K, Es/ka = -166 K, and Es/kn = -110 K with
the Debye temperature of NaCl at T- 35 K being
haydn/ka = 275 K'. In this example H can desorb from
the higher bound states E, to E, by absorbing a
single phonon, whereas a particle can leave the
lowest bound states E, by absorbing two phonons
either simultaneously or in a two-step cascade-
like Eo- E,—continuum in which the two phonons
are absorbed in succession.

Because a full quantum-statistical calculation
of the desorption times in systems like H-NaCl is
rather involved, with several new features appear-
ing that are not present in simpler systems like
He-constantan, we have divided our program in-
to two parts: In this first paper we will study a
model system in which the surface potential de-
velops only one bound state whose energy E, we
vary between 0& E,& -28~D, and calculate the
isothermal desorption time in fourth-order per-
turbation theory, taking all one-phonon and two-
phonon processes into account. In a subsequent
paper we will then treat a system with several
bound states and study the importance of the
above-mentioned phonon cascade in desorption.

The task of calculating desorption times in a
fourth-order time-dependent perturbation theory
including all one-phonon and two-phonon proces-
ses is, of course, an enormous one. It is eased
somewhat by a judicious choice of the surface po-
tential which we take to be a separable nonlocal
potential' following our earlier work. ' ' For such
a potential all static properties can be worked out

22 512 1980 The American Physical Society



22 MUI TIPHONON PROCESSES IN DESORPTION. . .

analytically, a necessary prerequisite for an exact
calculation of desorption times, i.e. , exact in the
framework of fourth-order perturbation theory.
'The relation between local and separable nonlocal
surface potentials has been worked out by us in a
recent paper' where detailed numerical compari-
sons are given, demonstrating the advantages of
using separable potentials in desorption theories.
A nonlocal potential consisting of just one sep-
arable term is particularly advantageous for our
present purpose because it can develop, at most,
one bound state.

Whereas the one-phonon theory of desorption
was proposed in its rudiments some forty years
ago,"there has been, . to our knowledge, no cal-
culation of desorption times including two-phonon
processes reported in the literature. Bendow and
Ying" formulate a van Hove-type integral equation
for multiphonon processes; however, neither they
nor anyone else have tried to use and solve this
equation. Such an attempt seems quite hopeless
in any case, unless one invokes drastic approxi-
mations or proceeds via standard perturbation
theory. In theories of the scattering of particles
from solid surfaces, a feeble attempt to include
two-phonon processes -has been made by Allen
and Feuer. " We will see in this paper that their
calculation is quite incomplete, because they cal-
culate only one of the many two-phonon contribu-
tions, indeed one of the smaller ones. Their cal-
culation also has no direct relevance to our pro-
gram because, by choosing a purely repulsive sur-
face potential, they exclude all bound-state effects.
This might be a good approximation for scattering
at high enough energy, but is obviously unaccep-
table for a calculation of desorption times, simply
because there cannot be either adsorption or de-
sorption if there are no bound states. We want to
stress here that only a full and complete fourth-
order calculation is acceptable to study the im-
portance of two-phonon contributions because it
turns out, as one could have anticipated from sim-
ilar calculations in quantum electrodynamics, that
some of the individual contributions give rise to
divergent integrals; these divergences, however,
cancel to yield a finite result if all contributions
are calculated exactly as we will show in this
paper.

As for the contents of this paper, we will, in
Sec. II, set up the Hamiltonian of the gas-solid
system. Because one can anticipate that a fourth-
order calculation of desorption times must have
certain similarities to fourth-order calculations
of transition rates in quantum electrodynamics,
it seems natural to perform the analogous Bloeh-
Nordsieck transformation on our Hamiltonian to
take explicit account of some higher-order self-

energy terms, thus removing some of the spurious
divergences that would appear in a straightfor-
ward perturbation calculation. Similar transfor-
mations are employed in other areas of physics
arid are known, e.g. , in field theory as dressing
transformations. "

We start Sec. III by setting up the proper initial-
value problem for isothermal desorption within
the framework of our quantum-statistical theory
of desorption. We then illustrate the methods for
calculating desorption times by briefly outlining
the calculation of the second-order contributions.
This is then followed by a computation of all one-
and two-phonon processes in fourth order. Cal-
culational details are given in Appendices A to D.
In Sec. IV we present a detailed numerical analysis
of all one-phonon and two-phonon contributions to
the isothermal desorption time for several model
systems.

Our main conclusions are as follows: In a fourth
fourth-order perturbation theory it is essential
to calculate one-phonon and two-phonon processes
as they arise from the phonon-mediated, gas-solid
interaction, including terms up to third order in
the derivative of the surface potential, i.e. , up to
cubic in phonon creation and annihilation oper-
ators. A relaxation time description of desorption
from a bound state at energy E, is possible as
long as h/~ E,

~

« t~, where t„ is the isothermal de-
sorption time. We find that a second-order cal-
culation of the latter can be trusted as long as
~E,

~

s k~T c k~~, where I'~~ is the Debye energy
of the solid. ' Fourth-order contributions become
important for

~

E,
~

& hu&~ and ks T & h~n. More-
over, for the range her~-

~

E,
~

- 25'~~ fourth-or-
der terms are essential because second-order
contributions are zero in this region of bound-
state energies.

II. GAS-SOLID HAMILTONIAN

In this section we set up the Hamiltbnian of the
interacting gas-solid system as it is needed to
formulate the appropriate quantum-statistical in-
itial-value problem for the calculation of the iso-
thermal desorption time. As shown elsewhere, '
we can restrict ourselves to a one-dimensional
system, because the translational degrees of free-
dom of the gas particles parallel to the surface
of the solid are of little consequence in localized
physisorption. We assume then that the total Ham-
iltonian of the gas-solid system can be split into
three parts:

H = Hg+ Hs+ Bgs &

where H is the Hamiltonian of the gas which we
assume to be noninteracting; i.e. ,
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82
~ d

H, =- lr'(x)„, y(x)d,

with P(x) being the field operator in second quan-
tization of the gas particles of mass m. It is ad-
vantageous to introduce free-particle creation
and annihilation operators via the expansion.

P(x)= g(x~k)a, , (3

where ak is the annihilation operator of a gas par-
ticle in momentum state k, a.nd

(x
~
k) = ~2L s inkx (4)

is the free-particle wave function normalized in a
box of length L and assumed to vanish at the solid
surface x= 0. Inserting (4) into (2) we get

j

H, = a ha,'a, , (5)

where e(k) =k'k'/2m is the kinetic energy of the
gas part;icles.

The second part of the Hamiltonian (1), namely
H„describes the dynamics of the solid in the
absence of the gas. We assume that it can be ad-
equately described in the harmonic approximation,
x.e. ,

H, = Q k(upbptb~, (6)

where b~~ and b~ are creation and annihilation op-
erators of phonons of momentum p and frequency
40].

Next we turn our attention to the gas-solid in-
teraction H„. It consists of two parts, a static
and a dynamic one. The static potential describes
the interaction of gas particles with the solid with
the thermal motion of its surface neglected. It
enters the Hamiltonian H, as a term

H '=V = x x Vx' x'dxdx' 7

where (x
~

V ~x') is the generally nonlocal surface
potential. Its presence leads to a qualitative
change in the wave functions of the gas particle.
Moreover, since the static surface potential is
generally attractive, it leads to a drastic change
in the energy spectrum of the gas particles
through the appearance of bound states. The occu-
pation of the latter defines the adsorbate, i.e. ,

V(x)=(l/M2)e "". (9)

Its Fourier transform is

v( )=)I'"Jdx()~x))'(x)=kl(k'ay*),

so that the static part of the Hamiltonian reads

(10)

H„=H~+ H"' = g e (k)a~a~+ g L '
k

x P V(k)V(k )a,'n„, .
krak'

To include the dynamic aspects of the gas-solid
interaction, we next consider the thermal motion
of the solid surface, represented by a displace-
ment

u = (N, k&,) '~' Q ~

(b~q+ b~),
2(d~ ]

(12)

where M, is the mass of an atom in the solid and
X, is their total number. We generalize (7) to

H, = ~ x V x -u, x' -u x' dxdx' (13)

and expand in a Taylor series in u,

H„=H,",'+ H,',"+H,(',&+ (14)

where H,",' is given in (7) and, for the potential
form factor (9),

that fraction of gas particles bound to the surface
of the solid.

We have shown in previous work' that it is of
great calculational advantage to choose the surface
potential (x

~

V
~

x') to be separable, ' i.e. ,

(x~v~x )=gv(x)v(x ). (8)

Such a potential, consisting of one separable term,
can develop at most one bound state, appropriate,
e.g. , for the helium-constantan system. If we
want to deal with systems with more than one
bound state in the surface potential, we can either
employ a nonlocal potential consisting of a sum of
separable terms, or use local potentials for
which (x

~

U ~x') = 5(x -x')V(x). All the following
calculations in which we want to study the role of
multiphonon processes in desorption will be per-
formed for a potential, (8) with the potential form
factor V(x) chosen as

dVx' dVx 1/2
H',"=-gu x V x, + V x' x' dx'dx=2gp L ' V k V k' &k&k.

S S krak~

~\I

(,) 2 ~( )
dV(x) dV(x') -(,)d'V(x)'li,

)

= -2g y'L ' g V(k)v(k')a~ta~, P (+~co~, ) '~'(bt~+ b~)(b~~, + b~, ),2M N
(16)
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/dV(x) d'V(x') d'V(x)dV(x'), - d'V(x'), d'V(x)-

3/2
=ggy'L 'I ~ N ~ Q V(k)V(k')at~a~i Q ((o~(oq, (aqua;) '~'(b~~+ bq)(b~q, + bq. )(bqt„+ bq, ) .

s s] A A'
(17)

As long as one need consider one-phonon processes only, one can terminate the Hamiltonian (14) with the
term H~", ' in (15}. However, if two-phonon and multiphonon processes become important it is mandatory
to keep higher-order derivatives inH, such as (16) and (17), because we will see in Sec. IV that higher-
order terms like (16) and (17) contribute significantly. "

Any adsorption or desorption process changes the number of gas atoms trapped in the bound states of
the surface potential. In order to follow the time dependence of the bound-state occupation, i.e. , the ad-
sorbate concentration, it is therefore necessary to transform the Hamiltonian H into such a form in
which creation and annihilation operators of particles in the bound states occur explicitly. This amounts
to diagonalizing its static part (11)which can be accomplished by a linear transformation to quasiparticle
operators n, :

a,= Q y, (k)n, , (18)

where q = 0 refers to the bound state and q &0 enumerates the continuum. The respective single-particle
wave functions in momentum space are denoted by Q,(k) and are given explicitly for the potential form
factor (10) in Appendix A. In the n representation the total Hamiltonian (1) reads

H = g E,n', u, + QS&u~b~~b~+ I, '-g X"'(q,q')n, &~'~'(b~+ b~}u,.
CeC

+ L ' p X"'(q, q') n,' g (ur~&o~, ) '~ '(b~t+ b~) (b~t. + b~. )n, .
aia' PeP'

+ L, ' Q X"'(q,q')nt Q ((u~(u~, (o~„) '~'(b~t+ b~)(b~t, + b~, )(b~~. + b~. )n. . .
CeC p pt p, H

where

X"'(q q') = 2g ) ( II/2M, N)'~ 2W~
W.. .

X (q, q )=y(N/2M N )"'X"'(q q )

X~ (q, q')= —p~(K/2lVl N )X ' (q, q'),

(1S)

(20)

(21)

(22)

W, = Q V(k)g, (k) (23)

is given in Appendix A. Moreover, E, are the eigenvalues of H„with Eo the energy of the bound state.
In the calculation of the two-phonon contributions to the isothermal desorption times it will be advan-

tageous (from a bookkeeping point of view) not to work with the Hamiltonian (1S) but to rewrite it slightly
by performing a "dressing" transformation" on its bound-state part. We introduce dressed bound-state
operators

u, = e'~ u, e ' = exp (kL) 'X"'(0 0) +co ' '(b~t -b~))u, ,

and dressed phonon operators

b = e' b e "=b + (RL) '&o ' 'u'u
0 0 &

where

(24}

(25)

S=iX(')(0, 0)(fIL) ' p (osl2u (bt b )u (26)

or
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S=tX")(0 0)(hL) ' Q a) '~'u (b~ —b )u

in terms of the dressed operators. Performing these transformations on the Hamiltonian, we get

H=E,u', u, + g E,u', a, + +hid, b,'b, 2a-E-,ku', a',u,u, + L ' P X")(h,h')u', P~, ' t'( b'+ b, )u, ,
k&0 k&o,

k'&o

+hL ' gX")(O,h)utg~ g a) 't'(bt+ b )uH+hL ' gX")(h, 0)uH~+ &a 't'(bt+ b )Bu +H")+H",', (28)
k&o k&o

where we introduced

6=exp —hL 'X"' 0, 0 e '~' bt-5 2g

and

Eo = Eo+ 4Eo,

with

sE, = -2[X"'(0,0)] /(IK) 'Q e,'i'. (31)

The effect of the transformation (24)-(26), there-
fore, is to eliminate the bound-state-bound-state
interaction of the form u( &~b+ b&)u, from (19) in
lieu of a quartic term ututu, u, in (28) which will
be of no consequence in the calculation of the de-
sorption times. The remaining interaction terms
in (28) are slightly more complicated through the

appearance of the operator B. Moreover, the
bound-state energy E, is shifted by aE, in (31),
which is a part of the self-energy correction.

a.nd

p(t)e i H tlap�(0) i Hi'I Fi -H-iHt/h i Hingppe

p, = exp[ —8(H„pÃ, )]/Tr exp[- (H,„—tug )]

(34)

(35)

is the initial equilibrium statistical operator for
the gas with p= 1/(hHT) the inverse temperature.
The gas particle number operator is

I

t=0 by switching on the dynamic part of H by

writing, recall (11),

H = H, i+ H, + 8(t)[H, + H, 2 + H, ] ~ (32)

where 8(t) = 0 for t &0 and 8(t) =1 for t~ 0. We fur-
thermore must insist that no gas particles are
present, whatsoever, in the final state.

The physical quantity to be calculated is the
time-dependent occupation of the bound state which
is given by

no(t) = Tr[uiu p(t)] = Tr[utoug&(t)], (33)

where the time-dependent statistical operator is

III. CALCULATION OF THE ISOTHERMAL
DESORPTION TIME N = &~Qk = Q Q = QoQo+ QkQk, (36)

A. Initial-value problem

We now want to develop a quantum-statistical
theory of isothermal desorption' ' based on the
Hamiltonian (28) and calculate the isothermal de-
sorption time to fourth order ing, i.e. , including
all one-phonon and two-phonon processes. We
must recall that in an isothermal desorption ex-
periment one starts from an initial state in which

gas and solid are in thermal equilibrium at a tem-
perature T. Maintaining this temperature through-
out, the gas pressure is suddenly at time t= 0 re-
duced substantially (ideally to zero), and the re-
sulting nonequilibrium time evolution in which the
adsorbate gas particles are desorbed (and pumped
out of the system), is measured and, assuming an

exponential decay, characterized by an isothermal
desorption time tH(T). To formulate the corres-
ponding initial-value problem we can assume that
the in. itial equilibrium state of the system for t &0
is adequately described by the static part of the
Hamiltonian (19) or (28). The macroscopic time
evolution in the system is then started at time

and

,. L u,T~ '~'

is the chemical potential of an ideal gas consis-
ting of N particles in a one-dimensional box of
length L. Similarly, we identify

p, = exp( PH, )/Tr exp(- PH, ) (38)

n, (t) = Tr[u', (t)a,(t)p(0)],
where

(t) H
i H it& u (0)e -iH t H)

I

must satisfy Heis'enberg's equation of motion

ihu, = [u„H].
In integral form it reads

(39)

(40)

a,s the initial equilibrium statistical operator for
the phonons. To facilitate the calculation of n, (t)
we shift the time evolution from p(t) to the parti-
cle operators and get
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(f) e ((-/)))z 0(( t-() & (0)I
t.
dt, e "/"+0(' '('~ ——,'AEO())(0(t, )(),,(t,)ho(t„)+L 'gX"'(O, k)Bt(t,)g &~' '[b(~(t, )+ b~(t, )]n~(t, )

0 k&O p

+ L 'QX"'(0, /()B (t,)Q ((up(u~, )
' '[bp(t, )+ bp(t, ))[bp, (t„)+b(,.(t,)] ()'~(t,)

k&0 pyp'

+ L 'QX(3)(0, b)B'(t, ) Q (&(,&(„-) '"[b,'(t, ) + b, (t,)][b,'.(t,)+ b, (t,)]
k&0 p ptp ts

x [)]'(t;),+..)], lt, )]a,)),)), (42)

with a similar equation holding true for o(~(t) with
k&0.

To calculate all one-phonon and two-phonon con-
tributions to the isothermal desorption time we
must iterate (42) and its Hermitian conjugate four
times, insert the result into (39), and take the ap-
propriate long-time limit. This is a very lengthy

, and arduous calculation which cannot be repro-
duced here in any detail. Instead, we will outline
the procedure in the following subsections indi-
cating some of the tricks and pointing out some of
the pitfalls one has to be aware of.

The notion of a relaxation time, e.g. , the iso-
thermal desorption time, implies that the system
decays exponentially in time after possible nonex-
ponential transients have died out. For isother-
mal desorption we therefore assume that the ad-
sorbate particles desorb at a constant rate ac-
cording to

n, (t) =no(0)e '/'~ (43)

with no gas particles left in the end, because
whatever desorbs is pumped out of the system im-
mediately. As noted above, our procedure to com-
pute t~ is to calculate (39) in a time-dependent per-

i

turbation expansion and to extract its large-time
behavior linear in I;, yielding

n, (f) =n, (O) (l

hatt).

(44)

b~(t) =e '"/'bp(0) (46)

because any dynamic correction to (46), arising
from Heisenberg' s equation of motion for b ~(t),
will involve factors like n, (0). The approximation
(46) simply states that the phonon system of the
solid does not get disturbed greatly during the de-
sorption process which, after all, takes place at
the surface of the solid only. But note that (46)
linearizes the equation of motion (42).

Comparing (43) and (44) we are then led to identi-

fy the isothermal desorption time as

(45)

This observation simplif ies our computational
task considerably because we obviously do not
have to keep terms involving nt(0), i.e. , the square
of the bound-state occupation at time t =0. This
in turn means that we can drop the term n',a,a,
from (42) and that we can approximate

B. One-phonon processes in second order

We have previously calculated isothermal" and flash desorption' times taking only one-phonon proces-
ses into account in second order. This calculation is simple enough to be repeated here as a demonstra-
tion of the methods to he used in subsequent sections for the fourth-order calculations. Iterating (42)
twice, we see that one-phonon processes, i.e. , terms involving products of two-phonon operators bp or b~~,

arise in second order from the term with X'" (O, k) only. Setting B(t) = l, we get

(]],(t) = n("(f)+ n,")(f)+,'"(t)+ ~ ~ ~,
with

(47)

(t) e ((/h)zpt(T( (0)

o],'"(t) =-e ""' 0' @+X'"(O,k)o~(0)Q(op' ' f, ~ g(E, E,+h ), f(()~b~(0)

+f(~ @(Eo—E~ 8'(up), t ~b~(0) + ~—
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n'."(t)= e "'"""i — g g X'"'(0, b)X"'()t,b') n, ,(0)
k&0 keaO

X Q ((dku)k, )
'i' f, i

—(E,—Ek+h(dg, @(Ek Ek, —h(dk, ), t ibki(0)bk, (0)

+t'.
i

—(Eo Ek -~"4 g(Ek-Ek+~&. »Ilbk(0)bg(0)+", (48)

where the ellipsis represents terms with bb and

b b and,

and

t

f, (A, t) = dt'e'"" = —.
0 zA

(49)

t t'
f (d B t)= dt fdt'" e'"'e'

0 0

fAg 1 e j (A+B )t

AB B(A+ B) (50)

Inserting (47) into (39) we get

n, (t) = Tr[n(o) (t)n,'"(t)p(0)]+ T r[n,"' (t)n,"'(t)p(0)]

+ Tr[[n,'" (t)n,'" (t)+ n,") (t)n( )(t)]p(0)]+ ~ ~ ~,

Tr[nt(0)n, (0)p(0)] =n, (0) = (eklo ")a 1) '

is the initial equilibrium occupation of the bound
state E,. If the gas particles are fermions, the
plus sign has to be taken; if they are bosons, one
must take the minus sign. As desorption experi-
ments are always performed at very low pres-
sures, one can, in most cases, approximate (52)
by the Mmovell- Boltzmann distribution:

n, (0)=e '" ". (53)

Also note that in our theory of isothermal desorp-
tion we fix the time t=0 as that instant at which,
e.g. , by rapid pumping, the gas phase has been es-
sentially removed from the system, implying that
for the continuum,

which we can evaluate further by noting that

(51)
(54)Tr[nki(0) nk(0)P(0)] =nk(0) = 0.

Thus the second term in (51) does not contribute
and we get

( ph)n, (t)=n (O)I( —(EE) gX" (k) iO(kX, i)Onj' t
~

(E, —E,+ One), i(E— E Itin,e)t)n„e""',
k&0

1

+f',
i (E, E, —h~g, —(Ek -Eo+ K(dk), t i(nk' +1)+c.c.

(55)

where

Tr[bkt(0)bk, (0)p(0)] = bkk, /(ek" k —1) =n'k'~bkk, .

To extract the large-time behavior we use the
relation

(56)

To evaluate (58) numericaQy we assume that the
phonon spectrum of the solid is adequately repre-
sented by the Debye model so that we can replace
phonon sums by integrals according to

sin'(at)/S' vtb(t), ) (57)
3X,

~ ~ ~
3 C0 d(d k ~ ~

~D o
(59)

and find for (55) an expression like (44) where the
rate to this order is given by

Moreover, we replace sums over particle momen-
ta by integrals in the large volume limit according
to

E'"=2' 'giXf )(Ot k)i g(@(k)k) 'n'k'"'6(EO- Ek+@(k)k).
k&0

E I: . fdk-. —-
k&0 0

(60)

(58)

The energy-conserving 5 function ensures that a
particle can leave the adsorbate, i.e., the bound
state E„by absorbing a phonon of energy @~~=Ek

Introducing dimensionless variables according to

I EO I I Eol ScoaI' ' ' I ' I ' k T'y EO~ 40~ CO
L

(61)
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we finally obtain C. One- and two-phonon processes: Fourth order in Hg)

~(r& (8)2'))~so(l+ )/ &os )' m
r M,

(62)

with

n{M))= {e' —1) ' (68)

and &t(su) given by (A11) in Appendix A.
Observe that as we make the bound state shal-

lower, i.e., let ED-O, we finds'"-0. We also
see that 8"'=0 if Eo~ -Sco~, because in this case a
single phonon cannot supply enough energy to
transfer a gas particle from the bound state E, in-
to the continuum E~.

We now want to outline the fourth-order pertur-
bative calculation of the isothermal desorption
time. For this we must consider the terms aris-
ing from H",'. H",' can contribute one- and two-
phonon processes in second order and also in the
first order interfering with the second-order
terms in H ', . In addition, we get contributions
from the interference term involving H",' and H",',
both in first order. These contributions will be
discussed in Sec. IV.

Iterating (42) four times, and keeping only terms
involving (ro(0) which are the only initial states
contributing to the isothermal desorption time
[see the discussion around (54)], we get

c(t) =~.'"(t)+~."'{t)+~,"'{t)+~."'(t)+~,"'(t),
(64)

where in analogy to (48),

cr (0){t) 8-((/a}zor(x (p)

cr")(t)=e-&(/amor&&( (0)~
~

QX&r)(p, k)X&'&(k, p)
t Z&2

I IN) ~&0

t~

«J «"""""""'"'"'""-~'(,t) b( t)b(t )~(t )
o o

&&('c(t) =e "/""cr~-,(0)~ — —
~ P P X"'(O, k)X&" (k, k')X&'&(k', O)

i l'
»0 &s&0

t tj t2 At

e f (Eo E y)t y/ her ( EIt) E 1)t )t2/ he't (Ep Eo )t3/ h
2 J 3

0 0 0
&& b'(t, )b(t,)b(t, )b(ts)&(ts),

(x &4&(t)-s-&&/surer&&& (p)~
~ g g X'»(O, k)X&»(k, p)X&"(O, k')X"'(k', 0)

( il'
~@]»0 k'&0

tj t3
X J( «dt j dt dt e&()ro Es)rz/he&-(ss-sp)rs/a

3 4
0 0 0 0

)( f (Ep E)) r )t3/h t (Eye Ep)t4/ h

(ee)

(66)

(er)

x& (t,)b(t, )b(t )g(t )P (t )b(t )b(t )&(ts),

(68)
c(&4 &(t) e-«/»or(&(, (0) —' g g X ' (p, k)X '&(k k')X "(k' k")X"'(k" O)

a&0 ~ o e &o

t~ t2 t3
x dt dt dt dt e~mo

1 2 . 3
0 0 0 0

& N~ -Ep )t'3/hei Np -Ep )t4/he
x gr(t, )b(t, )b(t, )b(t,)b(t, )&(t,), {69)

where

b(t) =g ~-,'/'[b,'(t)+b, (t)].

Note that in (66)-(69) we do not list the contributions involving (rs(0), but contrary to (48), we keeP the
operators B(t) defined in (29), without approximation. To calculate the isothermal desorption time we
must insert (64) into (89). To perform the phonon averages we expand the B(t) operators to maximal
terms &lusdratic in X"'(0,0):
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a(t) =1-x"'(o,o) P ~ t '[5,'(t) k,(t)]+-;[x"&(0, o)]' Q (~,~,, )-3~'[t t(t) —k,(t)][t,'. (t) I,, (t)] . (71)
P Pp P'

We then keep the necessary terms to ensure that in (&).t(t)()'. ,(t)), in addition to the one-phonon contribu-
tions (see Sec. IIIB), all two-phonon contributions are kept which will arise from averages of all possible
products of two-phonon creation and two-phonon annihilation operators. They are given explicitly in Ap-
pendix B. Note that of the four phonon sums appearing in the fourth-order terms in n, (t) ()(,(t), two are
eliminated upon taking phonon averages through the Kronecker 5's in (Bl)-(B6). After this, all time inte-
grations in (().,(t)().p(t)) can be performed, as done in (C5)-(C14) where their long time limits are also
given.

This rather lengthy calculation leads to the following result:
n (t) 1
n, (o)

where 8 "& is the second-order contribution to the rate given in (58). The contributions lt" & to A "& are
classified according to the number of intermediate continuum states. Thus 8"' does not contain interme-
diate continuum states:

R&'&= P g x&'&(o k)x"'(k o)[x"'(o 0)]'(» )-''.&P PP

n& "'n"."' —— n""'(n', "'+1) —+ 6(E E +k~ )
P' P P' P P'

2

(dP (dPg

+n,""{n,"."+ 1 &
—— II {E, —E+p~, —I(,~,.)I.
(dP COP g

A"' and A'" both contain one intermediate continuum state and are given by

R '= — X '
Q, A X ",k'X O', OX' ' 0, 0

p)p g

leap

X . ~P~P, PgPP"'HAPP"'
1

+n& "'(n&~"&+ 1)

6 EP-E~, +k(oP
(E E

I, E~ —Ep
—Scop E~ —Ep —Sp,

+n,""&(n,&~&+1)
(

——
~

- +
(1 1 t 1 1

&& 6 (Ep —Ep. +S({&p—k((&p. ) ~,p p'j

Q X'"(0 k)X"'(k, o)X'"(0 k')X'"(k' 0)
2r

n)O a')P

(E E k )2

2 1 1

E~, —FP —A&P F~, —8'P —S(OP.)

+np "'(np", "'+ 1) (E E @ )
{p

2 1 I
k({&, E&), E(& m({&p Ep, Eo+ k({&(&(~

(p){& (ph) n(ph)(n(p&))+ 1
x6(E, E,+a~,)+ "'&"' + " "' 5'(E, —E,+a~,}~.E —E, —h, E,, -E,+5
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Finally, R'" contains two intermediate continuum states:

g g g X&'&(o, l)X"&(V,a')X"&(y', n )X&'&(n", 0)
k'&0 Q'& 0 &"&0

x Q ((oy(()y)
~

2 ny (ny + 1)
(

-8 )( E )
ha

1 ( 1 1
E 8 R(A) ti(0, i(Eh E()' A(()y Eh E&) K(oy]

+ n(yh)(n&yh)+ 1)
1

(E„—Ee+So)y, )(Eh, E,)-
. Eh —E&) —KQ)y+ k(dy Eh- S()- 5(oy Eh- E()+ KQ)y )

Ep —Ep 40p Ep —np — QPp j

x
i i

5(E —E,+ II(() + h, )

+ n(yh)(n(yh&+ 1}~
II 1 1

+
Ea —~p —@+p E~ —Ep+

x~ + . E I5(Ee —E,,+ho), —h(e, ,) j.
0 QP~ -- + (Op j

A short discussion of these formulas is in order.
Note that they are valid for any potential, local
or nonlocal. Observe that in fourth ox der, we
also get one-phonon transitions as signaled by the
appearance of the energy-conserving 5 functions
5(Ee E,+Arly)—. All these terms, of course, in-
volve two Bose-Einstein factors for the phonons
with one real phonon of energy h+~ being absorbed,
whereas the second phonon remains virtual con-
tributing to vertex and self-energy corrections.
The appearance of the derivatives of the 5 func-
tions in 8'" reflects the fact that in a fourth-order
calculation based on the dressed Hamiltonian, only
self-energy corrections in E, are kept to all or-
ders. Transferring the derivative from the 5
function onto the matrix elements we get the low-
est-order vertex correction.

Apart from the one-phonon terms we have also
two-phonon contributions in the rates (V3)-(V6)
with the factors

(V7)

for the absorption of two phonons, and the factor

ny~)(ny(yh)+ 1)(Ee—Eh+ Roy h&()y ) -.(V8)

2'3'(1+ v'rq, )su g, f m &
s

= QJD

1 1
x dw dw''wn(w)w'n(w'')S(w+ w')

60-1 60-W

X Wh,
(

—+
Il, te Zo ~

-[E)(w)+ F)(w')]
2

where we have not included terms arising from
X' ' which will be given in Sec. III D. The func-
tions S and F& are given in Appendix D.

t

for the absorption of a phonon of energy hw~ and the
simultaneous emission of a phonon of energy S&~,.
Trivially it is only terms with a factor (7V) that
survive for deep bound states with -2hwD~Ep

540g) ~

It still remains to rewrite the rates (V3)-(VV) in
the dimensionless units (60). This is done for the
general case in Appendix D. The formula become
very simple for deep bound states with 1 &qp
= ~Ee~/e&oD&2, namely,

D. One- and two-phonon processes from Hg& and for &

To calculate the contributions to the isothermal desorption time arising from H,",', we must iterate (42)
four times keeping also the terms with X'". After that, one continues the calculation in complete analogy
to the outline given in Sec. III C leading to (V2) with additional terms in the rate; the first one is second
order in H",',
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g x"'(o,h)x")(h, o)
k'& 0

(8o)

& (yh)+ (ph ) +(ph) (ph)+Br"=, P I"'(0,0)k'"(D, k)X'"(k, 0) P (rd, rdr)
'

4)
' ' + ' ' ]0(k, —k, +krd, )

~rk

+ 3[nD""'n""'+nq'"'(n~""'+ 1)]8'(Eo —E„+hu) ), (81)

x Q ((4)q(dr) '[n"")nest'")5(EO —E,+ h(4)~+ h(dq)+ 2nq'")(nqP")+ 1)5(E,—E,+ h(4)q- h(dq)].

In addition, there will be several terms in which second-order terms in H,",' interfere with the first-
order terms in H,",'. They are again classified according to the number of intermediate continuum states.
%'ith no intermediate continuum state we get

k'& 0

+(yh)&(ph) (1

+ +(yh)&(ph) (1

i 2n())h)(n(Ph)+
p

1 Ij

+ —

i
5(E -0E kh+(I) Dh+(0)

(d~.j

I)) — — )0(II, —k, kkrd, —Drd, .)I .
&rj

(82)

With one intermediate continuum state, one has

g g x'"(o h)x("(h, h')x")(h', o)
k&0 F&O

2 2 1 1

in(yh)(n(Ph)i 1)
1' 2 2

+
Pa - ~o - h(I)P+ h(dy Ek - Eo+ h(k)D

+ g + g i
5(ED —E,+ K(I)D)

1 1

E,, —E, —h(0, E,, —E,&

),E, E- K(4) -E,-E -8'(d, i

0-@+p Z,,,—Eo+ e&p

(83)
In addition, the interference terms involving H",' and H,",' both in first order contribute to the one-phonon
processes via a rate

1
t~ =a~

x '
)I q,

i

—+ —,
I
—[y')(I)}+y', (g '))

1+ &rg )('1 1 i
2))r . ( n) j

g X'"(O, h)X'"(h, O) g (~ ~,) '[n""'n","'+n""'(n'r")+1)]5(E,—E,+ h~,). (84)
Q&0 PD P'

These rate contributions R'" to R""are given in dimensionless form in Appendix D. Here we just give
the isothermal desorption time, calculated exactly in fourth order, including all two-phonon processes, for
deep bound states with 1 &j,= —Eo/8'(0~&2:

2'3'(1+ Vrg, )4Vq, ()'m
dm du 'u)n(n))N)'n(zo')S(M + I)')r3))r (M

(85)
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where the terms in the large square brackets in
the integrand are from (V9) and the last terms are
the new ones with the first of these, namely the
one containing ~r/4(l+ 4rge) being the contribution
from the second-order term in II,'2'.

After these calculations one convinces oneself
quite easily that higher Hamiltonians in the expan-
sion (14) will not contribute in the long-time limit
to the isothermal desorption time in fourth order.

IV. NUMERICAL RESULTS AND DISCUSSION

We have in Sec. III set up the appropriate initial-
value problem for an isothermal desorption ex-
periment and calculated the isothermal desorption
time in fourth-order perturbation theory for a
system controlled by the Hamiltonians (32) and
(28). We will now present a detailed numerical
study of the various contributions to the desorp-
tion rate, i.e. , t~' =Q,.R" '. Let us recall that,
to simplify matters, we choose to examine a gas-
solid system which develops just one bound state
in its surface potential into which gas particles
are trapped forming the absorbate. It is then of
interest to know how the various rates R'" to R"",
as given in Appendix D, depend on (a) the energy
of the bound state, (b) the temperature of the
solid, and (c) the strength of the coupling of the
adsorbate particles to the phonons of the solid.
The parameters of the model are, accordingly,
the bound-state energy E„ the range 1=y

' of the
potentials (8}-(10)(note that bound-state energy
and range determine the strength g of the potential
uniquely), the Debye energy h(oe of the solid, the
ratio m/M, of the masses of a gas particle yn and
a solid particle M„and the temperature T of the
system. .Note that for a given bound-state energy,
the coupling between adsorbate and phonons in- .

creases as the range ) is decreased.
We have previously applied our second-order

theory of flash desorption to a gas-solid system
where helium is adsorbed on constantan (an Ni-Cu
alloy with a high thermal conductivity), a system
for which flash desorption times have been mea-
sured. ' In our first numerical examples, we have
therefore chosen the range X of the potential, the
mass ratio m/M, , and the Debye energy he)e ap-
propriate for the He-constantan system. Observe
that the mass ratio multiplies the second-order
rate R"' linearly and appears quadratically as an
overall factor in the fourth-order rates R'"-R"".
The Debye energy, on the other hand, sets our
energy scale. For this system the renormalized
bound-state energy &„Eq. (30), is only slightly
larger than qo by at most 2% at &0=2.

In Fig. 1 we give, among others, the total iso-
thermal desorption rate t,'=R=Z;, R" as a func-

10 - I I I I I I I I I
lo

.10' =

r=400

10s

I

OS
V)

T
! 'O

107 =

10e

tion of the renormalized bound-state energy Qp
= ~Ee~/8&re for a temperature such that 5=8(dclkeT
= 1 for a rather weakly coupled solid-gas system
with the range of the potential 1=2.5 A. We see
that for &, & 0.9, the rate is dominated by the
second-order contribution. The curves labeled
(H(1))2 (H(1))4 (H(2))2 (H(l))2H(2) and H(1)H(3)

the contributions R'" (R'"+R'"+R'"+R'") R'@
(R(~+R(8)+R'')), and R"", respectively. Note
that the cross term (H"'}'H"' is negative for all
bound-state energies 0&pe&2. As q, = ~E,~/h(oD

approaches one, the second-order contribution
R'" goes to zero because a gas particle trapped
in a bound state with qp &1 cannot be freed by ab-
sorbing a single phonon. For desorption from
bound states with qp &1, two-phonon processes
are necessary. Note that in the latter region the
negative contribution from (H(u)'H(2) is about half
of that from (H"))~! Of course, all ten contribu-
tions R'" to R""conspire at qp= 1 to make the total
rate change continuously across this point at which
all one-phonon processes vanish.

Because in this example the rate is dominated
by the second-order contribution for 0~ pp~ 0.9
and for kT& S&D, we can expect that the rate drops
appreciably as one-phonon processes become in-
operative for qp &1, though one can anticipate that

10~ )

0 0.2 0.4 O.b 0.8 1.0 1.2 1.4 l.b 1.8 2.0

p, =IE, lgr~,

FIG. 1. Isothermal desorption rate t~ as a function of
the renormalized bound-state energy E'p ~ 6 =@co&/k&T and
r=2ma&D/Ky face (59)J. The curve labeled (H("}"(N')}
gives the contribution to the total rate (heavy line) arising
from the nth order in the Hamiltonian term H~~~' and the
mth order in H~~' {see {16)J. The dashed portions of
these curves are negative.
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t. ..=k/IEol'& t, ~ (86)

Because t,' approaches a nonzero limit as lE, l-0
in fourth order, condition (86) is violated for
lEol& k/t, and the results cannot be trusted for
such small binding energies. Another way of
looking at this result is to interpret the rate t„'
as the decay width I' =St,' of the bound state E„
in which case we must demand that Heisenberg' s
uncertainty relation

l
E,lf, & k or I'/lEol& 1 must

hold.
One can suspect that for lower temperatures the

fourth-order terms are even less important for
0 & qp & 1 and that the drop in the desorption rate
across qp=1, i.e. , as one-phonon processes be-
come ineffective, becomes even more pronounced.
This is well illustrated in Fig. 2 for 5= 5. Note
that in this case the curve labeled (H"')4, i.e. ,
the rate contributions (R"'+R'"+R'"+R'"), are
negative over a wider region of energies qp as
compared, to the 6=1 case. Moreover, one can
see nicely now that in the cross term (H'")'H"',

for 14 &p~ 2, fourth-order perturbation theory is
sufficient for the calculation of desorption times
as it is the lowest order giving nonvanishing con-
tribution to the rate in this regime of bound-state
energies. In Table I we list the individual rate
contributions for selected values of gp from which
one can assess their relative importance. Note
that the second-order rate R"' goes to zero as qp

approaches zero, but that the rates R'" and R'"
approach a nonzero, though very small value in
this limit. Though in a gas-solid system with &p

= 0 there is no bound state and there should there-
fore be no time evolution, i.e. , R =0, the nonzero
limits of R'" and R'" indicate a breakdown of the
relaxation time approach. For the latter to be
valid one must have two distinct time scales in the
system, namely, the microscopic time t „,= kllE,

l

and the macroscopic relaxation time t„, and one
must require that

24(1+ &&o~)' Ivqo '~'
'r &o

(87)

where we have put &p &p for simplicity. It is also
obvious from Fig. 4 that for ksT~ lEol, an Arr-
henius- Frenkel parameterization becomes mea-
ningless. If an Arrhenius-Frenkel parameteriza-
tion is invoked around 6 =15 or so, one finds that

Q is larger than
l Eol by about 10% and that the

prefactor t~ is typically of the order of 10 ' to 10 '
sec depending on the bound-state energy lE, l.

We next look at a gas-solid system which differs
from the previously studied case by choosing the
range A of the potential to be A. = 0.5 A rather than
X= 2.5 A as used before. Figure 5 gives the
various contributions to the rate for 5= 1. It is
obvious that fourth order becomes really im-
portant above Qp 0 4 For &p~ 0.4 the fourth-or-
der contribution to the rate is about 10/o of the
second-order one, necessitating a fourth-order

i.e., contributions (R'7'+ R'@+R'@), certain terms
are switched off at &p 1.

Figure 3 gives the rates for the same gas-solid
system as that of Figs. 1 and 2 but at a (unrealisti-
cally) high temperature with 6=0.1. The interest-
ing feature here is the small cusp in R at qp=1.
It can be traced back to the fact that the Debye
phonon spectrum used in our calculations is cut
off sharply at k(dD. The above cusp is therefore
a model-dependent unphysical feature. It would

disappear if the phonon spectrum were. terminated
at the high-frequency end &p by a van Hove-type
singularity, e.g. , like v'~p (4) .

In Fig. 4 we plot the isothermal desorption time
f~ as a function of inverse temperature 6= 8+~/
k~T. At low enough temperature, i.e., for 5»fp'
or ksT « lE, l, t~ can be approximated over limited
temperature regions by an Arrhenius-Frenkel
parameterization t~= to~exp(q/ksT). But observe
that for large 6 we get from the second-order rate
(62),

TABLE I. Various contributions to the isothermal desorption rate ~~ =g&R& (sec ) for the system studied in Fig. 1:
6=1, r=400.

0 0 {8,+R4) {R,+R,) R,o

0 0
p.l 5.989 x 108
0.2 1.075 x 10
0.5 1.365 x 10'
0.9 2.120 x 108
1.0 0
1.1 0
1.5 0
1.9 0

0
8.788 x 10

-2.396 x 104

1.541 x 1p
2.108 x 10
3.165 x 107

1,585 x 10
3.932 x 10
8.544 x 10

0
1.447 x 10
6.618 x 10
5.674 x 1Q

-9.480 x 10
4.716 x 105
3.081 x 10
6.189 x 10
1.Q68 x l.Q

9.397
4.974 x 103
9.355 x 10'
1.602 x 104

6.562 x 10
2.730 x 103
1.656 x 10
2.465 x 10
3.341

0
9.944 x 10'
1.730 x 1p
2.399 x 106

1.619 x 10
1.348 x 10'
j..p84 x l.p
2.813 x 10
5.341 x 10

0
-1.276 x 108
-3.893 x 106

1.781 x 10'
1,876 x 10'
1.069 x 10'
8.017 x 10
2.097 x 10
4.272 x 10

3.594 x 10
2.319 x 105
4.702 x 10
8.114 x 10
2.712 x 10
1.198 x10
8.434 x 10
1.664 x 1Q

2.672 x10

0
2.418 x 10'
4.340 x 10'
5.511 x 106

8.561 x 10'
0
0
0
0
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FIG. 2. See Fig. 1.

calculation even for such shallow bound states.
The need for the latter is also signaled by the fact
that our basic inequality (86) for the validity of
the relaxation time approach is not satisfied too
well because, e.g. , at go=0.1, t „,=10't„. The
situation becomes completely unacceptable for this
system (X= 0.5 A) at very high temperatures
(5 = O. i) where one finds that t~ =t „„indicating
that the relaxation time approach is no longer
valid. In this case, one moreover finds that fourth-

-10
0 2 4 6 8 10 12 14 16 18

h(op/kgT

FIG. 4. Logarithm of the desorption time as a func-
tion of inverse temperature for various systems vrith
different bound-state energies Fo but the same range of
the surface potential. 70 = 0. 065 corresponds to helium
adsorbed on constantan.

order perturbation theory is totally inadequate
because t~ turns out to be negative for a limited
region of bound-state energies, namely 0.4& Qp

~ 0.8, indicating the need of higher-order contribu-
tions.

Because the rate calculated for 5=1 is rather
large, we choose as a last example in Fig. 6 a
low temperature, i.e. , 5 = 10 for the same sys-
tem. Second order gives an adequate relaxation

1 pl 1
I I I I I I I

1010

r= 400
h= 01

1012

1pll

I I I I 1

r= 16

I

O
109

VJ

T

lm

1010

O0
0)

i~ 109

lps

1Ps

107
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

ep =
I Ep I /h~t) D

FIG. 3. See Fig. 1.

1.6 1.8 2.0
107 I I I

0 0.2 0.4 0.6 0.8 1,0 1.2 1.4 1.6 1.8 2.0

o =IEoI/hD

FIG. 5. See Fig. 1.
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time up to qp& 0.2, and fourth-order calculations
can likely be trusted up to about q, ~ 1.8.

Summarizing, we want to stress once more that
the relaxation time approach to desorption is only
valid for gas-solid systems for which the in-
equality (86) is satisfied. Such systems one might
descriptively call weakly coupled ones. The gas-
solid systems studied in Figs. 1-4 with the range
of the surface potential A. = 2.5 A turn out to be
weakly coupled for all temperatures considered,
whereas the second system studied in Figs. 5 and
6 (with X= 0.5 A) is weakly coupled for k~T 6 h~D.

.For a weakly coupled system we can trust a
second-order calculation of the desorption times
as long as ~EO~S k~T 6 Atua, with fourth-order con-
tributions being important for ~E, I&A&o~ and k ~T
&k~~. If, on the other hand, BarD& ~ED~& 2ha&»
then the fourth-order terms are essential because
second-order contributions are zero in this region
of bound-state energies.

In the fourth-order calculations, one cannot limit
oneself to the term H",' in the Hamiltonian (32), as
commonly done in the literature, "but must calcu-
late all contributions generated by II,',", H",', and

H,'," in (32). In particular, we have seen that in-
terference terms between second order in H'," and
first order in H,",' are very important (and nega-
tive). Second-order terms in H,",', which are the
only fourth-order terms taken into account by
Allen and Feuer, "are generally small, making up
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at most 10'%%uo of the fourth-order contributions to
the total rate in our numerical examples.

In this paper we have calculated isothermal
desorption time in gas-solid systems in which
the surface potential develops only one bound
state. More relatistic models must account for
the fact that most gas-solid systems, show-
ing physisorption, have surface potentials
that develop more than one bound state, sa,y n
bound states, at energies E„.. . , E„. Desorption
in such systems can proceed in two ways: (a) by
direct, if necessary multiphonon, transitions from
bound state E, to the co.ntinuum, or (b) through
cascades F, —E. ,- " - continuum. As a result of
this paper we will be justified to develop a de-
sorption theory for weakly coupled systems taking
into account one-phonon cascades only."

In this paper we have used a simple Debye phonon
spectrum, for which a clear comparison of dif-
ferent types of one- and two-phonon processes
is very easy. If one wants to calculate multiphonon
contributions to the desorption rate for a particular
system, more realistic phonon spectra including
local nodes and surface modes can be used, though
qualitatively no changes are expected from the
picture emerging from this paper. A discussion
of this point has been given by Bendow and Ying. '

In (4) we have imposed boundary conditions such
that the wave functions of the adsorbed particles
have modes at the wall. Knowles and Suhl have
argued that one should use polaron-type wave
functions which do not possess nodes resulting,
in their words, in a "squashy" rather than a static
surface potential. The choice of boundary condi-
tions becomes particularly crucial at very low
temperatures. For our numerical examples the
commonly used rigid boundary conditions seem ap-
propriate, though modifications might be necessary
at very low temperatures.
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APPENDIX A

In this appendix we want to summarize the nec-
essary details about the static part of the gas
Hamiltonian

H„=H, + V„=Q e ( ) kaa,

103
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

e'p = I Ep I/ht0D

FIG. 6. See Fig. l.
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The continuum wave functions of momentum q
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can be calculated exactly and are given in the mo-
mentum space representation by

S(s)) =
(I) + 6 —e )[4+4% rto + r8)+ r(&0 —60)]

y, (b) = b,„+gr, 'W,-V(b)/(E, E,-+i~), (A2)
(A11)

where W, is given by

W, =g y, (b)V(I )

1

=V(i)(1 —(;) 'gV'()!')/(E, —E»»i»)

(AS)

v r(e, +Q+2ve„-~xge
(go+ co —c,)[4+ 4/rc, +rgr+ r(e, —eo)]

'

1
(Me~+vV, —s))[2+sr (Me, +v'i, I)—)]

(A12)

(A13)

0o(I)=Igloo w.v(&)/(E -E,), (A4)

If the Hamiltonian (A1) develops a bound state for
g&0, its wave function is given by

APPENDIX B

The thermal averages of all possible products
of two-phonon creation and two-phonon annihila-
tion operators at time t=0, needed in Secs. IIIC
and IIID, are as follows: .

where the bound-state energy E0 must be calcu-
lated as a root of (bp bp bp bp ) 8 p Bp~ (5/3 24 + g4 23) (al)

1 —lgl I, 'QV'(b)/(E E,)=0-.

The normalization of Q, (k) fixes W, to be

(b b bt b't ) =(p),(&"&+1)(g(P")+1)

X(eisbz4+ bi4523) ) (a2)

W 2=g2L ' @2' E -E (A5)

For the potential (10), we get explicitly

q (q+ iy)'
q'+ y' (q —ia, )(q —,ia, )

W, = . ))'ya, (y+a, )' ',)) 2b'
tB g

(Ae)

(Av)

(aS)

(a4)

mlgli ~

(AS)
(ae)

QlW~l'e(E, -Eo —k(()) =
@, , &((&) —eo)S(s)) )

lw l' Lm
Z E, E, -ha& 2h'-year (1 ere+, )

(A9)

The equation for a, in (AS) determines the bound-
state energy E,= —b'a,'/2m for the potential (10).

For the calculation of the desorption time we
need some integrals involving lW, l'. They can be
calculated explicitly and, using dimensionless units
(61), can be expressed as follows:

n""'=(bf bp ) = (e ""p —1) .

APPENDIX C

In fourth-order time-dependent perturbative
theory integrals of the form

(ae)

(a'I)

x[6(au —~,)E& (ao) + 0(e, w)F), (ao)],-
$-1

dt d] '' ' dt g&~j.~q ~ ~ ~ g'X ~n
1 2 N n

0 0 0

where

(A10) will appear where&=1, 2, 3, 4. To calculate the
isothermal desorption time, according to Fermi's
golden rule one must take the long-time limits of
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the functions (CI) and their products, and extract
the terms linear in time. To do the latter one
uses the follovdng relations for -~ & x &+~: t sin(t(t)/x' = —t(t5'(x) .

4sin'(-,'xt)/x' = -2)(ted'(g), (C8)

(C4)

4 sin'(-,'xt )/&' = 2(tt&(&),
j ~oo

(C2) With this we find

f,(A, t)f, (-A, t) =4sin'(BAt)/A' = 2)(ted(A), (Cs)

if (A, t)f, (-(A+C), C, t)+c.c.= (4sin'[ &(A+C)t]+ 4 sin'(&At) —4sin'(BCt))

8 sin'( —,'At ) &(A)
(C8)

if, (0, t)f,(B, -B, t)+ c.c.=—2t ' t sinBt
= 2rt5'(B),

f,(A, -A, t ) + c.c.= 4 sin'(B At )
= 2((t5(A), (C8)

j ~(o

A B 1 e(Atf,(A, B, t)f, (C, —(A+B+C), t )+c.c. =

eiAt
f,(A. , -A, t)f, (C, —C, t)+c.c.=

i A 2

eict 1 e-t (A +B)t 1 g(A B)
C(A+B+C, ) (A+B)(A+B+C) ' ', ,„BC;

eiCt
+— 2 + —, + CC.

A.
&

6(A) t)(C) tI'(A) ()' (C) l
O' A' C, A j' (C10)

1 (( 4 sin'(-,'At ) 4 sin'(BCt ) 6(A) 5(C)
(C11)

if,(A, -A, 0, t ) + c.c.= if,(O, A. , -A, t ) + c.c.= 4 sin'( —,'At ) ——2mt 5'(A), (C»)

4 sin'( ,'Dt ) -4 sin'(-,'At )

4 sis'( (A+B)t] ii(B) S(A) —5(A +B))
(A+B)BB(A+B+D) t „A(A+B) BD

4 sinB(-,'Ct ) 4 sin'(~BAt ) t ' t)(A) 5(C) 5'(A) 5'(C)

(C14)

APPENDIX D

In this appendix we give the expressions for the rates B"' to R "' in an integral, form. With

C =(4) 8B2()[1+(yg )»B] gB) B(ttt/M )B/~

we have
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1 1 1
C 8 = 4gn gy ~n g)' Sso+gy' —2 ~g gg $gg

~ 0~1 0~QP 0

dzo 1 dgy'
+ dgu aun(gu) n(w')S (ac+au') — dw wn(au)S(gu), n(ge'),

-10 0
$0

(D2)

C '[Z ' +R" j= dge S(ao)
I

dw 'w'n(w')F& (au' )+ dw'av'n(gu)E& (gv' ) i

BQl
0

1 1
—2E& (0) dgu gv n(gu)s(gu) — dw av n(gu)S(gv) dw'w'n(w')

I
3, + 2

. Z Zp
Bw' w +w' j

dgul guin(wl ) 3 & ( ) 2 F& (w )

1 1 $0

—2 dgv gun(w)S(av)E& (w), au'n(w' ) —2 dw n(w)S(w) dau' (au+au')n(ao')E& (au+au')
Z0 , so+so'

0 1

1
+ d~'(a+a')n(s')&[(w+w'[j

6 p~gP

gv 1 1- 2 dae n(au)F& (av)+ dau n(au)F& (au) dau' (w+ go ')n(au')S(gv +w' ),
gp-1 0 ~-e0

pl
C 'R'" = 2E& (0) [ dao aun(w)s (w) dw'w'n(w' )E& (gu')+ dw'w'n{w')E&(ao')

I

0 0

1 ( E fit

+2 dauwn(w)S(w)i dw'gu'n(w')F (w+w')[E (w)+F (w')]
Cp

+ dav'gv'n(ge')E&{gv+w')[E&(av)+E, (w')] + dav'w'n(au')E&(w+au')[F&(w)+F&{w')]
i

Rp 50

+ a' dge wn(w)
i

dau'av'n(w')S(go+ w')[E& (au)+F& (gu')]'
' 0

1
+ dw'gu'n(au')S(w +go')[F&(w)+ E&(w')1'ji

d go au n(ge) dw'av'n(w' )S (zv + w' )[E&(au) + F&(gu' )] '
0 Z ~g

0

I 0
n(gu) dgv' 'n(w')S (w+ ')[F, ( )+ F,(w')]',

Pp ~p QP

(D4)

1 1

g '2[pe (r~,)' a]'e,r 'R"'= dw aun(av) dao'w'n (w )S(w+gu'),
10 0'

dao'
c '[1+(re )"'[a'"~-'"*[a"'+it'."1=2 dw~~(~)s(w)[&-, ~'"(~'[)

0 0 ZO+K
0

1 1

+~ dyeÃ w $t4 /+340 die gg tl zp
j

1 1
—2 dao n(au) dau'w'n(gv')S(au+au'),

10 Z ~$
0
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1 1 1

C [(u (ru ) t')u r t%"'= (E (0) dwwn(w)S(w)u dtuwn(w)d(uu)E (w) dw'w'n(n')
E, R0 -1

1

+2 dwwn(w)S(w)~ d w' w'n(w' )E &(w') + dw'w'n(w')E&(w')
~

60 C0 ]

1 (+2 dw wn(w)S(w)~ dw'w'n(w' )E&(w+w')
Z

0
1

+ dw'w'n(w' )E(w+,w'))
0

1 1

+ 2 dw wn(w)E& (w)+ dwwn(w)E&(w) dw'w'n(w')S(w+w'),
1 Ql

(D7)
1 1

g-1[I+ (~~ )1/2]2 ~ f -lg(zo dw wn(w)S(w) dwdwdn(su' )
-1

0

(D8)

Observe that the integrals containing functions
S(w) describe one-phonon processes while those
with S(w +w') account for two-phonon processes.
All integrals with singular integrands are princi-
pal-value integrals. Note that in (D2) the last two
integrals are divergent by themselves; however,
their difference is finite. This demonstrates that
great care must be taken to include all one-phonon
and two-phonon processes in fourth order. The

rates A"'and A"' are nonzero in the limit &0

arising from the terms proportional to E&(0).
This is discussed in Sec. IV around (86). Note
that the rate Jl'"', i.e., the contribution from the
cross term H ',"II,',", is proportional to the sec- "

ond-order rate A"' with a temperature-dependent
factor of proportionality that happens to be one,
e.g. , for 5=1 and r=16.
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