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Quasistationary magnetization in pulsed spin-locking experiments in dipolar solids
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The quasistationary magnetization in dipolar solids for pulsed spin-locking experiments is cal-
culated. A temporary equilibrium after several pulses is assumed to develop under a Hamiltoni-
an obtained with average Hamiltonian theory from the terms for the rf field and the dipolar in-

teraction. The effect of finite pulse width is discussed. Experimental data from a CaF2 sample

support the theoretical results. It is shown that pulse flip angles qh„=180'+ e have the same ef-
fect as the flip angle e.

I. INTRODUCTION

Ever since the first multiple-pulse experiment on
dipolar solids' showed a dramatically prolonged decay
of the nuclear magnetization, a number of papers' '
have treated the so-called short- and long-time
behavior of the magnetization under pulsed spin-
locking conditions of the more general
90» —(r —@„—r)~ type. (This notation means a 90'
pulse polarized along the y axis of the rotating frame
followed by a train of x-polarized pulses of flip angle

P and spacing 2r.) The short-time behavior is

characterized by a quasiequiUbrium which is reached
after a few times T2, the normal transverse relaxation
time. For longer times a slow exponential decay be-
comes evident, given by a time constant T2, which
has an upper bound of T~~, the relaxation time in the
rotating frame. In this paper we focus our attention
on the short-time behavior.

Rhim et al.' showed that preliminary data for the
magnetization in the quasiequilibrium state could be
described by the formula

—2
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Mo H( +HL

with H~ as the average rf field and HL the local dipo-
lar field. This formula is well known to apply to cw
spin-locking experiments but is not directly applica-
ble to the special conditions of pulsed spin locking
and hence does not account for different values for
$„and the effect of nonzero pulse width. More re-
cently Erofeev and Shumm"" and Ivanov, Provo-
torov, and Fel'dman ' ' presented new data for this
multiple-pulse experiment, gave a different theoreti-
cal approach to describe their results, and questioned
the applicability of average Hamiltonian theory to
these kinds of NMR experiments in dipolar solids.
While the question of the scope of validity of the
average Hamiltonian theory wi11 be discussed in a

II. THEORY

We begin our calculation with the secular part of
the dipolar Hamiltonian in a high magnetic field (in
the rotating frame)

3CR JCd»0 (2)

with
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using Haeberlen's8 definitions and notations for the
constant C and the irreducible tensor elements Rt
and TI~ for the spatial and spin dependence of 3Cd,
respectively. At t =0 a —,m rotation about the y axis
is applied, and the spin components T transform into
T' according to

(4)

more general fashion in a forthcoming paper, ' some
of their criticisms are easily answered. Concerning
the long-time behavior, the authors of Ref. 4 show
that T2, is often not proportional to a negative in-
teger power of v, as had been suggested by an earlier
analysis, ' and state that this fact contradicts the pre-
dictions of average Hamiltonian theory. In fact, that
theory makes no such predictions.

Other arguments concerning the short-time
behavior will be discussed in Sec. II of this paper,
where we shall outline a calculation for obtaining an
equation for the quasiequilibrium magnetization us-
ing the average Hamiltonian theory and the spin tem-
perature concept. Aspects of finite pulse widths and
pulses near 180' will also be discussed. The third
section describes the experimental details and the
fourth section shows the experimental results.

22 5110 1980 The American Physical Society



22 QUASISTATIONARY MAGNETIZATION IN PULSED. . . 5111

D is the usual Wigner rotation matrix. The dipolar
Hamiltonian in this titled rotating frame reads then as

Xg
' = C x R 20 [ 2 T2p +~3/8 ( T22 + T2—2 ) ]

i&J

The multiple-pulse sequence of the 90» —(r —$„
—r)n experiment consists of a burst of identical rf
pulses at exact resonance polarized along the new z
axis of this frame. We can therefore write the total
Hamiltonian as

XTR ~1 ( t) Iz + Xrt (6)

where the time-dependent or1(t) can be split in a con-
stant term or1 and an rf field «r»(t) with zero average.
In the next step we perform a canonical transforma-
tion on FACT~ and arrive in a "switched" frame by ap-
plying a rotation about I, with

pt
r]t(t) =

J re(t')dt' . (7)

Following Eq. (4) we obtain
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(8)

The phase factor in the nonsecular terms T2+2 is
periodic and can therefore be expanded into a
Fourier series

(X = —
Jl 3CsRr(f) dt

0
(10)

e2'~- X c„exp(in 2m t/2r)
n -p

The calculation up to this point is very similar to the
one shown in Ref. 4(b) and the main difference is
that so far we have made no assumption for the
pulse shape. For the observation of the short-time
behavior of the magnetization we are interested in a
stroboscopic sampling of the signal once every cycle.
Hence, SCAT is now treated by the average Hamil-
tonian method. To lowest order,

to be valid in the limit of small flip angles. In Ref. 4
it is stated that the average Hamiltonian does not ac-
count for the shape of the magnetization signal
between pulses. Of course this is true: as remarked
above, Xclaims to describe only the behavior of the
system as observed stroboscopically, once following
each pulse. They however also make the more sub-
stantial criticism that Kdoes not predict the proper
ayproach of the stroboscopically observed signal to a
quasistationary state over several T2, but before the
slow exponential decay is evident. We now proceed—(o)
using X from Eq. (11) to show that this is not the
case. W'e assume that the spin system approaches a—(o)
(temporary) thermal equilibrium under X, begin-
ning from an initial condition M, =Mo. The standard
apparatus of spin thermodynamics for a sudden
change in Hamiltonian9 gives the stationary magneti-
zation Mst as

M„(or1)'

( opl) + Dr, tf
(12)

where D,'ff, the trace over the squared dipolar part of—(0)X, is calculated to be

D'tr = (PHD'( —,
' +-,' co ) ~ (13)

yielding

Mst 1

Mo 1+(HL/H, )'(
4

+
4

cp')
(1.4)

c, =—
&~ r]t(t) exp( —in 2mt/t, ) dt

C

with rit(t) from Eq. (7). For 8 pulses we obtain
r

sindr„
co2=

(15)

with the dipolar local field HL. The result Eq. (14)
differs from Eq. (1) given by Rhim et al. 3 in that it
takes into account the multiple-pulse conditions of
the spin-locking experiment and from the one given
in Ref. 4 which fails for small values of Hl in that it
predicts a finite stationary magnetization even in the
limit H1 0 (or r ~).

The coefficients of the Fourier series9 are given by

and we obtain and the result for a finite pulse width is

X = —or1lg +C XR2to[ ——, T2to
I'(j

+ J3/geo ( T22 + T2 2 ) ]

Co =2= sin [2/, ( I —t') ]
2y„(1—g)

The nominal criterion for being able to omit higher-—(n) .order terms in X= X„X is that or ~t, = or t2r && 1.
Since ru~2r represents the angle $„ through which the
magnetization is flipped by each pulse, this criterion
is the same as @„«I; i.e., we may expect Eq. (11)

r 1 2
1 —cos [2/„(1 —$) ]+

2@„(1—g)
(17)

with the duty factor g. The function Eq. (17) is plot-
ted in Fig. 1 for several Q„values. Since cp~ does not
change over a wide range for small flip angles, the
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FIG. 1. Squared zero-order Fourier coefficient calculated

from Eq. (17) as a function of the duty factor of the
multiple-pulse cycle for various flip angles $„.

FIG. 2. Normalized stationary magnetization as a func-
tion of the average rf field H& for a flip angle of @„=10.8'.
The experimental data (points) agree with the behavior
predicted from Eqs. (14) and (17) (solid line).

stationary magnetization will not be strongly affected
by variations in g.

pulses. The average magnetization between the
pulses was measured between about three to five
Tq's. Thus all experimental parameters for Eq. (14)
were determined.

III. EXPERIMENTAL

As in the previously published investigations'4 we
chose a CaF2 crystal to test the theoretical results and
oriented its [111]axis approximately parallel to the
Ho field direction. A home-built spectrometer with a
superconducting magnet at Ho = 4.0 T and a 1 kW rf
amplifier was used. The probe consists of a R-L-C
series resonance circuit with a quality factor Q of
about 10 to avoid phase glitch effects. '0 The magne-
tization Mo at t =0 after the —my pulse and the local

)

field HL were obtained from a plot of M(t) as a
function of t' for small times t using the moment ex-
pansion for M(t)

IV. RESULTS AND DISCUSSION

Representative results for two different flip angles
are shown in Figs. 2 and 3. The solid lines were cal-
culated from Eqs. (14) and (17) (using the measured
local field HL and the flip angle $„) and describe the
experimental data (points) rather nicely. The broken
line in Fig. 3 displays the behavior of the stationary
magnetization as given by the equation in Ref. 4.

M„
0

M(t) =M, (1 M, t'+ ——)2 (1g)

and

HL = QMp/3 (19)

Mp( t&) = Mp sin( cu ~t~ ) (20)

The average rf field of the multiple-pulse experiment
HI was varied by changing the time 2v between

Here M2 is the second moment of the CaF2 spectrum
in this orientation. The point t =0 lies in the middle
of the finite-width

2 ~y pulse and a local field of
HL = 1.17 6 resulted. The peak value of the rf field
H

~ and the flip angle $„were obtained from a plot of
the magnetization Mo as a function of the pulse
width t~

FIG. 3. Normalized stationary magnetization vs the aver-
age rf field H~ for a flip angle $„=32.2'. The solid line was
calculated from Eqs. (14) and (17). The broken line was
obtained from Ref. 4 with parameters that were used in this
experiment. For small fields H& it deviates slightly from our
results.
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FIG. .4, Normalized effective field vs pulse angle. The
experimental points were obtained from a-fit of the data for
each angle to Eq. (12). The theoretical curve follows

1 3
( 4

+
4 cp ) and describes the data within their experimental

errors (mean deviation 1.6%).

HL = HL ( '+ —'co2 ) '~' . —
eff 4 4 (21)

Figure 4 now shows the ratio H/ /HL for all experi-
eff

ments (points) and for Eq. (21). Considering the
mean deviation of only 1.6% the experimental points
are well represented by the calculated line, even for
relatively large values of $„where d„—1 holds.

Also data were taken for flip angles $„=n + a with

small ~. When performing these experiments we ob-
served a decrease and subsequent increase of the sta-
tionary magnetization as a function of P„by raising

@„up to rr and going higher. In fact, by separating
the n part from $„one can perform the transforma-
tion as for Eq. (8) and obtain the Hamiltonian Hsm,
where only the e part survives since H&R does not
change under a n- rotation as can be confirmed with

Eq. (4). The data for an experiment with @„=180'
+16.6' and $„=180' —16.1' are therefore well

described by Eq. (14) where eo is calculated for an

Deviations from our results are clearly visible in the
low-field ( H~) part of the plot, especially for the lim-

it H~ 0, where the broken line predicts a finite sta-
tionary magnetization. Another way of presenting
the data was chosen for Fig. 4. With the knowledge
of the average rf field H~, one can fit the experimen-
tal data to Eq. (12) and obtain an effective local field,
which should follow the field that can be calculated
from Eq. (13)

FIG. 5. Normalized stationary magnetization vs the aver-
age rf field H~ for flip angles (a) @„=180'+16.6 and (b)
$~ = 180' —16.1'. The solid line was calculated from Eqs.
(14) and (16) by using flip angles and pulse times that
resulted from the difference between the actual values and
the n. -pulse condition.

angle of 16.6 and 16.1', respectively, as is shown in
Fig. 5.

We have shown that the short-time behavior in the
pulsed spin-locking experiment for dipolar solids can
be understood in terms of spin thermodynamics,
where the quasistationary state is approached under a
Hamiltonian that can be calculated with average
Hamiltonian theory. The experimental data are in
good agreement with our theoretical results.
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