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Electronic structure of the Tl+ center in KCl. II. Relation to the D band
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It has been shown that the D band in alkali halides containing s' ion (Tl+, In+, Ga+, Sn'+) is composed of three

bands (named D „D„D,in the order of increasing energy). Of the three bands, the D, band is the weakest whereas

the D, band is the strongest. In KC1:Tl+, the D, band is observed at about 6.72 eV whereas the D, band is observed

at about 7.23 eV. A theoretical calculation using molecular orbitals has been made on the charge-transfer-type

transition (e )'~(e, )'(t,'„) in a (T1C1,)' complex to clarify the origin of the D band in KC1:Tl+. The configuration

interaction with (a,
'

)(t,'„) configuration responsible for the A, 8, and C bands is taken into account in the

calculation. Three absorption bands are theoretically derived; one is located at 7.74 eV, the others at 7.28 and 6.71

eV. It is shown that the latter two bands correspond well to the observed D, and D, bands, respectively. It is also

demonstrated that the theoretically derived 7.74-eV band is not observed experimentally being hidden under the

much stronger exciton band. The present calculation also gives a satisfactory agreement with experiment for the 2
and C band positions.

I. INTRODUCTION

In addition to the &, B, and C bands, an absorp-
tion band called D band has been observed in the
spectral region between the C band and exciton
band in various alkali halides doped with s' ions
(Tl', In', Ga', Sn", and Pb").' " It is well es-
tablished that the 4, B, and C bands arise from
electronic transition associated with s —sP transi-
tion in the s' ions, while the accurate origin of the
D band is unknown. So far, two distinct assign-
ments have been suggested for the D band. One
assignment is that the D band arises from the ex-
citon perturbed by the presence of the s' ion,
namely, electron transfer from a halide ion to an
alkali ion in the vicinity of s' ion (Refs. 3 and 4)
(perturbed exciton model), and the other is that the
D band arises from electron transfer from ligand
halide ions to central s' ion in a MX, (M, s' ion;
X, halide ion) quasimolecule" " (charge-transfer
model). The charge-transfer model seems to be
more reasonable, but it has not been established
quantitatively from a theoretical point of view.

The present paper is concerned with the assign-
ment of the D band. This work was originally
undertaken in an effort to explain the origins of
all the&, B, C, and D bands consistently. Here
we first investigate the optical properties of the
D band in various s'-ion —doped alkali halides
experimentally, especially on its fine structure,
and show the character istics common to various
alkali halides. Next, taking into account the con-
figuration interaction with the A, B, and C bands,
we make a calculation on the electronic state re-

sponsible for the D band in KCl: Tl'.
In a previous paper" (referred to as I here-

after), we made a molecular orbital (MO) calcula-
tion and clarified the electronic states responsible
fortheA, B, and C bands in KCl: Tl+ quantitative-
ly. The result of the MO calculation is used in the
present work. Although we are here concerned
with KCI: Tl' (KCl: Tl' is the only case for which
theoretical calculations have been carried out),
characteristics of our theoretically-derived result
may be common to various s'-ion-doped crystals.

II. ABSORPTION SPECTRA OF THE D BAND

The absorption spectra shown in this paper
were taken using a Shimadzu spectrophotometer
MPS-50L and a McPherson 0.3-meter scanning
monochromator Model 218 for the measurements
of ultraviolet and vacuum ultraviolet regions,
respectively. Single crystals of s'-ion-doped
alkali halides were grown by the Kyropoulos
method, whereas single crystals of undoped KI
and KCl by the Harshaw Chemical Company.

Three components called Dy D2 and D, bands
are observed in the D band of Kl: Sn"at 15 K as
seen in Fig. 1." These components are close to
each other, and, at a high temperature such as
77 K, the D, and D, bands were found but the D3
band was hidden under the broad exciton band.
Figure 2 shows the absorption spectrum of KCl: Sn"
at 77 K, where two components (D, and D, ) are
observed in the D band. The structure of the D
band of KCl: Sn'+ is quite similar to that of KI: Sn"
which was taken at the same 77 K.
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TABLE I. Matrix elements between the multiplets T &„ derived from (e~)3 (t&*„) and (a&~) (t&*„) configurations. These
are quoted from Honma (Ref. 18) except three diagonal elements in the upper block associated with the (e~) (t&*„) con-
figuration. The three are modified from the Honma's matrix elements and partially expressed with the one electron
energy difference.

I ap, r&'„&

I ap, r&'„&

—.'P'„,-&„.) -&„. -r &3/s
1-X„»-4/+ W

I an, r,'„&

ePa/4-

I1,r(„)

-2(&u» -Ev») +E&»

-E„+Sg

2 (zz I e'/r„ I zs&

-(«
I s'/r~2I «&

I an, r,'„&
-2(E„»-X„)-K„»

j.-X„»+ 4/+ W(

-&uzIs'/r~2 I sz)

I 1, r,'„& 1-G —2g + Wp

The ground-state configuration (e,)' produces a
'A~ state in an octahedral crystal field, whereas
the excited-state configuration (e,)' (t,*„) three
states '7'y Ty and 'T2„. The transition from
the 'A~ state to the '7',„ is dipole-allowed whereas
the transitions to the 'T,„and 'T,„states are spin-
orbit allowed. Honma has investigated the elec-
tronic states of the (e, )s (t,*„)configuration theo-
retically. " He denoted the singlet state 'T,„by
Ig, & whereas he classified the triplet states in
terms of the irreducible representations of the
octahedral double group O~. Of the triplet states,
the state contributing to the allowed transition is
represented by I3n, T,'„) for the 'T, „andby ~3p, T,'„)
for the 'T2„. In Table I are shown the Hamiltonian
matrix elements" for the IP,&, I3n, T,'„& and

~
3I6, T,'„)states of the (e,)' (t,*„)configuration to-

gether with the matrix elements for the 'T,„(de-
noted by Ip,&) and 'T,„(denoted by Il, T,'„)) states
of the (a») (t,*„)configuration. In the table we
have taken into account the configuration interac-
tion between the (ez)' (t,*„)and (a») (t,*„).

Among parameters appearing in Table I, the
exchange energy G and spin-orbit energy p were
calculated in I; namely, G =0.32 eV and &=0.46
eV. The remaining parameters, Coulomb inte-
grals F„,and F„„and exchange integrals K„,and

K„,are defined as follows:

E„,= (u' Ie'/r„ Iz'),

z„,= (e Ie'/r» Iz'),

x„,= &uz Ie'/r„ Izu&,

If'„, = (vz Ie'/r „Iz v&,

where round brackets denote Coulomb integrals. ,
e.g. , (u' Ie'/r»

~

z') is the same as (uz Ie'/r» Iuz).
In the matrix elements of Table I appear four
orbitals: z, s, u, and v. The z means a z-like
MOof the t,*„, and the s means the a,*, MO; namely,

Iz&=c,(6P.)+- " (z, -z,)+" (x, +y, -x, -y, )

C4+
~2 (Ss —Ss),

X4
(2)

C2 C3
Is& cx(6s) +~6 zk +

~6 sa
6&3

where the coordinate system, notations of the
atomic wave functions, and values of the coef-
ficients c& and A., are described in I. The u and v
are basis orbitals of the e~. They are constructed
by the Cl 3P wave functions z,.:

u=, (2z +2z —z —z, —z~ —z )3 6 1 2 4 5

=1v —,(z, +z4 —z, —z,),2X

(3)

where the normalization constant X' is 0.974.
Using the method of intermediate neglecting of

differential overlap (INDO), "and ignoring two-
center Coulomb integrals in which the distance of
two centers is more than the next-nearest-neighbor
lattice distance, we obtain (in eV)

F„,—I'„,= +j8[c,(t,*„)]'[(z',Ie'/r» I6z') —(z', Ie'/r» I6z')]+4[c,(t,*„)]'(z',Ie'/r» Iz', )

—2[c,(t* )]'(z', Ie'/r„ I y', ) +4[c4(t,*„)]'(z', Ie'/r» Is', )] = 1.18, (4)
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2'„,=;; 8[c,(f,*„)](z,6p, le'/r„l6p, z,)+4 ','" (z', Ie'/r»lz', )
2

+4,'" (z, z, ~e'/r
I z,z, & + ','" (z,», le'/r„

I r,z,
&)

= Z. o&, (5)

(6)

In the above estimation we used the following values of the one- and two-center integrals:
z'

(zs I&'jr» IGP'.) =4 84 (zl Ie' jr» IGP'. ) =8 89

(zll /r» I3'i) = I 5 (zs Ie /r» Iss) =6 49

(z', Ie'/r, a Iz', ) =11.97, (z,6p, le' jr,a IGP zs) =0.62, &Gp,z,
I
e'/r, Iz~Gp &= 0 01

(z,s, Ie'/r»I sszs) = 0.88, (z,Y,le'/r»
I y,z,) = 0.70, (GP, z,

l
e'/r»

I
Gsz, ) = 1.08,

which were calculated using the Slater-type atomic orbitals given in I. (Especially, for the two-center
integrals, we used Gaussian-type orbitals" in order to facilitate the calculation. ) The other quantities
appeared in the matrix elements are estimated (in eV) as

1
(Mz Ie'/r„ lzs) =

6 c,(t,*„)ca(t*,„)c,(a&*,)(Gpzzs le' jr„I6sz,) +8~2 fca(t,*„)]'ca(a»)(zsle'/r„ lzs)

(7)

+ ~ ca(t,*„)c,(t,*„)cs(a*„)(sasle'/r„ lz', )

+— [c,(t,*„)]sea(a»a')(sszs le'/r„ lz, s,) = —0.29,
1

(8)

2 2
(uz le'/r» lsz) ™ [c,(f,*„)]'ca(a»)(6P',Ie'/r» lz', ) — ~ [c,(t,*„)]' (caa,*a)(z', Ie'/r» I6P', )

+ ~ [ca(t,*„)]'ca(a,*,}(z',Ie'/r» Iz', ) — [cs(t,*„)]'ca(a,*,)(z', Ie'/r»
I
y', )

1

+
2 [c,(f,*„)]'ca(a,*,)(z's le'/r„ ls', )4 lu 2 1g 3

+
2 ca(f,*„)c,(t,*„)cs(a»)(zsss le'/r» ls,z,) = —0.58.1

l

(9)

Here, the values of non- overlap coefficients c,'s ap-
pearing in Table I of Iwere used in Eqs. (4), (8), and
(9). Using the above values, we diagonalize the 5 x 5
matrix of Table I. The eigenvalues and eigenvec-
tors obtained are shown in Table II, where the
eigenstates are denoted by A C Dl D2 and D3.
[The A and C states consist mainly of sT,„and 'T,„

components associated with the (a~, )(ta ) configura-
tion, respectively, and the D„D„and D, states
consists mainly of Tl Tl and 'T, „components
associated with the (e,)' (t,*„), respectively. ]

Next we calculate the momentum matrix elements
(g„xl p,.p*,. lg) and (g„xl Q, J&",.Ig) to try to estimate
the transition intensity, where p, is an x component

TABLE II. Calculated eigenvectors, energies E, and squares of matrix elements IPla (in
units of 10 a.u. ) of theA, C, D&, D&, andD3 states. Experimental data of energy E and
oscillator strengthf for theA, C, D&, D&, andD3 bands are also shown.

Theory Experiment
& (ev) I&l' & (ev)

D3
D2
D)
C
A

0.752
- 0.581
0.298

-0.082
-0.034

-0.658
0.692
0.287

-0.0 75
-0.029

-0.040
-0.405 .

0.748
-0.373
-0.367

-0.002
-0.043

0.313
0.917

-0.244

-0.010
-0.133

0.413
0.091
0.896

7.74
7.28
6.71
6.31
5.08

2.37
3.10
0.09
9.28
0.48

0.508
0.0804

7.23 ~ -0.22
6.72
6.36
5.03

Obtained from Wagner (Ref. 16).
~See Note added in p~oof.
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of momentum operator for the ith electron. lit&„x)
is the x-like basis of the i&1&,) state, and

l g) the
ground state, (e,)'(a~&)'. In I we obtained (in a.u. )

+&t-,'il[z&z&. ;«o, ll . (10)

Here //zzP; «P// is the Slater determinant which has
lxp) orbital of t,*„ in place of lup) orbital of e~ ap-
pearing in the closed-shell-type determinant
representing the ground state lS), and o. and
P indicate up and down spin states, respec-
tively. The momentum matrix element re-
garding the le&„x) state (in au. ) becomes

4 * Z&'»&) =-~» (xl»'ix&+Xa&xii*lx&

= ~6~, c,(t,*„)&6p„lj"Iz,)

+~8~. e4(tz*.) &sz It* Ized)

= -4'0.235,

where the two-center matrix element &6P„lj"lz, )
= -~0.092 a.u. and the intra-atomic matrix ele-
ment &s, lP" lz, ) =-i0.186 a.u. were used. Using
the above values, we can easily evaluate transition
intensities for the transitions from the ground
state to the A, C Dy D2 and D, eigenstates.
The square of the momentum matrix element lPl'
is shown in Table II.

IV. DISCUSSIPN

In Sec. III, we assumed the {e,)'- {e,)' (t,*„)tran-
sition as the origin of the D band in KCl: Tl, and
we made a calculation on this transition taking into
account the (a~~)'-(a&)(t~~) transition. It is found
from Table II that the theoretically derived ener-
gies of the A, C, D„and D, states in KCl: Tl'
are in good agreement with the experimentally ob-
served positions of the A, C, D„and D, bands,
respectively. It should be noted that the agree-
ment on the A and C bands is more satisfactory
than the case of the previous calculation made
in I (see Table III in I) in which only the (az)(t~~)
configuration was taken into account to understand
the A, J3, and C bands. As for the D, state, the
corresponding absorption band (D, band) has not
been observed experimentally. This is presum-
ably due to the fact that the exciton band peaking

On the other hand, lP„x) state is given as follows:

1 1
ly„x)=-~8llup;xpll-~8 l,lua;x~ll+~8ll~p; «pll

at 7.76 eV (Ref. 21) is close to the energy of the
D, state (i.e. , 7.74 eV). Therefore the D, band is
believed to be hidden by the much stronger exciton
band. "

The lPl' ratio of the C band to the D, band is
theoretically esti.mated to be 2.99 from Table II.
This value is close to the experimental value of
about 2.31, which was calculated as the ratio of
oscillator strengths of the observed C and D,
bands. The lPl' value of the theoretically derived
D, band is much smaller than those of other bands,
suggesting that the D, band is too weak to be ob-
served in a very lightly doped crystal. This is
consistent with the experimental result. (The
theoretical reason for the weak intensity of the D,
band is that, although each weight of the lg, ) and
lzl&~) components in the D, state is considerably
large as shown in Table II, they cancel each other
in the contribution to the momentum matrix ele-
ment. ) From the quantitative comparison between
the theoretical and experimental results, it is con-
cluded that the theoretically derived A, C, D„and
D, bands in KCl: Tl' agree with the experimentally
observed A, C, Dy, and Q, bands, respectively.
%e, however, have to point out the following two
points with regard to the present calculation.

The one point is the intensity ratio of the C band
to the A band. The calculated ratio becomes 19.2,
whereas the experimental ratio is 6.3. This dis-
crepancy is due to the smallness of the calculated
spin-orbit energy f, which was already noticed in
I. Another is the justification of the t,„ level. (In
the present calculation, the t,*„wave function
responsible for the A., 8, and C bands was used
for the D band. ) The t,*„orbital is Tl' 6P-like,
whereas the e, orbital is completely localized at
the Cl sites. Owing to such a character of the
t,*„and e, orbitals, the transition e, - f,*„appears
to stand o'n the charge-transfer model. There-
fore, to obtain more exact results, we have to
take into account a change of charge distribution
after the ejection of electron from the e, orbital
into the t,*„orbital and calculate self-consistently
the final state t,*„ in a redefined potential. The new

state is pos s ibly a 1ittle diffuse, and, strictly
speaking, the quantities appearing in Table I
should be re-examined. However, about a half
of the original t,„orbital, which is responsible
for the A, B, and C bands, consists of the Cl 3P
and 4s wave functions (see I); that is, the t,*„or-
bital extends into the ligand Cl ions considerably.
Therefore, we believe that the present calculation
is not so unreasonable.

As mentioned above, it has been clarified that
the D band in KCl: Tl'is composed of three bands,
D„D„and D„and that the weakest Dy band is
located at the lowest energy, the D, band is the
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strongest, and the relatively strong D, band is
located close to the exciton band. The character-
istics of the D band are similar to the case of the
D band observed in Kf:Sn" (see Fig. l) and are
partially similar to the cases of other alkali
halides doped with s' ions. Therefore, although
the detailed MO calculation has not been made,
it is suggested that the (e~)'- (e,)' (t,*„) transition
gives rise to the D band in not only KCl: Tl'but in
other alkali halides. In the following paragraph
we qualitatively show that the assignment of the D
band to such a charge-transfer transition is cer-
tainly applicable to the other s'-ion-doped alkali
halide s.

As shown in Figs. 1-4, the D-band position of
Tl'-doped potassium halides moves to lower
energy in going from KCl to KI, and the same is .

true for the D band of Sn"-doped potassium halides.
This agrees with our idea that the D band is at-
tributable to ligand- metal charge-transfer transi-
tion, since charge-transfer spectra, in general,
move to lower energies when halogen ligands are
varied from F to Cl to Br and to I around a
definite central (metal) ion because of the decrease
of optical electronegativity in going from F to
Cl to Br to I . Moreover, it is observed in
Figs. 1-4 that the D-band energy decreases in KI
crystals as the metal ion is varied from Tl' to
Sn". The same is true for KCl crystals. This de-
crease is expected for the charge-transfer band
because of the increasing ionization energy of
metal ion. It is noted that the D-band energy is
almost the same between KCl: In' and KCl: Tl' as
seen in Fig. 4. This is consistent with the above

WAVELENGTH ( nrn )
170 190 210

I
'

I
'

1

'
I

'
I

KCl: Tl'
20K

10

7.5
8

70 6.5 6.0
PHOTON ENERGY (eV)

idea because the ionization energy of In is almost
the same as that of Tl when compared with that of
Sn. Like this, the transition energy of the D band

varies with not only the ionization energy or oxi-
dation state of metal ion but the optical electro-
negativity of halide ion, suggesting that the D band
arises from the halide - metal charge-transfer
transition. Our present MQ calculation is based
on the extended Huckel method in which the ioniza
tion potential and oxidation state of metal and
halide ions are also taken into account. Therefore,
although the similar MO calculation (including the
configuration interaction) has not been carried out
forKCl: In', KCl: Sn ', KI:Tl+, and KI:Sn+, we
believe that the experimental data of Figs. 1-4 may
be quantitatively explained using the charge-trans-
fer model as the case of KCl: Tl'.

Note added in Proof. While this manuscript was
in press we tried to find the peak of the D band in
KCl: Tl . By the measurement of very lightly
doped crystal at 20 K, the peak of D, band was
clearly observed at 7.23 eV as shown in Fig. 5.

FIG. 5. Absorption spectrum of KC1:Tl' (crystal thick-
ness is 0.49 mm) at 20 K. I(": absorption coefficient.
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