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Model for handling the transmission problem in sticking at cold solid surfaces
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The sticking rate is calculated for a simple model Hamiltonian, which assumes a one-dimensional motion of the
incident gas atom together with a one- to three-dimensional phonon density of states. The gas-atom —phonon
interaction is of short range and treated in a localized basis set. After solving exactly for this short-range interaction
the localized wave functions are embedded into the continuum of scattering states. This embedding problem is
solved in an approximate way. The calculated sticking coefficient at zero kinetic energy of the incoming particle and
zero substrate temperature is unity for a two- and three-dimensional phonon. density of states, and finite between
zero and one for a one-dimensional phonon density of states. Many phonon events are found to dominate the
sticking process.

I. INTRODUCTION

A gas atom incident on a metal surface will ex-
change energy with the phonons. If the incident
gas atom loses enough of its kinetic energy, it
remains bound to the metal. The probability that
this will happen is called the sticking coefficient.
Consider first a simple classical model which
was solved twenty years ago. ' It consists of a
one-dimensional chain of metal atoms connected
by springs. The incident gas atom interacts with
the surface atom via the potential of a truncated
harmonic oscillator. If the sticking probability
is calculated in this model by solving the classi-
cal equations of motion, one finds that there is
a critical kinetic energy depending on the mass
ratio and the depth of the potential well, below
which the particle will stick with certainty,
whereas for larger kinetic energies it will be
reflected with certainty. More realistic poten-
tials and three-dimensional treatments give an-
alogous results. '

The classical mechanical model of Ref. 2 as-
sumes a harmonic substrate at temperature T,
=0 and a head-on collision of the gas atom with
a single surface atom, the interaction being a
short-range potential. Calculations of the ac-
commodation coefficient within this scheme give
good agreement with experimental results. The
sticking coefficient at zero kinetic energy has,
of course, not been measured yet.

Before turning now to quantum-mechanical cal-
culations it is important to understand the phy-
sical reason why in the classical models the gas
atom sticks with probability one at low kinetic
energies. The collision of the gas atom with the
surface atom leads to a local distortion of the
lattice, which is transmitted from one metal atom
to the neighboring one so that lattice waves are
set up which propagate away fromthe point of
impact, thus irreversibly removing kinetic en-

ergy from the gas atom.
Figure 1 illustrates how the problem looks

from a quantum-mechanical point. of view. In-
dicated here is the distribution of gas atom states
in energy space. We have a continuum of scatter-
ing states and discrete localized vibrational
states with possible resonances in the scattering
continuum. The gas-atom-phonon coupling is of
short range and will therefore occur from the
localized states and the resonances.

The quantum theory, which can be found in the
literature, is that developed by Lennard-Jones
and his collaborators. ' This is a one-phonon
theory treated in distorted-wave Born approxi-
mation (DWBA), which considers only the pertur-
bation of the gas-atom potential by the phonons.
The modification of the lattice vibrations is not
included in these theories and therefore the phy-
sics dominating in the classical models is exclud-
ed from the beginning. Hence it should not be
surprising that completely different results are
obtained. Instead of being unity as in the classical
theory, the sticking coefficient is found to tend to
zero proportional to the square root of the kinetic
energy. 4 The reason for this is that the eigenfunc-
tions of the static potential have to tend to zero at the

FIG. 1. Spectral resolution of the gas-atom states in
a one-dimens ional quantum-mechanical model. The
couplirg to the metal phonons occurs from the localized
vibrational states and resonances.

1980The American Physical Society



498 G. DOYEN

surface so that at long wavelengths they do not
have enough amplitude over the adsorption well.
This is referred to as the transmission problem,
because it means that for low kinetic energy the
gas atom is reflected back elastically before it
reaches the surface.

This has been realized as a real problem for a
long time because, firstly, experimental evidence'
and physical intuition indicate that gas atoms ad-
sorb entirely on solid surfaces for zero kinetic
energy of the incoming particle (e; =0) and zero
substrate temperature (T, =O), and secondly, zero
substrate temperature and low kinetic energy is
just the regime where quantum effects should
dominate and the one-phonon approximation is ex-
pected to be valid.

One possible explanation has been the demon-
stration that in DWBA a nonzero sticking coeffic-
ient can be obtained at zero kinetic energy for a
sufficiently long-range potential. ' But even then
there remains the puzzle that classical mechani-
cal theories with short-range potentials can give
a correct description of the experimental accom-
modation coefficient in the so-called quantum re-
gime, ' together with the fact that the physics of the
classical models has not yet been incorporated
into the quantum theories. A paper by Knowles
and Suhl' tries to attack this point by ascribing
an enhanced effective mass to the gas atom near
the surface, the enhancement arising from polar-
ization effects simiIar to those encountered in the
polaron problems. ' The phonons, however, re-
main unchanged by the interaction with the gas
atom" and a square-root. behavior is still predict-
ed for the sticking coefficient, tending to zero for zero
kinetic energy, although the decrease occurs at
lower energies than estimated by the DWBA.

The present paper contributes to the problem
by examining a model with a short-range poten-
tial which has the property that in the limit e; -0
the DWBA gives a zero sticking coefficient, but a
better solution including many-body effects yields
unit sticking probability. To obtain this result it
is essential that the dynamical displacements of
the phonons by the, incoming gas atom are taken
into account.

Throughout this paper it is assumed that the
substrate temperature is 0 K; i.e., before the
scattering event there is only the zero-point mo-
tion of the lattice vibrations. Section II describes
the model and demonstrates how the localized
gas-atom-phonon interaction can be handled by
defining "displaced" phonon modes. The mathe-
matical solution of the transmission problem is
presented in Sec. III, whereas the sticking rate
and the sticking coefficient are calculated in Secs.
IV and V, respectively. A simple numerical ex-

ample is given in the last section, together with a
comparison of the presented many-body calculation
to the standard DWBA.

II. THE MODEL

The common one-dimensional model with linear
coupling to the phonons, which has been used in
previous work on sticking, ""can be written in
occupation-number representation if a basis set
for the gas atom is introduced:

H= ~ cony +~ c)ply+ cd 6
0 deloc t 1oc

The basis set contains localized and nonlocalized
functions. n~ = c„c~ is the occupation-number
operator for the delocalized scattering states,
c~ and c& are the creation and the destruction
operators for the gas atom in the localized states,
and &, and &, are those for the phonons. c„and
e, are the one-particle energies of the states ~k)

and
~ &), respectively, the ~, are the phonon en-

ergies, and M is the mass of the metal atoms.
V'(z) is the static gas-atom potential perpendicu-
lar to the surface. Only the localized states are
coupled directly to the phonons. This is mathe-
matically desirable, but requires a specially
constructed basis which does not consist of the
eigenstates of the static potential. Formal as-
pects and mathematical details have been given
elsewhere. "

This paper examines a simplified version of the
Hamiltonian Eq. (l) with only two localized func-
tions in the gas-atom basis set. It probably re-
presents the simplest possible model for sticking.
An exact solution is still out of range, but a rather
high approximation can easily be obtained. The
model Hamiltonian is

H ~&ps' + c~s~'+ H1 + V~2 c~ c

+ V» c,c,+Z (V» c, c~ + H.c.),
k

H„,=c,n, +g u&, b, b, +n2+ A., (b, +b, ) .
e

The first term describes a continuous set of gas-
atom scattering states decaying exponentially at
the solid surface. There are two localized states
for the gas atom (cf. Fig. 2). One, referred to by
the subscript 1, is a localized state with no direct
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FIG. 2. Illustration of the model Hamiltonian.
~ k) is

a delocalized scattering state, ( 1) and
~ 2) are localized

states with only state
~ 2) coupling to the phonons, Vs,

is the matrix element describing the embedding of the
state

~ 2) into the scattering continuum.

coupling to the phonons; .this will accommodate
the gas atom in the final stage of the sticking pro-
cess. The other, labeled by subscript 2 and con-
tained in the operator II„,, describing the localized
interaction with the phonons, is the only state with
direct coupling to the lattice vibrations of the sol-
id. ~, is greater than zero, hence the spectral
resolution of the state

~
2) in the eigenstates of the

static potential is abroad resonance above threshold.
In order to avoid misinterpretation, it is stres-

sed that the model does not assume a precursor
state or inequivalent adsorption sites for the
static potential. The meaning of the state ~2) is
that it probes the strongly repulsive part of the
potential, which leads to strong coupling to the
phonons because the gas-atom-phonon coupling
constants ~, are proportional to the gradient of
the static potential:

=(2NM+ ) 'i' 2 —V (z) 2) .
dg

1V is the normalization constant. Equation (2) is
justifiable for pairwise additive potentials and
should be a reasonable order-of-magnitude esti-
mation in general. It will be demonstrated below
[Eq. (5)] that [2)develops into a bound state dy-
namically, i.e., as an intermediate step in the
process of sticking. For the gas atom far away
from the surface as well as for the gas atom stuck
in the state ~1), it is just a broad resonance above
threshold.

While the model Eq. (2) retains some important
properties of the Hamiltonian Eq. (1), it is, of
course, not equivalent to it. A numerical example
parametrized to describe He scattering from
heavy-transition-metal surfaces has demonstrated,
however, that a more general Hamiltonian of the
form of Eq. (1) can, for the purpose of examining
sticking at e, = 0, be rewritten in the form of Eq.
(2)." This result depends, of course, on the phy-
sical system under investigation. For strongly
chemisorbing, heavy atoms or molecules several

localized states coupling directly to the phonons
will probably have to be included.

A feature of the Hamiltonian Eqs. (1) and (2),
which has been criticized in the literature, "is the
linear coupling to the lattice vibrations. This
point requires separate exterisive investigations.
An examination of a special example showed,
however, that the physical phenomenon, which is
responsible for sticking coefficient unity at ~, = 0,
is existent also if quadratic phonon-coupling terms
are included in the Hamiltonian. "

In Eq. (2), the states
~ 1) and

~ 2) are assumed to
be orthogonal to the

~
k) states, which is physically

wrong. This, however, has no bearing on the re-
sult of sticking coefficient one at zero kinetic en-
ergy, as will become obvious later (cf. Sec. VI).

Equation (2) is reminiscent of a Hamiltonian
which has been investigated by Hewson and Newns"
in a different context, namely, the image force in
chemisorption theory. The method of solution
presented here is quite different, however. De-
fining displaced phonon operators p, by

pc = ~a+ ~e ~~c ~

allows us to write H&„ in the form

(x,n, —z, )(p~+p, ) .

The displaced and undisplaced phonon mave func-
tions and their overlap, which play a dominating
role in the present theory, are illustrated in Fig.
3. The potential energy curve defining the phonon
with wave vector q is displaced if the gas atom

Ll
FIG. 3. Displaced and undisplaced phonon wave func-

tions and their overlap, the quantum-mechanical analog
to the local distortion of the lattice by the incident gas
atom.
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hops from a delocalized scattering state into the
localized state

~
2). This is the quantum-mechan-

ical analog to the local distortion of the lattice by
the incoming gas atom which is so important in
the classical mechanical theories. The effect of
displacing the phonons is contained in the third and

fourth terms of Eq. (5). The third term might be
described as the "phonon image" term. It implies
a decrease of the self-energy of the gas atom and a
constant shift of the potential and is formally simi-
lar to the attractive potential felt by an electron in
front of a metal surface. The physical meaning of
the fourth term is that the phonons get displaced if
the gas atom hops into the state

~ 2), and that the
phonons transform back into the undisplaced ones
whenever the gas atom leaves the state ~2). This
term is conveniently handled in a many-body basis,
where it can be absorbed into hopping terms be-
tween many-body states.

orthogonal:

(2I1&=(2lk&=&IIk)=o, &kIk'&=6»» ~

V„'".,' =, Q(V„(md jn&At„A„„+H.c.)
k, m

V2, md n &2 &,„+.H. c.
m

(10)

The form of Vh",' arises, because

(md
~ (2 [ V,»

ct c» ) k)
~
n &

= V,» (md
~
n & .

E„ is the energy of the phonon states. In the
many-body basis H„, has the form

H„and V,',", ' are then given by

If„=(e, +E„)A~t„A,„+Q (e» +E„)AJ„A»„, (9)

III. THE COUPLING TO THE SCATTERiNG
CONTINUUM

In this section the Hamiltonian Eq. (2) will first
be cast in the form

+Q/xf'/(g, . (12)

H=H„, + H„+V'„",'
n

H, is diagonalized by the canonical transforma-
tion Eq. (4). The eigenfunctions of H, are given

by the set ((2& ~
nd) ), where ~nd& ind~icates a

product state of displaced phonons. The eigenfunc-
tions of

ge n +e,n, +g to, bt b,

are given by the set ([1)(n&)U( (k& (n&}, where
[n& is a product state of undisplaced phonons.

If the Hamiltonian matrix is set up in the many-
body basis constructed above, it would have the
structure of Eq. (6). It can be written in an occu-
pation-number representation by introducing the
following annihilation operators:

A,„l»l &=I0&,

A,„/2&/nd& =(O&.

~0) is the vacuum state of the total Hamiltonian.
It describes the zero-point motion of the phonons
without a gas atom present. The operators satisfy
the canonical commutation relations

[A;„, A,- ] = 6), 6„„,
because the gas atom states are assumed to be

H„and B& are diagonal in the created many-body
basis. The difficulty in solving the problem lies
in the interaction terms V'„",', which describe hop-
ping between many-body states with displaced and
undisplaced phonons. They contain now the dy-
namical deformation of the phonons, which is in-
duced if the gas atom penetrates into the surface
region (here, into the state ~2)).

Diagonalizing the Hamiltonian matrix construct-
ed above, would yield an exact solution, which is
formally analogous to the method of configuration
interaction (CI) used in quantum chemistry. As is
generally the case, one cannot do a full CI calcu-
lation, but must be contented with a limited CI
scheme. This is achieved by restricting the basis
to those many-body states which are expected to
be most important for the wave function one wants
to know. With out notation, such an approximation
is obtained if we couple H„only to H, . This de-
fines an approximate Hamiltonian H,

H=a, +Hp+V'„"., , (13)

whose exact diagonalization constitutes the limited
CI calculation.

The structure of the Hamiltonian H is illustrated
in Fig. 4. In contrast to Fig. 1, where the energy
resolution of one-particle (gas atom) states was

given, Fig. 4 represents in the upper two rows
schematically the energetic distribution of many-
body states, the eigenstates of Ho and H~ The
density of sta.tes is indicated by the energy separ-
ation of neighboring energy levels. The third row
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energy

Ho

Havoc

Zl „I'o& -;o.&

c) =0.
Of course, in the case of two interacting, con-

tinua, the expression "degenerate levels" has no
precise meaning. One has, instead, to talk about
the average energetic distance of the nearest
eigenstate of 0... from a scattering state at a,. = 0,
which is given by the reciprocal density of the
eigenstates of B,.„. Hence we would have a trans-
mission coefficient of order 1, if

FEG. 4. Level scheme, spectra resolution of the cou-
pliag to the k states, and spectral resolution p20(&) of
the state I 2) I 0) in the local Hamiltonian (schematic).

I V» I'p...(~}p,(~)

is of the order of 1 or larger.
In order to justify mathematically the qualitative

discussion above, one has to evaluate the coeffic-
ient of the state I 2&lnd) in the eigenstate IM+) of
the total Hamiltonian H, i.e., the quantity
&ndl(2l@0+). From the Lippmann-Schwinger etlua-
tion

gives the spectral resolution of the term V'„",,
in the scattering continuum, which is taken to be

II O+& = II 0)+ GV&„",I uo&,

one obtains with the help of E&l. (10),

(17)

g IV» I'6(. -~, -E.}=
I VI'(e -E.)". (14)

(ndlkO+& = V» (ndl GI0) . (18)

It is exactly this form of the hopping between the
localized and the scattering states which leads to
the transmission problem. The fourth row repre-
sents the spectral resolution of the state I 2)IO) in
the eigenstates of the local Hamiltonian II„,:

p o(~)=pl &Olnd&l 6(s -E } ~

~, -g I~, I'/~, +E, &0, (16)

(The vertical height of the lines in the lower two
rows indicates the size of I V» I' and I &Olnd) I', re-
spectively. ) Because the interaction between the
scattering continuum and H& occurs only via the
state I2)IO), (Q„IV»l') p2o(c) is the spectral reso-
lution of V'h,'~in the local Hamiltonian H„, ~

It is now apparent that we have two'interacting
continua (those of H, and H...), where every ener-
gy level of one continuum couples to every energy
level of the other. The wave functions of two de-
generate energy levels get mixed with coefficients
of the order of 1 for arbitrarily small interaction
between them. If the phonon coupling in the local-
ized state I 2) is strong enough so that the lower
edge of p2o(e) is below zero, i.e.,

lnd&-=I2&lnd&, lo&-=I2&lo&, IIO&=-II&l 0&.

In order to evaluate the matrix element
&nd I G I 0) of the Green operator, we use Dyson's
equation in the two forms:

c=co+cv"' co
hop

G=G'+aov"' a.hoP

(19)

Using Eti. (19) one has

&«IGIO) =&ndlO& Gc~+g&ndlcl IO& V„G', , (21)

where

G, =gl&olmd&l c'„, .

From E&I. (20) one obtains

(22)

&~ol ol &o& o &~olo& Q=v"„„&oolol&o& (23)

Here and in the following, an abbreviated notation
is used for convenience:

then the scattering state at e, =0 has an eigenstate
of H„, degenerate with it. In this case, a gas atom
incident in the scattering state at &, = 0 will be
transmitted with high probability into the localized
state I 2). In fact, Eg. (16) will turn out to be a
sufficient criterion for sticking coefficient unity at

& &OIGI IO) =G„'6„

+ G V, P&Olmd) & md I Gl 10). (24)

Multiplying Eq. (24) by V», summing over all k,
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and inserting into Eq. (23) yield

(n d I G I I 0) = G' (nd I 0)

(26)

After multiplying Eq. (25) by (Olnd) and summing
over all Ind), one arrives at

xI V G +&I Q(Olmd&(mdlGI10& I,) '

(25)

where we have defined an "embedding function"

e.( }=+, , "
E

2)lnd) is degenerate with the scattering state
k&IO&, G'„~ (&} will compensate the factor

V»(ndl0) occurring in the formula Eq. (18). For
large energetic separation of I2)lnd) and Ik&IO&

and small (I,(~}, Eq. (18) is equivalent to the per-
turbation expression for the coefficient.

IV. THE STICKING RATE

For the sticking rate the golden rule might be
used with the initial state taken as an exact eigen-
state of the total Hamiltonian H. The sticking in-
ducing potential is X,bg, . The rate is then

G V 6
Q(0lnd&(ndlGIIO) =

n 1 —6', q,
(27)

Putting this expression back into Eq. (25) gives
the desired formula for (nd I G I I 0), which after
substituting into Eq. (21) yields the final result:

(29)

If the occupation-number operator n, is written
in Dirac notation,

(ndlGI0) =(ndl0) G'„, (1 —G', (I,} ' . (28) n, =Q I 2&lnd) (nd I(2 I, (30)

G'„, (e} has a pole at e=a, -+, I&);I'/u&, +E„,. If one has instead

(31)R(q}= 2&( IA. I g g(f —I baal nd)(ndl i+) '5(e& —e& —E,} .
f n

The final state I f-) =I f-)ln, ) is an eigenstate of H-&, n(b, b+, ), corresponding to a gas atom bound to
the surface with locally displaced phonons, except for the emitting phonon mode, which is undisplaced.
If the exact final state is approximated by the corresponding eigenstate of II, with again the emitting mode

undisplaced, I f-)"-Ifd) In, ), one has

&((q& = 2"I ~. I*». I& n. —&I~.&&I'Q I & y~( ~+& I'()(&y &s & ) (32)

(n, —lln, d& = (n, /2}'&'(~,/~, ) . (33)

The qualitative picture which emerges for the
sticking process at low kinetic energies is obvious-

Ly the following: The incoming gas atom is trapped
with high probability in the eigenstate I 2)l nd) of
II, , which is degenerate with the scattering state
describing the incident particle. Then there is
emission of n, phonons with wave vector q, be-
cause the displaced phonons have a finite overlap
with the unperturbed phonons of the clean metal;

Here, of course, I fd)ln, ) is energetically degener-
ate with I i+), which fixes n, . It is important to
realize that this approximate rate deviates from
the exact rate by a factor of order 1, the square
of the coefficient of the state I fd) in the exact final
state. The phonon overlap factor for (&,/u&, ) «1
is given by

i.e., the strain caused by the colliding particle is
released in waves of vibrating metal atoms. It
follows from Eqs. (32) and (33}that many-phonon
transitions dominate over one or few-phonon
transitions. Instead of having just one emitting
phonon mode, we could use in Eq. (29) a final state
with several emitting phonon modes with the stick-
ing inducing potential then being

~ ]b,]n, .

Substituting in Eq. (32}gives
(34)

In order to proceed with our analysis, we now have
to insert Eqs. (18) and (28) for (fd I i+) Squarin. g
yields
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(35)

The total sticking rate is, of course, obtained by
summing over all possible many-mode. transitions.

&stick (36)

with the following standard normalization for the
incident Qux4:

I,=k, /(mL) . (37)

Here 4, is the momentum of the incoming particle.
This means that the exact initial-state wave func-
tion is not normalized to unity over a volume I-.
According to Schiff" the interpretation is "that we

choose a large enough number of systems each
described by g;, that are identical and independ-

ent." The number of systems is

V. THE STICKING COEFFICIENT

The common definition of the sticking coeffic-
ient is (with E, and F„« the incident and reflected
fluxes):

ticle there is, however, no inelastic reflection,
because in this limit it would require energy
transfer from the metal to the gas atom and there
are no phonons available to supply it. Hence, only
el, astic reflection is possible and the rate for it is
in the limit ~,.-0 equal to the rate of reQection
from an infinite rigid potential step, which is

ft„„(~,= 0) =k/(2mL) . (42)

The next thing needed is an estimate of R(q). Be-
cause |"f'~ has apole at &=E„one can, with the
prescription

lim (@+i' —E,) '=6'(e —E,)
' —i)fbi( —E,),

$~0

Here m is the mass of the gas atom and L, is the
normalization length for the scattering states. It
is sufficient to use the one-mode sticking rate,
because-including many-mode sticking can only
increase the sticking coefficient:

r(', =c, r= )c=g)t(s) (Dt(s)+e.r(r. =c)).

(43)

«leaf, (&)l',
L

(36)

which can be larger or smaller than unity. How-

ever, most treatments on collision theory start
from a Hilbert space with a scalar product, which

normalizes the eave functions to unity. There-
fore, the expression

write
r

IGf'~(k =E.)l'= ~'pi..(~ =E.) .
I

This yields

ft(q)= ~'n,'(I~,I'/~;)p, . (.=E,)q(k), (44)

where the & dependence of this rate is contained
in the quantity

Jstick &j+ +stick ~ (39)

Under steady-state conditions —which can be as-
sumed, because there is no desorption at T, =0-
the incoming flux equals the outgoing flux:

Erefl + Esttck ct+ (+reft + stick ) (40)

Efluations (37), (40), and (41) yield

~stiA &)++stick + stick

„fi +R„;,k
(41)

gives the Qux for one gas atom contained in the
many-body state P,-„which in this paper is called
"rate." Of course, R„;,k contains the rate of the

outgoing phonons. One then has

q(k) = —lmc', I1 —G', q, I
'I V„I'p„, . (46)

Q(k) is a dimensionless number, which is charac-
teristic for the interaction of the state Ik)IO& with

the displaced phonon states of Hi„. For strong
interaction Q(k) gives the number of eigenstates
of H„, coupling to the scattering state I k) I 0).

Approximating p„,(k) by the phonon density of
states reduces the rate. Now, the models found

in the literature' ' ' ' consider a one-dimensional
motion of the gas atom, but a three-dimensional
phonon density of states. For an n-dimensional
solid with characteristic phonon frequency &D and

normalization length I., the phonon density of
states is of order L"/cuD. According to Efl. (14),
I V» I' in the limit k-0 is of order

The reflection rate &„fi includes elastic and in-
elastic transitions. For substrate temperature

T, = 0 and zero kinetic energy of the incoming par-

Ivw I'= IwI k'/(mL) =slwl'ek L '

Here 8'is a number characteristic of the shape
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and depth of the adsorption well. 8"can also ac-
count for different normalization lengths for the
solid and the gas phase. Q is then for an n-dimen-
sional phonon density of states given by

met, let us investigate a weakly interacting sys-
tem. The static potential seen by the gas atom is
chosen to be a.Morse potential, as has been done
in the related earlier DWBA calculations' "

D(e'" —2e") for z & 1/a,
V'(z) =

D (e' —2e) for e &1/a .
(47)

The kinetic energy &„ becomes in the limit k-0
small, of order 0 (I. '). The symbol 0( ) is
here and in the following used to denote an order
of magnitude estimate. Depending on the dimen-
sionality of the phonon spectrum, one obtains the
following estimates for Q:

~O(1) for n =3

Q(&=0) =( 0 (I, ') for n= 2

~0 (L ') for n = 1 .
(46)

VI. DISCUSSION AND CONCLUSIONS

The first remarkable point to observe is that
the result of sticking coefficient unity does not
depend in any sensitive way on the model parame-
ters. The necessary and sufficient condition is
given by Eq. (16), which means that the gas-atom-
phonon interaction has to be strong enough to pull
an additional state, the state

~ 2), below the vac-
uum level. Because the only criterion depends
solely on the gas-atom-phonon coupling strength,
various mathematical properties of the model
Hamiltonian, as e.g. , the orthogonality of the
gas-atom basis states, cannot affect the conclu-
sion that sticking occurs with unit probability at
e,.=0.

To see how easily the condition Eq. (16) can be

The rate of elastic reflection is given by Eq. (42)
and becomes of order 0 (L ') in the limit k-0.
The explicit appearance of the inverse powers of
the normalization length in the order of magnitude
estimates means that the corresponding rate tends
to zero when the transition to the continuum is
performed. The sticking coefficient at zero kinetic
energy is now obtained by inserting the estimates
of Eq. (46) in the formula Eg. (43). In the three-
dimensional case the sticking rate remains finite
at &=0 and therefore the sticking coefficients is
clearly unity. For n = 2 the sticking rate tends to
zero more slowly, being of order 0 (L ') as L-~,
than the elastic rate, which is of order 0 (L ').
Therefore, in this case one also has sticking co-
efficient unity. For n = 1 elastic and inelastic rates
tend to zero equally fast as I.-~ and, therefore,
a finite sticking coefficient is expected between
zero and unity.

z & 1/a means penetration of the gas atom into the
solid. The potential has to be truncated at some
point because an infinitely increasing static poten-
tia1. implies an infinitely increasing gas-atom-
phonon interaction upon penetration, which is un-
physical. The potential is truncated shortly above
the vacuum level. Up to this energy the Morse
potential can be expected to give a rather reason-
able description. A rough parametrization for
scattering of a light gas atom with a mass corre-
sponding to He or D, from a tungsten surface is
given by (all units a.u. )

D=10 ', a=0.8, m =10', ~=3xy0' .

One reason for choosing this special form is that
p„,(& ) can easily be calculated and has the shape
given in Fig. 4.

The model is not completely defined before we
have specified the shape and position of the
localized wave function ~2). According to Eg.
(3) this will fix, together with Eg. (49), the gas-
atom-phonon coupling constants ~,. The wave
function ~2) must not be chosen arbitrarily; it is
determined by the potential Eq. (48), as has been
demonstrated in Ref. 12. The way to calculate it
is to do a variational calculation, which minimizes
the ground-state energy of H„,. We do this here
in a simple way by making the ansatz

(& ~2& =&'& ~«0&
=(n/K~)'~' exp[-(n'/2)(z -z, )'] . . (50)

The exponent -2n and the position zo of the
Gaussian are the variational parameters. The

The detailed form of the spectral resolution
of the phonon coupling is not important. What-
ever the energy distribution looks like, if

~.= (p
is in the correct range, there will be sticking
at « =0. Therefore, for mathematical simplicity,
consider an example where the phonon coupling
has a resonance in the interaction strength at
some phonon energy &, with width I".
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quantity we minimize is the gas atom energy,
including the effective phonon-image potential

(Q zp
I
A/(2m) + VP(z) — V (z)/(2M'&, )

I
n, zp)

&, =(2 I~/(2m)+ VP(z) I2), {52)

this fixes the values for g, and &,: &, =1.2 X10 '
a.u. , ~, =5.5&10+ a.u. The phonon-image po-
tential is then 2ly, j /~, =3x10 p a.u. , and the
criterion E(l. (16) is fulfilled.

For the resonance coupling given by Eq. (49),
the rate can be written in the form

QR(q) =- (l z, I' " li'p»
I
»-(z=Ep)

CO

x I'-Gpqpj 'fmop. (53)

Assuming IW I
=10 ~ a.u. , the sticking rate is

2&10 a.u. , which means that an infinitely slow
gas atom near the tungsten surface will stick
within 10 ' sec emitting a bunch of 18 phonons.
This time is valid for a three-dimensional phonon

density of states. Even with a one-dimensional
gas atom motion, a three-dimensional phonon

density of states appears physically more reason-
able than two or one-dimensional densities, be-
cause restricting the metal atoms to move only
perpendicular to the surface will for a three-
dimensional solid give a three-dimensional pho-
non density of states.

After being trapped in the ground state of 8„„
the gas atom can relax into the state

I
1) with rate

= min. (51)

Kith ~, =10 4a.u. , alocalminimum shows up for
the values o. = 5 a.u. and zo = 1 a.u. Through Eqs.
(3), (48), and the expression

no longer support any bound state. Analogous
considerations are valid for the dependence on the
characteristic phonon frequency, because ~, -0
implies g, -~, and (d, -~ implies g, —0.

It might be illuminating to discuss more ap-
proximate methods of solving the proposed model.
For comparison with the development in Sec. III,
we give in Fig. 5 the spectral resolution of ap-
proximate eigenstates of Ho and H„, as they are
obtained if a standard DWBA calculation is done
for the HamiltonianII of Etl. {13). DWBA means
here that the wave functions to be inserted into
the golden rule are calculated without the gas-
atom-phonon coupling; i.e. , they are product
states of gas-atom functions and phonon states.
Because Ho is diagonal from the beginning, the
first and third rows of Fig. '5 look the same as
those of Fig. 4. The approximate eigenstates of
H„, to be used in the DVfBA are products of the
state I2) times phonon distributions describing
various excitations of undisplaced phonons. Hence
the spectral resolution of H„, as given by the
second row of Fig. 5 now has its lower edge at the
energy &z+Eo far above threshold with a con-
tinuum of excited, undisplaced phonons on top.
The spectral resolution of the state I2) IO) is
therefore a 5 function at the energy &2+Zpo It
is obvious that the scattering channel, which in
the exact solution of H leads to sticking coef-
ficient unity at &, =0, is closed in the WBA,
because energy cannot be conserved. But even
if the approximate ground state of H„, would be
pulled below the vacuum level by including the
phonon-image correction only in the self-energy
of the gas atom, there would still be no sticking
into I2) IO) at e; =0, because the phonon parts of
degenerate states of H, and H„, are orthogonal.
It is only after one has included the modification
of the lattice vibrations by the gas atom that this

(54)

With I (0
I
Od) I

' = exp[-x,'/(4&@')] = 3.5 x 10 ', this
takes about 10 "sec to happen. This transition
is, of course, independent of the dimensionality
of the phonons.

The dependence of the sticking coefficient on the
mass of the gas atom is contained in the exponent
n of the Gaussian wave function ln, zp). A

heavier particle can better localize near the point
of greatest ascent of the static potential and this
therefore, leads to a larger z.. In the heavy-
mass limit (m -~) more and more bound states
are pulled into the phonon-image .potential well
and sticking becomes certain. In the zero-mass
limit (m -0) the sticking rate at p, =0 tends to
zero, because eventually the image potential can

energy

Ho

HDWBA
loC

Zlv2J 5(&-&„-E,(

p„(e)

FIG. 5. Same as Fig. 4 for a DWBA calculation.
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orthogonality is removed and sticking at &&
——0

becomes possible.
The sticking channel that is open in the IÃfBA

is transition into the state ~1). The rate for this is

The rate is proportional to k /m and hence tends
to zero for zero kinetic energy of the gas atom
due to the transmission problem as discussed in
the Introduction.
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