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Dynamic polarization echoes in normal and superconducting metal powders have been investi-

gated. The dynamic echoes are found to be caused by the anharmonicity of the mechanical os-

cillators excited by rf fields in static magnetic fields, but not by the parametric coupling of the

applied rf fields to the oscillator modes. Most of the experimental data showed a large signal ef-

fect even at the lowest applied pulse amplitudes consistent with adequate signal to noise. Effects

of rf pulse interval and amplitudes, static magnetic field, temperature, and the angle between rf
and static magnetic fields, P, on the echo amplitude are consistently explained by the calculation

in the large signal regime, where the higher-order interactions between anharmonically oscillat-

ing modes are effective. Dependence of the echo amplitude on the angle P revealed that the

mechanical oscillation consists of different oscillation modes. The damping constant of the two

pulse echo affected by surrounding media, rf frequency, static magnetic field, and temperature is

well understood based upon the energy transmission from an individual oscillating particle to
the media and internal loss such as energy absorption due to conduction electrons, thermal pho-

nons, and crystalline imperfections.

I. INTRODUCTION

Polarization echoes refer to the coherent pulsed
fields emitted at t =27 and T+7 from materials after
three pulsed rf fields applied at t =0, 7, and T. Po-
larization echoes have been observed in a wide
variety of powders and bulk materials. Dynamic and
static polarization echoes of piezoelectric powders
have been extensively studied both experimentally
and theoretically. ' DyrIamic echoes possess relaxa-
tion times which are associated with inherent dynam-
ic behavior of the particles. The term static echoes
refers to the echo phenomena in which the relaxation
time of the stimulated three pulse echo exceeds the
lifetime of any dynamic processes.

According to Gould' all echo phenomena are
separated into two classes depending on the type of
nonlinear mechanism responsible for echo formation
in a classical oscillator system. Parametric field-mode
interactions are those in which the applied field cou-
ples parametrically to the previously excited modes of
the system causing phase reversal and subsequent
echo formation. In anharmonic oscillator systems the
different free oscillation modes are coupled anhar-
monically even though the oscillator systems interact
linearly with the applied field. The two classes can be
clearly distinguished experimentally. " In the case of
parametric field-mode interaction systems echoes de-
cay monotonically from a finite value with increasing
two-pulse separation ~, whereas in the anharmonic
oscillator systems echoes build up from zero at 7 = 0
and go through a maximum before decreasing ex-
ponentially at large 7.

Metallic powder echoes sirriilar to nuclear-spin

echoes have been known since 1966.4 Since the ex-
perimental procedure of the polarization echoes in
metallic powders is much similar to that of spin
echoes, the polarization echoes of the metallic
powders have been found during the course of the
spin-echo study. The polarization echoes are dis-
tinguished from nuclear-spin echoes through no rela-
tion between the strength of the static magnetic field
and the carrier frequency.

'4e use the pulse sequence shown in Fig. 1

throughout this paper. The rf magnetic field pulses
with the carrier frequency ~0, peak amplitudes
Bi, B~, and B3, and widths A~, A2, and A3 are ap-
plied to the powders placed in a static magnetic field
Bo at times t = 0, ~, and T, respectively. At the times
t =mr (rn =2, 3, 4, . . . ) the powders coherently ra-
diate the two-pulse echoes e, (mr) At the tim. es
t=T+pr (p =i, 2, 3, . . . ) the powders coherently
radiate the three-pulse echoes e3(T+pr). For suffi-
ciently large r the two-pulse echo e, (2r) decays ex-
ponentially as e, (2r) —exp( —2 /Tr, ), where Tq is a
phenomenological decay time constant. The decay
time T~ is associated with the mechanical damping of
the individual powder particles, the origin of which
should be discussed separately. The three-pulse echo
e3(T+r) decays as exp( —T/T, ). The relaxation
time Ti is equal to —T2 for dynamic echoes con-
sidered here.

Goldberg et a/. ' observed echoes from type-II su-
perconducting powders, VTi and NbZr, which are not
explained by the spin-echo mechanism. Alloul and
Froidevaux" and later Snodgrass' noted that the
echo properties of normal metal powders were quite
similar to those reported by Goldberg et al. ' Alloul
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powder echoes are well explained by the anharmonic
oscillator model. In Sec. II we present a calculation
of the electromagnetic excitation of mechanical oscil-
lators in a metallic particle acting as an acoustic reso-
nator and the formation of dynamic polarization
echoes via lattice anharmonicity. In Sec. III experi-
mental procedures are described. In Sec. IV experi-
mental results are discussed in the light of the calcu-
lation given in Sec. II. A summary of the results and
conclusions is presented in Sec. V.

FIG. 1. Schematic pulse timing for a three-pulse se-
quence. The pulses and signals all have a common rf carrier
frequency ~o.

and Froidevaux' pointed out that the echoes were as-
sociated with magnetoacoustic oscillations. Ehren-
freund et al. proposed a model which partially ac-
counted for the experimental dependence of the echo
amplitude on rf pulse amplitudes in Ref. 5 without
specifying the origin of the nonlinearity responsible
for the echoes. Pacult et al. ' discussed the origin of
echoes from three different points of view: (i) heli-

con waves; (ii) microscopic acoustic vibrations within
individual particles; and (iii) macroscopic mechanical
vibrations of the whole powder. They pointed out
that their experimental result on pure and alloy me-
tallic powders was in favor of (iii). Kupca and
Searle" have carried out a rather detailed experiment
on normal and ferromagnetic metal powders bearing
in mind that the echoes are due to the excitation and

subsequent rephasing of elastic vibrational modes of
the particles. However, they did not come to a defin-
ite conclusion as to the nonlinearity responsible for
the echo formation, since the rf and static magnetic
field dependence was too complex to be described by
a simple form expected from a simple theoretical
model. %e shall show later that the deviation from a

simple relationship is due to the effect of higher-
order terms of the interaction between anharmonic
oscillators. Theoretical investigation has been recent-
ly carried out by Vodop'yanov et al. ' who treated the
system as an electromagnetically excited anharmonic
oscillator system and compared their result with the
experiment of Ref. 11. In their calculation, however,
they missed the buildup term, which is an evidence
for the anharmonic oscillator mechanism, and also
the role of the static magnetic field in the electromag-
netic detection of the echoes.

In this paper we present a detailed experimental
study of the dynamic polarization echoes in normal
metallic Al, Sn, Nb, and Cu, and type-II supercon-
ducting V3Si powders. Although we found static
echoes in these metallic powders, ' we shall discuss
only dynamic echoes here. The static echoes in the
metallic powders will be discussed separately. One of
the main conclusions of this paper is that the metallic

II. THEORY

A. Linear excitation and detection of
mechanical oscillation in metals

Since the linear excitation of acoustic oscillations at
a metal surface has been well investigated, '" we
describe briefly the excitation mechanism and apply
the argument to the excitation and detection of the-

oscillation in a single metallic particle with simple
geometries in order to discuss later the echo forma-
tion mechanism in a large number of particles.

1. Excitation at metal surface

Acoustic oscillations in metals in static magnetic
field, Bo, are excited by rf magnetic field B(t). The
shielding current is induced at the surface within a
skin depth by the rf field. Transverse- or
longitudinal-acoustic waves can be produced depend-
ing on the orientation of Bo relative to the surface
shielding current. In order to have the idea of the
transverse and longitudinal forces acting on the lat-

tice ions we assume that the metal occupies the half
space z ~ 0 and the direction of B(t) is parallel to the
metal surface. For Bo along x, the Lorentz force act-

ing on the electrons is along z, resulting in a variation
of the electron charge density along z. An internal
electric field along z is set up to maintain local charge
neutrality and provides the driving force for the long-
itudinal waves. On the other hand, when Bo is along

z, the shielding current induced by B(t) is acted on

by the Lorentz force in the x direction. Since the
electrons and ions composing the shielding current
move in the opposite directions and have opposite
charges, the Lorentz forces on them act in the same
direction to produce a coherent driving force for the
transverse-acoustic waves. In type-II superconduc-
tors the acoustic waves are excited in the same
manner as in normal metals when the static magnetic
field is much greater than the lower critical field of
the superconductors. In order to describe the ionic
displacement field f (z, t) —exp[i (coot —qz) ] (angular
frequency coo and wave vector q along z) resulting
from the response of the metal to the disturbance jo



5094 F. TSURUOKA AND K. KAJIMURA

which is the shielding current induced by B(t), we
need the relation between the currents and the elec-
tric fields inside the metal and the equation of mo-
tion of the lattice ions in the electric and magnetic
fields. From the Fourier transforms of the Maxwell
equations" we have the relation between the total
current J (q ) and the electric field E(q ):

c)$
9 =)lpe + J~+ Jp

Qt
(2a)

where )1p is the number density of conduction elec-
trons and —e is the electronic charge. Cohen et at. '

showed that the electronic current is given by

7(q) =I'E(q) (la)

where the tensor I is given by

I = dtag(c /3crp, c /3crp, cc»p/41r)

Here, crp is the static electronic conductivity and

P = (c'q'/47r crpcop) (1 —c»p/c' q')

(I b)

(1c)

+l1peDq[q g(q)]

6= [2Er/3»pe (1+i copr) ]a'(q, cop) (2c)

where a (q, c»p) is the magnetoconductivity tensor, r
is the electronic relaxation time, and

The total current is the sum of the ionic j;
= »pe(c)$/Bt), the electronic j„and the shielding
currents jp'.

is the diffusion tensor, EF being the Fermi energy.
The equation of motion of the lattice ions in elastical-
ly isotropic metals is given by"

I)V B( - - - - - — - Ze bg — Ze-. Z»pe' c)(
M +2I'pM — =Cc'7(p' ()—C, p' x (& x g)+ZeE + x Bp —— je

9t 8t C Qf &p 0 p Qf
(3)

E+ =E„+iEy (4a)

and similarly for 8+, J+, and $~, and

where M is the ionic mass, I"p is the nonelectronic
damping constant, C& and C, are elastic moduli for
longitudinal and transverse waves, respectively, and
Ze is the ionic charge. We can obtain general solu-
tions to g in terms of B(r) from Eqs. (Ia), (2a), and
(3). However, it is much more informative to see
the solutions for two representative geometries,
Bp II q II z and Bp II x l. q II z, as shown by Meredith
et aL '7 in the local limit, ql ( I, where / is the elec-
tronic mean free path. .

When Bp II q Ilz, it can be shown that the transverse
components of the incident electromagnetic wave are
coupled only to the transverse ionic motions but not
to the longitudinal motions. Writing the combined
transverse components

since the diffusion current in Eq. (2b) is zero for the
transverse displacement. The shielding current
jp+(q) in Eq. (6) is related to the rf field, 8+(r), at
the metal surface, z =+0, by

,jp+(q) =+ (ie/4rr')8+(r) . (8)

Equation (3) becomes

( —c»p + 2i c»pl + v,pq + II,c»p + i Zm c»p/M r )g+ ( q )

= (Ze/M)E+(q) —(Ze/Ma. p) j, +(q), (9)

where II, = (Zm/M)c», is the ionic cyclotron fre-
quency, co, =eBp/mc being the electronic cyclotron
frequency, vcp=+Cc/M is the unrenormalized veloci-
ty of transverse waves. The conductivity a.+(q, cop)

is given by

~+ = ~mr + )(Txy (4b)
cr+(q, c»p) = crp(I ——k )/[I+i (c»p+ co, )r], (10a)

We obtain, respectively, from Eqs. (Ia), (2a), and
(2b)

J+(q) =i /3crpE+(q)

J+(q) = ~ ip»(pe+ (q)j+, +(q)+ip+(0),
i +(q) =cr+(q c»p) [E+(q) —(i coom/er)(+(q ) ]

(6)

k = qj/[I +i (~—p+ ~, )r] . (10b)

By eliminating J+(q), E+(q). and j, +(q) from
Eqs. (5)—(9), we obtain the transverse displacement
cc+(q) in terms of 8+(r),

BpB+(i)
(—c»p+2lc»pl + vc q )g+(q ) =

4~'p(I cP)—
(»a)
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where

r=r, +r, , (11b)
Bt Qz

r 1

~o~(t) 1+i (1+i)zexp-
4mp 8 8

(12a)

v,' = v,'o [1 + ( Q,'c'/Q~ v,'o) [, (11d)

p =noM/Z is the density of the metal,
Q~ = (Zm/M)'t'co~ is the ionic plasma frequency,
and co~ = (4rrnoe'/m)'tz is the electronic plasma fre-
quency. By making the inverse Fourier transform of
Eq. (1 la), we obtain the equation of motion for
transverse displacement

I'a c Q, oio/8@v, 'Qooo+notttvF«ior/lopv, , (llc) where

8 = c/Q21rrroolo (12b)

is the classical skin depth. The right-hand side (rhs)
of Eq. (12a) indicates the driving Lorentz force
caused by the static magnetic field and the current in-
duced by the rf magnetic field which penetrates to
about the skin depth.

When Boll x J. q l(z, it follows from Eqs. (la) and
(2a) that the equation of motion of ions, Eq. (3), is
written in the form

(13)

(14)

[~o' —2i~oro —(vi' vr') q—q vi'q'+—i~oQ jt(q)+ '(I —~/~o)E(q) = —= jo(q)

Here, vt=+C /tM is unrenormalized velocity of longitudinal waves, the tensor Q has yz component Q, and zy
component —O„and its other components are zero, and the dyadic q q has zz component q' and all its other
components are zero. It follows from Eqs. (la), (2a), (2b), and (2c) that

(1-K I')E(q) = — qq+ — (1 —(roK) g(q) —K jii(q)
2EF trt 0~ 0

3e (1+i coos) o'o

a,a(t)
( oio+ 2ltvoI + vtti )gg =

4m'p(1 —i P)
where

I = I 0+I g

(15a)

(15b)

I"a = c Qotvo/8mvt Q 'ao+ 2nom vFtoor/15pv, ', (15c)

where K is a resistivity tensor defined as the inverse
of the magnetoconductivity tensor, F(q, oio), intro-
duced in Eq. (2b). The equation of motion of ions is
given by eliminating E(q) from Eqs. (13) and (14).
It can be shown that the driving -force is along the z
axis and g„parallel to Bo is not excited by the rf field
in this geometry. When the static magnetic field is
not so intense the acoustic wave produced by the rf
field becomes nearly a pure longitudinal wave. The
equation of motion for such a longitudinal displace-
ment is given by

I

for the form of the driving force on the rhs of Eqs.
(12a) and (16).

2. Application to a metal particle

We approximate an irregularly shaped metal parti-
cle by an elastically isotropic thin platelet of thickness
2d and cross-sectional area A. Other several cases of
the particle geometry are mentioned at the end of
this subsection. The orientation of the external rf
field relative to the platelet surface is given by the
angle 8 and it is assumed that the parallel component
of the rf field, B(t) cos8, couples to the thickness vi-

brations of the platelet. We take the z axis normal to
the platelet surface and the x axis in the direction of
the projection of B(t) to the platelet surface The.

vt2 = vtzo[1+ ( Q 'c'/Q 'vt2o)

+ Zttt vF/3Mvto(1 + oior ) ] (15d)
Bp

The inverse Fourier transform of Eq. (15a) becomes

Qtt2 Qt Qz2

i
1

&o&«) I+i —(I+i)zexp-
4mp 8 8

(16)

which has an identical form to Eq. (12a). The equa-
tions of motion of metallic ions, Eqs. (12a) and (16),
are essentially the same as Eq. (3) of Ref. 1 except

FIG. 2. (a} Rectangular Cartesian coordinate system for
specifying the direction of the rf magnetic field relative to
the platelet surfaces, z =+ d. (b} Relative directions of the
rf and static magnetic fields and the x axis.
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~o. =~oex .

0„=sing sinH cos$+ cosp cosH

8() = goO"

0, = —sing cosH cos@+ cosQ sinH

(17a)

(17b)

(17c)

(17d)

On the basis of the argument in Sec. II A 1, we as-

orientation of the static magnetic field, Bo, relative to
the rf field and the x axis is specified by two angles P
and $ as shown in Fig. 2. Then the parallel (x) and

perpendicular (z) components of Bo to the platelet
surface are expressed as

sume that the rf field parallel to the platelet surface
and the z component of Bo produce the transverse
displacement of ions of amplitude g„(z, t) and the x
component of Bo selectively excites the longitudinal
displacement, g, (z, t) Both. faces of the platelet
placed in an rf coil receive the same rf field
B(t) cosH, since the thickness of the platelet is as-
sumed to be much shorter than the wavelength of
the electromagnetic wave having the frequency coo.

The shielding currents induced by the rf field are an-
tisymmetric with respect to the plane z = 0 of the pla-
telet. It follows from Eq. (I la) that the equation of
motion for both $„and (, is expressed by

1

B B(t)8cosH I+ —(I+i)(z+d) (I+i)(z —d)+21 exp —exp
9z2 4mp

(18)

Here, v and 0 denote v, and O„respectively, for the
transverse wave and vt and 0„ for the longitudinal
wave. Following the procedure to solve the equation
of motion in Ref. 1 we express the eauation of mo-

tion with respect to a spatially normalized strain term
S (t) defined by

I

width h.

B(t) =Be ' ' [U(t —t, ) —U(t —t, —5)], (21)

where U is the unit step function. The solution of
Eq. (20a) with the rf pulse [Eq. (21)] corresponding
to the thickness resonance of the platelet is given by

((z, t) =m(z)S(t), (19a)

where m (z) is a reai, odd, normal-mode function
normalized according to

V ' mdV= —db
4 2

(19b)

V and b being the particle volume and a normaliza-
tion constant. If we take m (z) to be an odd simple
function,

i yBoBO cosH

,
8n p AI'( I +P') '

I

(-r+tO)(f —f )
xe

where

/ = I+i~/r,

(22a)

(22b)

(22c)
m (z) = d sinqz (19c)

the normalization constant becomes

b = I —sin(2qd)/2qd

Inserting Eq. .(19a) into Eq. (18) we obtain

(19d)

0 = —e m dV mdVQ m

9z2
(20b)

(IS z yBOB (t)0 cosH
+21 +0 S 20a

Bt Bt 4n p(1 +P )''

where

In deriving Eq. (22a) we used the approximation that
the envelope of S (t) slowly varies compared to II
and II/I' )) I, and we neglected the sum frequency
term &n coo+0,

Several cases of particle geometry other than a thin
platelet have been also considered. We shall only
mention here that for a metallic disc or sphere with a
radius nearly matching to a quarter of a sound
wavelength the equation of motion and its solution
are expressed by equations similar to Eqs. (20a) and
(22a), respectively.

y =—(2/d )e'" 1+exp —(I +i)2 iX 2d
5

(20c)

3 Circuit response to

particle oscillation

X=tan 'P (20d)

We take B (t) to be the imaginary part of a rectangu-
lar rf pulse applied at t = to with amplitude B and

The oscillation of a metal particle in the static mag-
netic field, Bo, is detected electromagnetically in an
inductance coil. We consider first the detection of
transverse waves arriving at the metal surfaces
z = + d. By eliminating the total current density
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J+(q) from Eqs. (5), (6), and (7) and writing
R+ = o+'(q, rpp) we obtain

npe 1 —apR+ 8)+(q)
&+(q) =

op 1 IPopR+ ()t
(23)

Here, we dropped jo+ induced by the external rf
field, B+(t), in Eq. (6), since we detect the oscilla-
tion without B+(t) The . electric field at the metal
surfaces, z =+ d, is given by the inverse transform of
Eq. (23) as

E(+d, t) = — ~. — ' x Bp, (24)
c (1 —i P) r)t

BB„(t)
V(t) =Xv„=X2aA "

eGR(4p)
at

(26)

where co is the difference frequency defined in Eq.
(22c) which is used here as a particle mode label, the
sum X is over all modes of all particles, a is the
factor coming from the coil geometry, e is the unit
vector in the direction of the coil axis relative to the
radiation surface, and GR (pt) is the rf frequency
response of the circuit and voltage receiver. In the
limit of an infinite number of modes, the sum in Eq.
(26) can be replaced by a double integral over the
mode distribution D (4p) and the solid angle
sinHdHd@. Taking the distribution of particle or'ienta-

tions to be uniform we find

f21'Xu„~ d$„~ sinHdH „u„D( )d4p4p(27)

where we used the relation P&p, r (( 1. For longitu-
dinai waves, it can be shown easily using Eq. (13)
that the electric field has the identical form to Eq.
(24). Since the tangential component of the electric
field is continuous at the boundary between the metal
surface and free space, the rf magnetic field, B,(t), is
radiated from the metal surface to the free space,
which is detected by the coil. The total magnetic
field radiated from the platelet is 2AB, (t) The tim. e
derivative of the radiated rf magnetic field is related
to the electric field at the metal surface by the
Maxwell equation

BB„(t) = —c V x E(+ d, t) .
Bt

The voltage response of a circuit containing a sam-
ple consisting of a large number of particles is given
by the time derivative of the magnetic flux in the coil

Taking the mode distribution function D( 4p) to be
slowly varying with respect to the spectrum width of
the rf pulse, 5 ', and to GR(4p) we obtain from Eqs.
(17), (19), and (24)—(27)

i rppaAD (0)m (d) Bp

24r (1 —i /3)

ra2%

d4 J~ dHOsinHcosH

dcoS (t) GR (4p) . (28)

In the later discussion of the coherent nonlinear
response of the sample consisting of a large number
of particles we shall make use of Eq. (28) with S(t)
representing the solution to the appropriate nonlinear
wave equations.

B. Dynamic polarization echoes
in anharmonic oscillators

All echo phenomena are inherently nonlinear. '

In order to pinpoint the echo formation mechanism it
is necessary to have a model of the responsible non-
linearity. It has been clearly demonstrated' that the
echoes in powders are due to the anharmonic interac-
tions in oscillators but not due to the parametric
field-mode interactions. In this section we review the
model of the dynamic polarization echoes based upon
the lattice anharmonicity.

The internal energy density U of a particle may be
expressed by

U= UL+ UNL (29)

where the linear term UL leads to the equation of
motion for linear excitation of ionic motion, Eq. (18).
We make a simplification retaining only the fourth-
order lattice anharmonicity in the nonlinear term
having the form

UNL = (1/4') c4e (30)

where a =—fig(z, t)/itz is the strain and c4 is an ap-
propriate fourth-order elastic constant. The role of
the third-order term causing harmonic generation and
subsequent echo formation has been considered. It is
noted that the results are similar to those obtained
here from the fourth-order term. ' Adding the
force term coming from UNL, O'UNL/Bz', to Eq.
(18), the nonlinear wave equation is written by

c4 Qg Q2$ BpB (t)O cosH 1 + i
, +2I

gz 2p gz gz 47/ p

—(1+i) (z + d) (1+i)(z —d)x exp
5 5

-exp (31)
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where 0' and y are, respectively, given by Eqs.
(20b) and (20c), and the nonlinearity constant p, is

defined by

'I

3C4 9m 92m
&

2p~2 " 9z ()z
m2d V (32b)

The linear electromagnetic driving force on the rhs
excites only those fundamental modes in the neigh-
borhood of the applied rf frequency cop. We assume
that for a given particle and frequency cop only one
such fundamental mode is excited. To lowest order
of the fourth-order lattice anharmonicity, the non-
linear term on the left-hand side (Ihs), causes non-
linear dispersion (amplitude dependent phase shift
and damping) of the fundamental modes. Although
the harmonic generation is allowed by the boundary
conditions of a platelet, we neglect all harmonic gen-
erations. Assuming a solution to have the form
given by Eq. (19a), we can rewrite Eq. (31) as

+2I' + II'(I+iM, [Si')S = yBOB r OcosH

r}t' r}r 4n p(1+ p')' '

(32a)

1. Small-signal limit

We shall confine ourselves here to the case of the
small-signal limit correct only to first order in the
nonlinearity constant p, . In this case the nonlinearity
can be neglected during the two applied pulses and
after the first pulse. The solution [Eq. (22a)l of the
equation for the linear excitation [Eq. (20a)] at the
end of each applied pulse is used as the initial condi-
tion for the solution of the nonlinear equation
represented by Eq. (32a) after the second pulse
where 8(t) =0. The exact solution of Eq. (32a) with
8 (r) = 0 is given by

S(r) =S(r,) exp[( —I'+i II)(r —r, )]
&& exp[i(p 0/4r) ]S(r,) ('(I —e ' ) ]

(33)
Here, the initial condition S(to) at the trailing edge
of the second pulse, tp = ~+ A2, is given by applying
Eqs. (22a) —(22c) to the linear excitation caused by
applied two pulses, i.e., a superposition of the linear
excitation by the first and second pulses. To first or-
der in the nonlinearity constant p„ the solution of Eq.
(32a) for the coherent response is given by

'3 f're, ' ' fry,
S (r) = (]y i'y pO/4r )

BpocosH
8~8)rein« )r&e r—((I —e—2«& —~&)

stupor(I+p')'i2 '', f",
, f (34)

The output signal is obtained by inserting Eq. (34) into Eq. (28):

V(r) = i ]y[ ype'"aAD (0}m (d)8&BzBo ~~o«2'~ -ri(1 -2r(~-~))
(81rr) p'II (1+13 )

rf ra,
'

fra2
d@&I dHO'sinHcos'H„daGa(m)e '"" (35)

Several significant properties can be noted in the
small-signal limit. (i) The signal amplitude is propor-
tional to the nonlinearity constant p, and increases
with B]B2 and Bp. In the present model the excited
modes, proportional to B~Bp and B2Bp, couple anhar-
monically with each other to produce the coherent
strain amplitude proportional to (8~80) (828p)' as
given by Eq. (34). The strain amplitude is detected
electromagnetically in the static magnetic field as an
echo signal proportional to B&B2Bp. On the other
hand, in the parametric field-mode interaction model
the applied field of the second rf pulse parametrically
couples to the previously excited modes (proportional
to 8~80) to produce the coherent strain amplitude
proportional to B~B2Bp. Accordingly, the resulting
echo signal detected in the static field is proportional

I

to 8 ~By 80 (ii) The in. tegral over all co is nonzero
only when t = 2v. This is the coherent echo signal at
r =2r (iii) Th.e echo amplitude builds up from zero
at ~ = 0 and has a maximum before decaying ex-
ponentially as e '"' at 2~ ~& I '. These properties will

be compared to the experiment in Sec. IV.
Vadop'yanov et al. " have calculated the 2~ echo of

the anharmonic oscillator system in which the indivi-
dual oscillators are excited electromagnetically in the
presence of the static magnetic field. They obtained
that the echo amplitude varies with Bp, since they
omitted the role of the static field Bp in the detection
of the echo signal. They also missed the buildup
term, (1 —e '"" '), which comes from the integral
of the nonlinear term p, ]S ~'S in Eq. (32a) and is a
characteristic property of the anharmonic oscillators.
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2. Large-signal regime

In order to extend the small-signal result to arbi-
trarily large signals, we have to solve the full non-
linear inhomogeneous equation represented by Eq.
(32a). However, the exact analytic solution is not
available. Instead of a numerical integration of Eq.
(32a) for a two-pulse sequence we evaluate analyti-
cally the anharmonic oscillator model by making an
approximation in the following manner. Assuming

I

that the pulse widths are short but finite so that the
nonlinear term in Eq. (32a), p, (S('S, can be neglected
during the applied pulses, the solution during the
pulses is given by Eq. (22a) which is used as the ini-

tial condition to the exact solution, Eq. (33), between
and after the applied pulses. This approximation cor-
responds to that the nonlinearity is turned off during
the short pulses. The expression for the voltage
response corresponding to the echo which is nonzero

'near t =mr (m =2, 3, 4, . . . ) is given by

yaAD(0)m(d)e'"80 r(t ) IIUO(t mv)
Vjtj =i™

16m2p(1+P2)

82m fax

x dtt ~ d80 2isn8c o'sit do)GR(a&)e '"" 'e [e "'8(4)g)J (rt) —i8242g2J I(rt)]

where
(36a)

& y 28202cos2g
(g)

p' 0 (82 212g2 [e—2l'v(1 e 2r(t v—)) —
(m I ) (I e

—2I'v) ] +82 g2g2 (I e 2r(t v—))]-m, 2() 2 2rn(1 2) 1 1 1

g; = sin(cod;/2)/(0th, ./2) (36c)

p, ( y ('802 02 cos2t)

2'~2p2nr I+p'

x(1 e
—2r(!—v))m —1 (37)

The mr echoes decay as e '"" ' at 2I'(t —r) )) 1.
We shall discuss the transition from the small-

signal limit represented by Eq. (35) to the large-signal
regime confining ourselves to the case of m = 2. It
can be easily shown that Eq. (36a) reduces to Eq.

Here, J (rt) is the mth-order Bessel function of the
first kind.

Multiple two-pulse echoes at t = m 7

(m = 2, 3, 4, . . . ) arise naturally out of the anhar-
monic oscillator model as is noted in Ref. 1. Expand-
ing Eq. (36a) to lowest order in rt we find

y(t) im —1 m —18m —18m82me 2r(t —v)-

(36d)

I

(35) to lowest order in p, or rt In the la. rge signal re-
gime, however, the higher-order terms in q may con-
tribute to the 2v. echo. Because of the nature of the

Bessel function and the additional factor e in

Eq. (36a), one should expect both the 8 and r
dependence to be weaker at large q. Stokka and
Fossheim" proposed an approximate analytic expres-
sion for the 2~ echo just above the low signal limit in

accordance with the above argument. Their assump-
tion is that the buildup and decay factors are given by
(I —e '"')" and e "+"'"', respectively, with It ( 1.
In the small-signal limit both factors reduce to those
in Eq. (35) for I = 1. Similar consistent modification
can be brought about to the dependence on the rf
and static magnetic fields and the prefactors

t

v(t) ( n/4r)"(i "8) (—;8)1+.CK P, g~pnr(I +p2)»2
I

f'ra,
' '

fra2
x d G ( )e itv(t —2v) e -—I e I

' 1+2@

Bo e2(1+v) —(1+v)I'v( I
—21'v) t&~1 —e

(38)

In order to test whether or not the analytic expres-
sion is a good approximation to Eq. (36a) for the 2r
echo just above the low signal limit, we compare the
2r dependence of the echo amplitude in Eq. (36a)
obtained through numerical computation with that of
Eq. (38) in Fig. 3. In Fig. 3 solid curves and closed
circles represent Eqs. (36a) and (38), respectively.

I

The comparison at several power levels shows that
the approximate expression, Eq. (38), is quite ap-

propriate in dealing with the large-signal effect except
at the maximum power level, 20 dB. Heret, 0 dB cor-
responds to the power level at which the central
strain amplitude in the excitation spectrum at the
trailing edge of each applied pulses is equal to
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0.5
(0) 20 dB

3 x 10 '. lt is noted that above the maximum
power level shown in this figure, Eq. (36a) shows an

oscillatory behavior against 27 due to the nature of
the Bessel function as observed in piezoelectric
powders. ' '

It can be readily shown that three pulse echoes oc-
cur at t = T+pr (p = I, 2, 3, . . . ) for a three-pulse
sequence when a similar procedure is repeated for the
third pulse.

0
III. EXPERIMENTAL PROCEDURE

o

b 0 =0.82
I0 0,0 0
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FIG. 3. (a)—(d) Comparison of the numerical computa-
tion of Eq. (36a) (open circles) with a conventional analytic
formula for large-signal regime represented by Eq. (38)
(solid curves). 0 dB corresponds to the power level at which
the strain amplitude is 3 & 10 . The decay constant
I '=80 p,s is used.

Metal powders of Al, Sn, Nb, and Cu used in the
experiment were commercial ones and their purity
ranged from 99,9% to 99.99%. All these powders
were in the normal conducting state under the exper-
imental condition described below. Type-II supercon-
ducting powder of V3Si was obtained by grinding the
bulk specimen which was prepared by arc melting of
stoichiometric V and Si. All these specimens were
washed and(or etched, and sized using standard
mesh sieves. The sizes of the powder particles were
chosen such that those particles had fundamental res-
onance frequencies of 15—45 MHz. Since even
etched powder particles had irregular shapes, the
mechanical vibration mode was considered to be very
complex. The powder samples consisting of 10'—10
particles were sealed, except for the case of measure-
ments in He atmosphere, in Pyrex glass ampoules in a
vacuum of 10 Torr after being outgased at 100'C
for Sn and at 400—500'C for other powders for
20—30 h. The dimension of the glass ampoule was 1

cm in inner diameter and 2—3 cm in height.
A block diagram of the measuring circuits is shown

in Fig. 4. rf pulses with carrier frequencies 10—100
MHz were applied to a sample with an rf coil. A

variable capacitor was used to achieve the 4C circuit
resonance. The pulses were derived from two pulse
generators (Matec 6600), whose relative pulse ampli-
tudes, widths, and timing were independently adjust-
ed. The maximum strength of the rf magnetic field
was estimated to be 100 G.

Static magnetic fields were applied to the sample by
using 45- and 125-kG superconducting magnets.
Their field inhomogeneity in the sample was less
than 1%. Most results were obtained at 4.2 K.
Higher temperatures were obtained by controlling the
current of a heater wound around the glass ampoule
and measured with Au(0. 03 at. '/o Fe)-Pt thermocou-
ple attached to the bottom of the ampoule. In this
case special care was taken to ensure therma) equili-
brium of the sample and the thermometer.

IV. EXPERIMENTAL RESULTS

Two pulse echoes could be observed in powders of
normal conducting Al, Sn, and Nb, and type-II su-



22 DYNAMIC POLARIZATION ECHOES IN METALLIC POWDERS 5101
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FIG. 4. A simplified block diagram for the echo measurements. The rf amplitudes B& and 82, and the widths 5,
&

and 52 of
the two pulses are independently variable with two independent rf pulse generators and attenuators.

perconducting V3Si in the mixed state. No echo in
Cu powder was observed in static fields up to 45 kG,
frequencies 10—45 MHz, and at 4.2 K. This results
from the shape of the particles but not from the ma-
terial itself. An etched Cu particle was observed with
a microscope to be composed of several sma11 parti-
cles sticking to each other firmly. In such a powder
mechanical oscillation is strongly damped at the
boundaries between sticking small particles and con-
sequently no echo was formed. Pacult et al. ' and
Kupca and Searle" observed strong two-pulse echoes
in good shaped Cu powders with the same order of
dimensions as ours.

Weak three-pulse echoes were observed in Al, Sn,
Nb, and V3Si powders. The relationship T& = —, T2

was barely ensured only in Nb powders. Kupca and
Searle" have reported the relationship holds for Al,
Cu, and Ni powders at 4.2 and 77 K. In this paper
we report two-pulse echoes only.

A. rf pulse interval dependence

The two-pulse echo amplitude e2(2r) as a function
of twice the rf pulse separation, 2v, is shown for Nb
powder in Fig. 5; The buildup and decay behavior
was observed in all materials measured in the present
work. Dashed curve is the small-signal limit expect-
ed from Eq. (35) fitted to agree with experiment at
the position where the echo amplitude has a max-
imum. As expected from the anharmonic oscillator
model the echo amplitude builds up from zero at
T =0 and has a maximum before decreasing ex-
ponentially at large r The deca. y constant T& =1/I'
obtained from the data at large v is 60 p, s, whereas
the dashed curve is obtained with T2 = 49 JM, s. In
general, the experimental results show that the build-

up time constant is shorter and often much shorter
than the decay time constant in contrast to the theory

which predicts that both time constants are the same
in the small-signal limit. This might be the reason
why early workers did not notice seriously the non-
monotonic decay behavior, although brief description
can be found in several literatures. '" The difference
in buildup and decay- time constants arises from at
least two causes. (i) The powder sample is expected
to be characterized by more than one value of decay
constant I as discussed before, "since the many dif-
ferent types of modes contributing to the echo have
different I"s. For small ~ the modes with the largest
I' dominate which gives a fast buildup. The decay
behavior for large 7 is a measure of the I of the least
damped modes. The dash-dot curve is obtained by

I I I I
I

I I I I I I I I I
I I I I I

I.O—

~08- ]

0.6 -)

Nb
74-88 pm
28,MHz

hl = h2 1.25ys
45 k.G
0 =60

4.2 K

IO Torr

0.2-

0 i i & i I

0 50
I . I I I I I I I I I I I I

l00 l50 200
2 ~ (ys)

FIG. 5. Dependence of two-pulse echo amplitude e2(2T)
on twice the pulse separation, 2~, in Nb powder. The. scale
of the ordinate is arbitrary. The dashed curve corresponds
to Eq. (35) fitted at the maximum of the echo amplitude.
The dash-dot curve is obtained by assuming a Maxwellian
distribution of, I"'s, Eq. (39), and the small-signal limit. The
solid curve corresponds to Eq. (38) fitted by varying I and p.
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assuming Maxwellian distribution of I"s of the form

Gr(r) = [(r —r, )/r, ]'exp( —[(r—r, )/r, )'/2}

(39)

and the small signal limit with I o' =82 p.s and

I, '=120 p, s. The fit is reasonably good within an
experimental error. (ii) Another possible cause is a

large-signal effect. As will be described in Secs. IV 8
and C the small-signal limit is quite difficult to obtain
experimentally even in the lowest attainable rf power.
The solid curve in Fig. 5 is obtained by fitting Eq.
(38) to the data with I ' =53 ps and v=0.9. Possi-
ble 'distribution in I" and v still remain in the large-
signal regime as well. As will be shown in Sec. IVE
different modes (transverse and longitudinal) contri-
bute to the echo formation and therefore there is no
reason to believe that they have the same I and/or
v.

In the large-signal regime multiple echoes, e~(mr),
are observed at times t = m r(m = 3, 4, . . . ) in addi-
tion to the echo at t = 2~. The decay behavior of the
3v echo in addition to the 27 echo in Nb powder is
sho~n as a function of t —7 in Fig. 6, where t is the
time at which the echo is observed (t = mr). As ex-
pected from Eq. (37) the mr echo decays as e '""
when 2r(r —r) )) I, where I' is the same for all m.

The buildup and decay behaviors shown in Figs. 5

and 6 are the conclusive evidence for the anharmonic
oscillator system.

B. rf pulse amplitude dependence

According to Eq. (35), when B~ = B~ = B the 2r
echo amplitude should vary as B' in the small-signal
limit, %'e show the rf power dependence obtained in

Nb powder at a fixed v in Fig, 7. In all the samples
measured in the present study e&(2r) did not show
B' dependence; i.e., the small-signal limit was not
reached even at the lowest attainable rf power levels,
We can expect from Eq. (38) that eq(2r ) varies as
B&"B&+"=B'+'" when B[=-Bq=B in the large-signa1

regime, where v(~ 1) is dependent upon the rf pulse
amplitude. Fitting the data of Fig. 7 to B'+~' gives
0 & v & 0.5, whereas the analysis of the experiment
on the r dependence of eq(2r) gives 0.5 & v & 0.9 in

the same power levels. A similar discrepancy can be
seen in piezoelectric powders. '" The discrepancy
becomes small when the correction of the data taken
at a constant 7 is made taking into account that the
factor (1 —e ~r')"e "+"'"' is included in the echo
amplitude, where v is power dependent. The
discrepancy also comes from the simplified expres-
sion of the echo amplitude for the large-signal re-
gime. The expression in Eq. (38) is a good approxi-
mation to the results of numerical calculations only
in a limited range of rf power levels as shown in Fig.
3. Furthermore, in the large-signal regime the
theoretical predictions themselves of the anharmonic
oscillator model become model dependent, although
in the small-signal limit the predictions are unambi-
guous. Accordingly, in order to pinpoint the specific
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B = B [ Bp for Nb powder. The straight line corresponds
to B3.
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anharmonic oscillator model responsible for the echo
formation mechanism it is necessary to observe the
behavior in the large-signal limit. Piezoelectric
powders exhibited a complex but internally consistent
behavior of the large-signal limit. The large-signal
limit behavior was observed especially in the 7

dependence of the echo amplitudes and their shapes
in piezoelectric powders. Metallic powders exhibited
the onset of large-signal behavior but not the transi-
tion to the large-signal limit.
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C. Static magnetic field dependence
=OdB 8i =8p= -20d8

On the basis of Eq. (37) derived to lowest order in
the nonlinearity constant p„e~(2r) and e&(3r)
should vary as Bo and Bo, respectively, while in the
parametric field-mode interaction model they should
vary as Bo and Bo, respectively. In the rf pulse am-
plitude dependence these two models are undistin-
guishable since both models give the same rf pulse
amplitude dependence, e.g. , eq(2r) ~ B,B&, in the
small-signal limit. In Fig. 8 we show Bo dependence
of eq(2r) and eq(3r) for Nb powder. From this fig-
ure we conclude that the anharmonic oscillator
mechanism is responsible for the echo formation,
although there are deviations from the expected
small-signal behaviors at high static fields. Devia-
tions from the small-signal behaviors are more clearly
seen in Fig. 9, where the effect of rf pulse amplitude
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FKJ, 8. Dependence of e&(2v) and e~(3v ) on the static

magnetic field Bp for Nb powder. We take the minimum at-

tainable signal level above the noise level as 0 dB for both
e&(2v ) and e&(3v ). Therefore the relative magnitudes of
e~(2v ) and e~(3~) are not comparable with each other. The
straight lines for e&(2T) and e&(3~), respectively, corre-

spond to Bp and Bp expected from lowest order in the non-

linearity constant.
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FKJ, 9. Dependence of e~(27 ) on Bo for Al powder at
different rf powder levels. 0 dB correspond to 10~ G of the
rf magnetic field amplitude. The straight lines of Bo are ex-
pected from the small-signal limit.

1' = 2l'„/(1+ v) (40)

The damping of mechanical oscillation caused by con-
duction electrons increases with Bp. The magnetic-
field-independent background is due to mode conver-
sion, phonon scattering, interaction with crystalline
defects or impurities, etc. , in particles. Measure-
ments of the damping constant are discussed in Sec.
IVF. The parameter v shown in Fig. 10(c) is a mea-

on the Bo dependence is shown for Al powder. It
was reported by Meredith et al. " that the amplitude
of electromagnetically excited oscillation in Nb and
Sn crystals were linearly dependent upon the static
magnetic field up to 100 kG if corrected for absorp-
tion due to the static field. The amplitude could be
large under the present resonance condition with high
mechanical quality factors of the order of 104. We
shall analyze the data by assuming the large-signal ef-
fect represented by Eq. (38) taking into account that
I" and v are dependent upon Bo. In Fig. 10 we show

ep(2T), epp, 1, and v as a function of Bp up to 120
kG. Here, the echo amplitude corrected for the
damping, eq(), is obtained by extrapolating the v

dependence of eq(2r) at 21"r )) 1 back to r =0 and
1 and v are obtained from the fitting of Eq. (38) to
the r dependence of eq(2r) obtained at various con-
stant Bp's. The dependence of eqp [shown by open
circles in Fig. 10(a)1 on Bp deviates from the small-

signal behavior Bp4 (shown by the solid line). The
open circles in Fig. 10(b) show the damping constant
1' obtained from the fitting of Eq. (38) and the closed
circles are the apparent damping constant I & ob-
tained at 2I & v && 1. The two damping constants
have the relationship
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sure of the large-signa'1 effect. The increase of v with
increasing Bp indicates that the large-signal effect is
suppressed at higher fields. The oscillation amplitude
is proportional to Bp/I' as given by Eq. (22a). Ac-
cording to the result in Fig. 10(b) Bp/I' tends to de-
crease at high fields and consequently the large-signal
effect is suppressed. In order to examine whether or
not the deviation of ppp in Fig. 10(a) from Bp4 depen-
dence is due to the large-signal effect, we compare in

Fig. 11 eqp with the formula for the large-signal re-

FIG. 10. (a) Dependence of e&(2r) and e&p on Bp. For
determination of e&p see text. The straight line shows Bp.
{b) Dependence of the decay constant I „(closed circles)
and I (open circles) on Bp. For determination of I z and I

see text. Solid curve is obtained by adding two parts [field-
dependent (& Bp ) and field-independent parts]. (c) Depen-
dence of the large-signal parameter t obtained from fitting
Eq. {38) to ep(27 ) data on Bp.

Here, we used 1 and v in Figs. 10(b) and 10(c),
respectively, c4/cq = 100,"0 = (2rr)25 MHz,
B =100 6, p =8.6 glcm', and d =40 p, m. The coef-
ficient a includes the circuit response function and
the constants which are comparatively insensitive to
the static field dependent v. The coefficient o. does
not appear explicitly in this figure where eqp(expt)
and eqp(cate) are plotted in dB units (in a log-log
grid). The linear relationship (slope I in Fig. 11) in-

dicates that the echo amplitudes shown in Fig. 10(a)
are consistently explained by Eqs. (38) or (41) with
the large-signal-effect parameter v and the damping
constant 1 both of which are dependent upon the
static magnetic field Bp.

Kupca and Searle" observed for all the samples
they measured that eq(2r) ~ Bp and eq(2r) tends to
saturate at high fields similarly to the closed circles in

Fig. 10(a). They reserved the definite conclusion for
the nonlinearity responsible for the echo formation,
since the static field dependences deviated from the
simple formulas, e.g. , eq(2r) ~ Bp, derived from the
anharmonic oscillator theory in the lowest-order ap-
proximation, i.e., in the small-signal limit.
Vodop'yanov er al. '~ obtained eq(2r) ~ Bp in their
theoretical calculation. Although they obtained a
good fitting to the data of Ref. 11 by taking into ac-
count of the Bp dependence of I, they missed the
role of the static magnetic field in the electromagnetic
detection of the echoes. Since the strains due to
echoes are detected through the static magnetic field
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as described in Sec. II, it is necessary to multiply by
another ao in order to represent the detected echo
signal amplitude.

In concluding the subsection the following can be
noted: (i) The static magnetic field dependence de-
finitely supports the anharmonic oscillator mechan-
ism; and (ii) the deviation from the small-signal
behavior in the static magnetic fields is consistently
explained by the large-signal behavior expressed by
Eq. (38) with the static field dependent u and I'.

D. Temperature dependence

On the basis of Eq. (35) the temperature depen-
dence of the 27 echo amplitude is determined by that
of P represented by Eq. (lc) through op and that of
I'. Since the integral over ru in Eq. (35) gives a term
proportional to I, it is expected that e2oI' is propor-
tional to (1+P2) '. The factor (1+P2) ' 2 is pro-
portional to the electromagnetic excitation efficiency
as given by Eq. (22a) and was obtained by Gaerttner
et a/. for Al. In Fig. 12 we show e2ol as a function
of temperature. The solid curve for Al is obtained
from the data of Gaerttner et al. We do not have
the information of Nb. We conclude that the tem-
perature dependence of the echo amplitude is mainly
determined by that of 38 and I'. We shall discuss the
temperature dependence of 1 in Sec. IV F.

surfaces of bulk specimens, we may obtain informa-
tion on the oscillation modes excited in powders by
varying the echo amplitudes with the angle between
the directions of rf and static magnetic fields P. The
excited oscillation mode has a longitudinal or
transverse component when the value of 0 in Eq.
(17b) or 0, in Eq. (17d) is not zero. When the
thickness of the platelet corresponds to the resonance
condition for the longitudinal mode, the dependence
of the echo amplitude on the angle P when averaged
over the distribution of 8 and $ is given by

rs 2e
b~(p) = „d@& d804sin&cos40

4~ &o ~o

=,p, sin Q +—„sin'Q cos'Q + —cos4$, (42a)

where we assumed uniform distribution of 8 and $,
and only the fundamental mode oscillation. When the
thickness of the platelet corresponds to the resonance
condition for the transverse mode, the P dependence
is given by

92m rkke'

b, (p) =
&

d@
&

dr)0, sinHcos I)
4~ o o

sin p+ —,sin'icos'p+ 3, 5
cos Q . (42b)

We assume that the detected echo consists of the
longitudinal and transverse components

e, (2r) = aib((y) +q, b, (y) (43)

E. Dependence on angle p between rf
and static magnetic fields

It is sho~n in Sec. II that longitudinal- and
transverse-acoustic waves can be produced depending
on the orientation of Bo relative to the shielding
current at the metal suface. Although the geometry
of the powders is complex compared to the specified

where coefficients ai and a, include excitation effi-
ciency and particle numbers for longitudinal and
transverse modes, respectively. In Fig. 13 we show
e2(2r) as a function of Q at 18 and 30 MHz for Nb
powder. The dashed curve shows Eq. (43) with

a~/a, =2.29 for 18 MHz. The solid curve shows Eq.
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FIG. 12. Temperature dependence of e2oI . Solid curve
for Al is obtained from Ref. 26. The dashed curve for Nb is

drawn as a guide for the eye.
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FIG. 13. Dependence of e2(27) on the angle between rf
and static magnetic field, P, for Nb powder at 18 ( ~ ) and
30 MHz (0). Dashed curve: Eq. (43) with ai/a, =2.29.
Solid curve: Eq. (43) with ai/a, = 1.22. Dash-dot curve:
Eq. (42a). Dotted curve: Eq. (42b),
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(43) with al/a, =1.22 for 30 MHz. The dash-dot and
dotted curves, respectively, show bl(P) and b, (g). It
is noted that the experimental results cannot be ex-
plained by only a single mode oscillation, bl(Q) or
b, (g). We conclude from this analysis that both
longitudinal and transverse modes contribute to the
echo signal, There is no reason to believe that only a
single mode contributes to the echo formation in ir-

regularly shaped powders.

HELIUM PRESSURE

200 400
l

'
l

Nb

74- I04 pm

6[= hq = 2.5 ps
45 kG
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4. 2 K

p (Torr)
600

I

800
I

F. Measurement of damping constant I' = Tz ' 36 MHz

l. Effect of atmospheric pressure

When the powders are immersed in gaseous medi-
um the energy is lost through the surfaces. In Fig.
14 we show the damping constant I of Nb powder as
a function of helium gas pressure at 26 and 36 MHz.
The energy loss through the surface of the oscillating
particle per unit time is given by

1 dU = —2I
U dt

(44)

The decay constant I = T&
' of the two-pulse

echoes is associated with decay of the amplitude of
an individual oscillator whose energy decays as 21.
We assumed in the calculation presented in Sec. II
that the particles are independent of each other and
consequently there is no irreversible dephasing of
particles. The assumption corresponds to the lifetime
limited regime of conventional spin echoes
(T&=2T~). We ensured that in Nb powders the de-

cay time T~ of the three-pulse echo is equal to —, T&

for dynamic echoes. Kupca and Searle" have found
that the relationship T~ = —, T~ holds for Al, Cu, and

Ni powders at 4.2 and 77 K.
In this subsection we shall discuss the origin of the

energy loss from a given mode of an individual oscil-
lating particle. We have determined I from the de-

cay of the two-pulse echo taking into account of the
large-signal effect represented by Eq. (38). The oscil-
lating energy is lost through internal frictions or
through processes in which energy is transmitted
through the surface of the particle to the surrounding
medium. In the following discussion we shall see
various experimental conditions which influence I .

26 MHz

since Z, )) Zg. The acoustic impedance of He gas,
Zg, at pressure p Torr is given by the product of the
gas density, pg, and the sound velocity, wg,

Zg = pgug = (6.43 x 10 p/T) (yRT/M)'~

= 0.183p (g/s cmz) (46)

where T =4.2 K is the temperature, y =1.66 is the
ratio of the specific heat at constant pressure to that
at constant volume for He gas, R =8.31&10'
erg/moldeg is the gas constant, and M =4.0 g is the
molecular weight of He. From the slopes of the
straight lines -in Fig. 14 we obtain Z, = 1.5 x 10
g/scm for Nb. Using p =8.6 g/cm' we obtain an ef-
fective sound velocity v ——1.8 x 10' cm/s. This velo-
city is in good agreement with known velocities in Nb
bulk material. " The intercept on the ordinate is a
measure of the intrinsic loss rate I;.

I I I I I I I I I I I I I I

50 IOO I50
ACOUSTIC I MPEDANCE Zg ( g is cm~ j

FIG. 14. Decay constant I = T&
' as functions of acoustic

independence Zg and pressure p of He gas at 4.2 K in which
Nb powder is immersed.

= (2moZ /mZ, ) (45)

where U is the energy of a given oscillation mode.
The damping rate I is written as the sum of an in-
trinsic term, I;, and a loss term of energy transmis-
sion from a particle to gas, I g, i.e., I" = I";+Ig. The
damping rate I g can be expressed by using the acous-
tic impedances Z, (=pv) and Z~ of the solid and gas,
respectively:

2I'g = (o)o/2' ) [4Z,Zg/(Z, + Zg )~]

2. Effect offrequency

As indicated in Eq. (45) the energy loss to the He
gas varies linearly with frequency, since the oscilla-
tion loses its energy every time it hits the particle
surface. The intrinsic loss was measured in a vacu-
um. The frequency dependence of the intrinsic loss
rate for Nb powder measured in a vacuum of 10
Torr is shown in Fig. 15. The intrinsic loss varies
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FIG. 15. Dependence of I' on the carrier frequency coo/2rr

for Nb powder in vacuum. The solid line has a slope of 2.

with tun. Since theoretical predictions in Eqs. (11c)
and (15c) indicate that the electronic loss varies with

~0, we find from Fig. 15 that the nonelectronic loss
I'a in Eqs. (11b) and (15b) varies with «rc2 as well.

STATIC MAGNETIC F, IELD 8p ( k G &

FIG. 16. Dependence of I' on 80 for V3Si powder. Open
circles are obtained by fitting the experimental data of
e2(2~) to Eq. (38); Solid curve is the sum of the field-
independent term, I 0, and the term which increases with
B02.

4. Effect of temperature

3. Effect of static magnetic field

I =I 0+c8p (47)

with ID=0.90x10 s ' and e =2.2x10 G s ' in
fairly good agreement with the value calculated from
Eq. (1lc), 7 x 10 ' 6 2s '. The damping constant
for type-II superconducting V3Si powder is shown in
Fig. 16. Since V3Si has a lower critical field H, i

= 1

kG and an upper critical field H, 2= 300 kG at 4.2
K,"the magnetic flux density inside V3Si powder
under the present experimental condition with exter-
nal field of 20—120 kG can'be regarded as the same
as that in vacuum, 80. The experimental data of I"

shown in Fig. 16 are also expressed by Eq. (47) with
I 0 = 1.20 x 10 s ' and c = 3.08 x 10 G, s '.

The damping of sound vibration (acoustic attenua-
tion) due to conduction electrons is affected by the
static magnetic field as discussed in Sec. II A. Based
upon Eqs. (llc) and (15c) the intrinsic loss due to
the conduction electrons varies quadratically with the
static field. In Fig. 10(b) we have shown the damp-
ing constant I" with open circles for Nb powder as a
function of Bc. The solid curve in Fig. 10(b) shows

0
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0 At
I04- I 24 y l7t

3l MHz

10 Torr
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~ ~~0

I 00
TEMPERATURE ( K )

I

200

Nb
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FIG. 17. Temperature dependence of the decay constant
I for Al and Nb powders.

Temperature dependences of the damping constant
for Al and Nb powders are shown in Fig. 17. The
internal loss mechanisms consist of temperature-
independent part, e.g. , mode conversion, interaction
with crystalline defects or impurities, and
temperature-dependent part which is due to thermal
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phonons and conduction electrons. Although the
separation of these factors is outside the purpose of
the present paper, the increase of I at low tempera-
tures for Al may be related to the fact that the ultra-
sonic attenuation is proportional to the conductivity
of metals.

We have shown the experimental results of the
damping constant under various experimental condi-
tions. The decay constant of the two-pulse echoes is

associated with decay of the amplitude of an indivi-
dual oscillator. The energy loss from a given mode
of a particle is caused by internal loss due to mode
conversion, interaction with crystalline imperfections,
scattering of thermal phonons and conduction elec-
trons, and by transmission of oscillating energy to the
surrounding gas through the particle surface.

V. CONCLUSIONS

In Sec. II we have shown linear electromagnetic ex-
citation of acoustic oscillation in a metal particle and
formation of polarization echoes based on an anhar-
monic oscillation model both in the small-signal limit
and in the large-signal regime. The dynamic polariza-
tion echoes observed in metallic powders have prop-
.erties quite similar to those observed in piezoelectric
powders at VHF range. " All the experimental
results presented in Sec. IV showed that the polariza-
tion echoes in normal- and superconducting-metal
powders are caused by an anharmonic oscillator
mechanism but not by a parametric field-mode in-
teraction mechanism. It was quite difficult to take
data showing the small-signal limit behavior even at
the lowest applied pulse amplitudes consistent with
adequate signal to noise. Most of the data are in the
large-signal regime and various factors which influ-
ence the echo formation are consistently explained by
the calculation in the large-signal regime.

The main conclusions obtained from the present

experimental study are summarized as follows: (i)
The buildup and decay behaviors and the static mag-
netic field effect clearly showed that the echoes are
caused by the anharmonic oscillator mechanism; (ii)
rf and static magnetic field dependences of the echo
amplitude are well explained by the large-signal
behavior; (iii) temperature dependence of the echo
amplitude is mainly determined by temperature-
dependent damping constant and linear electromag-
netic excitation efficiency; (iv) dependence of the
echo amplitude on the angle between the directions
of rf and static magnetic fields revealed that both
longitudinal and transverse modes contribute to the
echo signal and this is naturally expected for irregu-
larly shaped powders; and (v) damping constant of
the two-pulse echoes is associated with decay of the
amplitude of an individual oscillator. The oscillating
particle loses its energy through processes internal to
the particle or through processes in which energy is
transmitted to the surrounding gaseous medium.
The internal loss mechanism includes mode conver-
sion at the particle surface, interaction with crystal-
line imperfections, and scattering with thermal pho-
nons and conduction electrons. Measurement made
in He gas at various pressure is in good agreement
with a calculation of the loss associated with the ener-
gy transmission between media of different acoustic
impedances.
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