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Polaritons associated with nearly degenerate excitons: Their dispersion and the resulting
reflectivity for the 1s exciton in CuBr
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We propose a method to calculate the dispersion of polaritons associated with nonparabolic excitons. It gives .

directly the polariton wave vectors versus the photon energy, as required for a reflectivity calculation. For CuBr, we

determine the normal reflectivity of the 1s exciton and find a good agreement with the experimental results. The
existence of k-linear terms explains the reflectance spike due to the triplet exciton. In most cases, an exciton state
corresponds to a reflectivity structure. Sometimes, however, a given state is associated with none or with two
singularities.

I. INTRODUCTION

Exciton properties are often studied in reflec-
tivity measurements, which are, however, quite
difficult to interpret in terms of exciton paramet-
ers. In order to do it properly, a polariton model
has been developed" which considers the special
exciton properties as well as the strong exciton-
photon coupling. This model is, however, difficult
to handle. Consequently it has been used only for
relatively simple cases, involving only one or two
exciton states with simple analytic spatial disper-
sion. In many cases, however, one is confronted
with a set of degenerate or nearly degenerate ex-
citon states, ' ' interacting with each other and hav-
ing, therefore, a complex dispersion. Then the
usual method to determine the polariton dispersion,
in order to calculate the ref lectivity, is no longer
applicable. The polariton formalism itself re-
mains, however, still valid, and we recall in Sec.
II different analytic solutions for the polariton dis-
persion, which correspond to different approxi-
mations frequently encountered in the literature.
We propose also an original and rigorous method
for the numerical calculation of the dispersion
curves, which is a pmori adapted to any kind of
practical problem.

After a discussion of the method used to calcu-
late the normal ref lectivity for a given set of po-
lariton branches, we give in Sec. III some results
obtained in the vicinity of the 1s exciton of CuBr.
In this zinc-blende-type material, the existence
of k-linear terms, ' inducing different exciton in-
teractions, explains some particular features of
the ref lectivity spectrum. It will be shown that the
polariton model is not only useful to derive quan-
titative information from the experiment, but, ex-
plains also an important behavior: A dipole active
exciton "branch" does not necessarily correspond
to a ref lectivity singularity; we found examples

where a given branch may be associated with none
or with two ref lectivity singularities. Simple ar-
guments show that these features are not due to
a particular choice of additional boundary con-
ditions (ABC).

II. THE DISPERSION OF EXCITONIC POLARITONS

A method to obtain the polariton dispersion in
presence of a set of excitons with a complicated
spatial dispersion h@s been developed in the semi-
classical approximation. ' We prefer to use here a
purely quantum-mechanical approach which is
more rigorous and generally gives the best picture
of the physical phenomena. It also gives a better
starting point for eventual studies of phenomena
such as light scattering or nonlinear optics. More-
over, we will propose a mathematical method
which, for practical. applications, makes the dis-
persion calculation much easier than using the
method of Ref. 7.

A. Excitonic aspect

We are mainly interested here in "nonparabolic"
excitons, constructed with electrons and holes
belonging to nonspherical or degenerate band ex-
trema, but for simplicity we consider only tran-
sitions at the center of the Brillouin zone (BZ). It
has been proposed' to use an adapted k ~ p method
to find the excitonic dispersion in the small part
of the BZ involved in direct transitions. We there-
fore start with the effective-mass Hamiltonian as
defined by Dresselhaus:

2

H, (p, ) + H„(p„)—Ir, —r„l '

where H, and H„are x&x and s &&s matrix oper-
ators, t (s) being the degeneracy of the conduction
(valence) band. In a first step, only the spherical
part of (I) is considered. A center-of-mass trans-
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formation

r=r —re h~

R=nr, +Pr„,
(2)

=e/2 2y (0., rqu. ,u„/, (4)

where u„. and u„,. are the Bloch functions of the
conduction and valence bands taken for k =0. The
three indices n, i, and j appearing in (4) have been
condensed into the index l for simplicity. We call
b, (k) the eigenvalues corresponding to P2, .

The nonspherical part of the Hamiltonian (1) is
considered as a small perturbation. " Using the
wave functions P", as a basis, an interaction ma-
trix can be constructed, eigenvalues and eigenfunc-
tions of which are those of the "perturbed" sys-
tem. In practice, however, we are interested only
in the behavior of a finite set of n excitonic states

Consequently the interactions of these n ex-
citon states with all the other ones (which are sup-
posed to be far enough in energy) are treated in
second-order perturbation theory. "" Then the
interactions between the n excitons are treated
exactly. The same method is used in the k p the-
ory for the calculation of the band dispersion. "
We therefore arrive at an n && n interaction matrix
K„, constructed on the basis Q", . The solution of

where a+P =1, enables to express the eigenfunc-
tions of the spherical part of (1) as

y„(k, r) =e'"'cp„(0, r), (3)

where k, the total exciton wave vector, is an eigen-
value of the operator i(-n+P)V, . The envelope
function p„(0, r) is obtained by solving a set of
x&& s identical equations and is a simple hydro-
genoid function. The total excitonic wave functions
can be written" as

change interaction, an external perturbation, etc.
In some cases they can be taken into account by a
perturbation theory and H„must be modified as a
consequence. This, however, does not change the
formal aspect of the exciton problem nor the con-
clusions we obtain in the following.

B. Polariton dispersion

To study the polariton problem, we follow Hop-
field' and Bendow'~ and write H„ in the second
quantization formalism

H„= Q H„"(k)b;. -„b, -„,

where b',. -„are the creation and destruction oper-
ators of the excitons (b,.(k), P",.) of our basis. We
define the photon field by its vector potential A in
the Coulomb gauge (V A =0) and fix the light wave
vector and polarization directions. The photon
Hamiltonian reads

Hz= g Ifck(a22a=„)

+ D k a'-ka-„+a„-a'-k+a„-a'~+a -„a,„-,
k

(7)

where a-'„are the creation and destruction oper-
ators of the photon of wave vector k. The exciton-
photon interaction is considered in the electric-di-
pole approximation. As we use the exciton basis
P", , the interaction Hamiltonian H„~ can be written
as in Hefs. 1 and 14:

H„I, =i Z ~C/(k) ~(a2b,. -„—a=„b', „+a -„b/ 2
—. a-'-„b,' „-), .

k2 j
(8)

H„g =EI(, (5)
where C,.(k) is related to the dimensionless para-
meter P,. and to g/ by

where I is the n && n unity matrix, gives the re-
quired eigenvalues E,.(k) and eigenfunctions g,.(k).
The general form of H„can be obtained by group-
theoretical considerations or by the invariant
method. " It is known that H„may contain k-linear
terms in materials without center of inversion. If
the bands are nonspherical or degenerate, H„
contains quadratic terms like k'„, kP„. . . . We
do not consider terms of higher order in k, al-
though the method developed in the following does
not impose any restriction. Owing to the nondi-
agonal k-dependent terms in H„, the excitonic
dispersion is anisotropic and difficult to expand
into a series.

For practical purposes, it is often necessary to
consider various effects related, for example,
to the spin-orbit coupling, the electron-hole ex-

$3/ 2(0)(vP )1/2 g
(k k) (k k)

Fermi's golden rule enables us to define D(k) in
Eq. (7) by"

Dk= '
hck ~ S,.(0) hack

(10)

With the definition given here, we consider simul-
taneously the absorption and emission processes
as well as the nonlinear effects related to A'.
Following again Hefs. 1 and 14 we obtain the eigen-
energies E of the Hamiltonian HER=II„+H~+H„~,
which are just the energies of the so-called polar-
itons, by solving detA =0, where
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Sck+2D —E

i-c +}

[ic,] 2D

(-zc,*. }

[-zc+] '

(0)

-hack —2D —E [ic*,. ]

(0) ( H„—-EI)

where the symbol ( ) indicates a nx n matrix,
[ ] and ( }indicate row and column vectors. The
matrices H„and I are defined in Eq. (5). For sim-
plicity we have not indicated the k dependence of
Dand C,

Though the solution of Eq. (11) gives the polar-
iton energies, it has not been used for practical
purposes. To find the usual dispersion equation,
we will rewrite Eq. (11) in the exciton basis,
[E,.(k), (,.(k)] which is obtained by solving Eq. (5).
Let us call T(k) the unitary matrix which trans-
forms the basis Q". into g,.(k). Consequently, we
transform the matrix A of relation (ll) by chang-
ing H„ into H„= T(k)H„T '(k) and redefining con-
stants G,. (k) by

G,.(k) =Q T,,(k)g, (12)

H„being diagonal, it is easy to derive an analytical
expression, equivalent to Eq. (11):

&hck ' ~ 4 I G, (k) I'

E,.(k) [E',.(k) E']-
For a given value of k, it is possible to find T(k)
and compute E,.(k) and G,.(k). Using Eq. (13) one
then finds E(k). This enables us to obtain the po-
lariton dispersion, even if the exciton dispersion
is complicated. "' In the ref lectivity problem,
however, we must fix the energy E and calculate

I

the wave vector k of the various corresponding po-
laritons. Equation (13) is only useful if E,.(k) and

G,.(k) have simple analytical development, as in
Refs. 16and 17, for example. In our case, such
developments are too complicated or inaccurate.
In addition, the anisotropic dispersion of the ex-
citons complicates the problem of the non-normal
ref lectivity. In this case, it is known that several
polaritons may propagate in the crystal in differ-
ent directions. In the presence of "isotropic ex-
citons" the pola. riton energies depend only on k
= lk l, and the eigenstates of the crystal are easily
found. In the present anisotropic case, it is nec-
essary to determine both the modulus and the di-
rection of k (in a given plane). To avoid this com-
plication, we restrict ourselves to the normal in-

,cidence case. Then all the polaritons propagate
in the direction g of the incoming light. g being
fixed, we will write k„=k g, which is just a scal-
ar, instead of k in H„. In the matrix A defined in
relation (11), once E has been fixed, there are
constants and quantities depending on k„and on
k. In the most general case, the relation E,.(k)
=E,(-k) being unfulfilled, the two cases k„)0 and

k„&0 have to be considered separately by solving,
for example, Eq. (11) twice. To avoid this com-
plication we multiply the first and third lines and
columns of A by (hck)"' and then transform k into

We obtain

(Kck„)' —hck„E+ 2&v~ [zg,.] 2(d~

(H„(k„)—EI)

[-zg;] —(hck„)' —Rck „E—2 v2~

(-ig, }

[ig,*]

(-H„(k„)—EI).

(14)

where g,. and uP~ are constants defined in Eqs. (9)
and (10). One verifies easily that the solutions of
detA' =0 are the sum of the two sets of solutions of
detA. =0 obtained for k„&0 and k„&0.

All the matrix elements in A' are polynomials of
k„: A', =a, k„+b, k„+c, . Consequently detA' can
be developed into a polynomial E(k„), the pol. es of
which can be obtained by a numerical method. A' =A k'„+A,k„+A (15)

I

This method of solving the pol. ariton problem has
been indicated first in Ref. 7 and has been used for
practical applications ig. Ref. 8. The derivation of
E(k„), however, can be very tedious in the pres-
ence of a complex set of excitons. We therefore
develop
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where the A,. are 2(n+ I) x 2(n+ I) matrices. The
eigenvalues k„of (15) are obtained following Way-
land" by solving

(A, 'A, +k, I A, 'A,)
detM =det

I

kg &

(16)

when I is the (2n+ I) x (2n+ I) unity matrix. The
eigenvectors t/'„of M can be written as

( )
/kx)
&x i

(
hck't' p 4 I G,.(k) I'E,.(k)

E [E,.(k) —E ]

4 i G,.(k) i

2

E. k E. k —E
(17)

Furthermore, the fourth line and column in (14)
can also be neglected. This is equivalent to writ-
ing

Acket
' 2 I G,.(k) i'=1+Ei, E',.(k) [E,.(k) —E]

(18)

Both approximations are generally used in the
literature.

In practical applications, one considers in detail
only a given set of "resonant" oscillators. The
influence of all the others is taken into account by
a background dielectric constant z, . Then the
above definitions must be modified by multiplying
c, C., P g, and (8~by &~

where x are the eigenvectors of A'. Generally,
Ao' exists. If not, we can define X =1/k„which can
be calculated because A, ' is defined for almost all
values of E.

With the present method, the determination of
the polariton wave vectors reduces to a simple
eigenvalue problem [Eq. (16)] and is therefore not
more complicated than in the case of excitons
with simple dispersion. However, the dimension
of M, in relation (16), may be important in some
practical cases. To save computer time it will
be necessary to simplify the matrix A' by making
the following approximations, justified if the pho-
ton energy E and the various exciton energies
8 .(0) hold true simultaneously for ~E —8.(0)

~

/E
«1. One can first neglect the nonlinear effects,
i,e., write &@~=0 in (14). This is equivalent to
transforming Eq. (13) into

0 K2iCi.„)
v 3Ck„-v 2iCk„

~ ~—&2icii„&2ici„a, )
—v 3Ck„

(19)

where the zero of energy corresponds with the
(I', +I',) levels for k =0. C is the excitonic con-
stant of the k-linear terms, related to the 1',
band parameter C~ by

C = C„m f/(m++m"„) .v3

In H„„we omit the diagonal term k'k'/2M, „and
we have chosen the basis wave functions of the
(I', + I', ) states in order to diagonalize partially
H„, For the pola. rization [110]we obtain, with
the same conventions,

H„2=

(3/2)" 'Ck„

-2iCk„

(3/2)"'Ck„

electrons. The exchange interaction splits the
exciton ground state for k —0 into the triplet
states I', + I', (forbidden in dipole approximation),
the transverse I', r states (dipole allowed), and
the longitudinal I'» state. ' We call 6, and h~~
the (I', + I',) —I'» and the I'» —I',~ separation.
As 6 is large in our case (12 meV), the longi-
tudinal state can be neglected in the following ex-
amples. We neglect also all other exciton states
of the present series (2s, 2p, . . . ) and all other
series; this is justified here because the 1s bind-
ing energy and the spin-orbit splitting are large"
(110 and 170 meV). To construct the matrix in-
teraction H„we choose an exciton basis for which
the exchange interaction, characterized by 4, and

A~~, is diagonalized. We then take into account
the diagonal term 5'k'/2M, „and the k-linear terms
which already split the I', band for k 10." They
are proportional to the spin-orbit splitting and are
presumably important in CuBr. We neglect for
the moment the influence of.the I', warping, which
will be discussed later.

We consider the case of the normal ref lectivity
of a semi-infinite crystal in the [110]direction.
Following Ref. 4, we construct the matrix H„, for
the excitons playing a role in the [001] polariza-
tion:

III. APPLICATION TO THE 1s EXCITON OF CuBr
(3/2)' 'Ck, 2iCk„(3/2)' 'Ck,

(20)
A. Excitonic dispersion

CuBr has the zinc-blende structure. The 1s ex-
citon (Z») is constructed with 1", holes and I',

In each of the exciton bases used to derive H„, and

H„„ there is only one allowed state for k =0, at
the energy ~,.
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B. Polariton dispersion

Using H„, and H„„we are able to calculate the
polariton dispersion, using the results of Sec. II.
This is done here with the approximations used to
obtain Eq. (18). The unique coupling constant C,.
of the problem is calculated from (9) and from the
relation 2mp = e,d, r z /E(I'»),

Starting with a set of n excitons, we find, for a
given energy, 2(n+1) solutions in the k„space. We
shall indicate them with k. Without magnetic field,
they exist as pairs (+k, -k) and are real. , purely
imaginary, or complex. The complex solutions
are due to the existence of the k-linear terms as
in the present case or in the case studied by Ma-
han and Hopfield. " If a complex solution 0 is
found, then one shows that -4, k*, and -k* are
also solutions. In the ref lectivity problem one
must eliminate one of the solutions of the pairs
(k, -k). This is done with the following criteria:

(i) If k is real it must satisfy dE(k)/dk&0, the
energy transport being allowed in only one direc-
tion.

(ii) If k is purely imaginary we take k =+i ~k to
obtain a maximum wave amplitude at the surface.

(iii) If k is complex, k =k„+ik, , it gives rise to
a wave like

a exp(ik„r) exp(-k,. r)

which cannot exist because we have actually no
scattering processes in the crystal. However, we
can combine the two solutions 0 and -k* to con-
struct a wave like

[a exp(ik„y) +a* exp(-ik„x)] exp(-k, . x),
with the condition 0,. &0. This corresponds to a
"stationary-damped" wave, which does not trans-
port any energy. It occurs only if the two ampli-
tudes a and a* are complex conjugate. We have
verified that in the following examples, this occurs
effectively within a good approximation.

We report in Figs. 1 and 2 the polaritons we ob-
tain for the two systems of excitons (19) and (20).
The branches which do not play a role in the re-
flectivity have not been reported. We use the fol-
lowing parameters: ~» =12 meV, M,„=1.7m„
C =3.2 10 ' meV cm, ~, = 1.1 meV, and &, = 5.7,
which are generally in good agreement with the
values recently determined by the hyper-Raman-
scattering method" and the values reported in
Ref. 6. We note in Figs. 1 and 2 that all polariton
curves are continuous. There are, however,
singularities with zero slopes when k changes
from a complex to a real value.

C. Calculation of the reflectivity

In order to calculate the ref lectivity we use the
ABC defined by Cho, ' which are just Pekar con-

FIG. 1. Schematic representation of the exciton
(dashed lines) and polariton (full line) disperion for
k[[ [110) and the polarization & [[ [001]. Re(k) and Im(k)
are the real and imaginary part of k.

ditions' modified to take into account the existence
of forbidden excitons for k =0." We do not intro-
duce any "dead layer'"' near the surface, because
we are dealing with small-radius excitons, and
because the experimental spectra obtained on
cleaved samples are easily reproduced. We define
damping parameters I',. and transform the matrix
H„ in (14) into H„+f(I",.0, ,). At very low temper-
ature the I",. are probably mainly related to scat-
tering by defects and by acoustic phonons. The
latter process introduces a dependence of I",.
with k, which appears in the calculation of the
density of the final states of the scattering. In
the present problem, the excitonic dispersion
being nonspherical, the k dependence of I',. cannot
be easily derived. We therefore use constants,
which are a priori larger for an exciton of high
energy than for an exciton of small energy, be-
cause of the possible interband scatterings and
the thermalization.

FIG. 2. Schematic representation of the exciton and
polariton dispersion for k [[ [1101 and the polarization
~ [[ [110).
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A comparison of the experimental and calcu-
lated ref lectivity curves (using the parameters
given above) is shown in Fig. 3. The agreement
is satisfactory and will be probably enhanced by a
fitting procedure and a better definition of the
damping parameters.

We will now focus our attention on the small
structures appearing in the ref lectivity curves and
which are related to the (I', +I"4) excitons. I et us
recall that the ref lectivity depends on all polariton
branches of the crystal, and that they are all con-
sidered in the Maxwell equations and the ABC.
However, the branches with a real 0 have a pre-
dominant role because they are the only ones for
which an energy transport occurs. Hopfield"
gives as a rule that a singularity in such "real
branches" gives a singularity of the ref lectivity.
This is true, however, if the polariton at this 0
value has a mixed exciton-photon character and
is not purely excitonie. This rule is well illus-
trated by the strong singularity occurring at the
energy E~ where the "upper polariton" crosses
the 4 =0 axis with a zero slope.

We report in Figs. 4 and 5 the real branches of
Figs. 1 and 2 and the corresponding calculated re-
flectivities. We note that for small 0 various ex-
citon and polariton curves are identical; this is
due to the fact that forbidden excitons are good
eigenstates of the crystal. For larger 0 all ex-
citons are allowed and their dispersion differs
from that of the polariton. For still greater k
the polaritons are mainly "excitons" or "photons. "

&~ 1-

~p—E

LLI
-'t—

-2- (

so'

(b)

k(cm-") 50

OO
0

OO~

6p R(i)

FIG. 4. (a) Excitons (—--) and polaritons ( ) for
k(] (110] and ~ ]] (001]. The curve (.—.-) corresponds to
a polariton branch E(k) with negative 5 values for which
we have done the substitution 5 --k. (b) Calculated
(0) and observed ( ) ref lectivity in the same geome-
try as in (a).

In each of the figures we note the existence of a
polariton singularity (with a zero group velocity)
which just corresponds to the singularity of the
calculated ref lectivity. For the two geometries
considered in Figs. 4 and 5, the singularities occur
for different energies depending on M,„and C.
Experimentally, the ref lectivity differs also, as
reported in Figs. 4 and 5. This has been observed
for many crystals and gives, in particular, a
strong differential signal in polarization modulated
experiments. This dichroism is explained by the
polariton model, and the calculated ref lectivity in
Figs. 4 and 5 reproduces the experimental one
well. Different dampings are, however, used for
the (1,+14) states: 0.1 meV for q ]] [110jand
0.01 meV for e ]] [001]. The reason for such a dif-
ference is not clear to us.

In Figs. 4 and 5, we note also the existence of
two or three excite branches, converging at
small k, to the (I', +I",) state. For k values of the
order of 10' cm ', all are appreciably mixed with
the strongly dipole active I', state. In the [001j
polarization, for example, and for k =10' cm ',
the relative transition probabilities for the three
excitons in Fig. 4, classified from low to high en-
ergy, are 0.07, 0.17, and 0.76. Adopting an ex-

20—
OO0

OOOO~
OOOO

I I I I ] I I I I I I I I I ] I

2.965 2.970 2.975 E (eV)

FIG. 3. Experimental ( ) and calculated (0) reQec-
tivity of CuBr for k]] (110] and the polarization F]] (001].
The experiment is done at 1.8 K. The parameters used
in the calculation are given in the text. The arrows in-
dicate the exciton positions for k= 0. The excitonic
dampings are 0.01 meV for the (I'3+ ~4) states and 0.2
meV for the l~ state.

qp5

OO

(b)

k(cm ") 50 60 R(y)

FEG. 5. (a) Excitons (——-) and polaritons ( ) for
kJf (110] and e]/ (110]. For the curve ( —~ '-) we use the

- same convention as in Fig. 4(a). (b) Calculated (0) and
observed ( ) reflectivity in the same geometry as in
(a).
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citon point of view, as for example in Refs. 6 and
25, we expect the appearance of a doublet (Fig. 4)
or a triplet (Fig. 5) in the I', —1", region, rather
than the single structures observed experimentally
or calculated in the polariton model.

We shall note also that in spite of the weakness
of the I'3 —Z'4 ref lectivity spikes, the k linear
terms produce relatively strong effects in the
crystal. For example, in the case of Fig. 5, the
transition probabilities for the lowest exciton are
of the order of 10% of the overall transition proba-
bilities for k™6.10' cm ', i.e. , in the region of the
polariton singularity. Thus the presence of the
weak I'3 —I'4 structure cannot be associated with
the existence of "weakly allowed states. " Other
examples in the literature"" show that in presence
of various oscillators, it is difficult to relate the
oscillator strengths to the shape of the reflectiv-
ity structures.

D. Effects related to k2 terms

In the above discussion, we have not taken into
account all the valence-band properties and neg-
lected terms proportional to y, k' and y34' in the
matrices (19) and (20) (y, and y, are the Luttinger
parameters). Such terms, which are easily cal-
culated by the method of Refs. 10 or 4, modify the
exciton dispersion and, like the k-linear terms,
mix the singlet and triplet states.

We have first tried to calculate their effect, in
the absence of k-linear terms, but in the presence
of a nonzero ~, . In such a case we do not repro-
duce the experimental I', —I', spike. The reason
is that all the exciton singularities occur for 0
= 0 —a situation found by other authors for differ-
ent compounds. ' '"" Then the polariton singular-
ities occur also for 4 =0, where they have an en-
tirely excitonic character and do not influence the
ref lectivity. The only situation for which a I'3
—p, spike is found is for values of y, and y, which
give a very flat excitonic curve. This is, how-
ever, an unphysical situation and furthermore the
experimental results of Figs. 4 and 5 cannot be
reproduced with a unique set of values of y, and y3.

We have then calculated the ref lectivity by con-
sidering the k-linear terms and the warping ef-
fects together with the parameters y, = 0.19, y3
=0.17, and m,*/m„* =0.14 calculated by Khan. "
This modifies only slightly the curves of Figs. 4
and 5 and does not introduce any new effect. Thus
it is probably reasonable to neglect the effects re-
lated to y, and y, in CuBr. The same conclusion
is obtained in Ref. 21.

E. Extra structures in the reflectivity

We have seen in Sec. IIIC that the existence of
an excitonic branch does not mean automatically

l

�3
~3

g3P ~H+ Ck„ 1.0)

(21)

where p, ~ is the Bohr magneton and g3 a constant
related to the band g values. A preliminary anal-
ysis of magneto-optical experiments on CuBr (Ref.
25) gives the value g, =0.8+0.2. The exciton and
polariton curves in correspondance with the ma-
trix (21) are given in Fig. 6. We observe that the
lowest polariton branch becomes very flat in a giv-
en region. The calculated ref lectivity presents two
structures in the 2.0) region. The first corres-
ponds to the acute maximum of the density of state
of the lowest polariton; the second corresponds
to the singularity of the other polariton branch.
These two structures are clearly related to only
one exciton branch, and the polariton model gives
here a result which is unexpected in the exciton
model. This result is in agreement with the ex-
periments, where two well-resolved structures
are observed, at the same energies as the calcu-
lated ones.

E 0-
LLI

Ogp

(0)

qo5 qp6

(b)

k (crn ") 5Q
I

60 R(.x)

FIG. 6. (a) Simplified model of the exciton (—-) and

polariton ( ) dispersion in CuBr for k// [1101, e /[ [110j,
in the presence of a magnetic field of 70 kG directed
along [T10]. {b) Corresponding calculated (0) and ob-
served ( ) reflectivities.

a ref lectivity structure. In the analysis of experi-
mental results obtained on CuBr in presence of ex-
ternal perturbations" (magnetic field and uniaxial
stress) we have observed another unexpected ef-
fect: The number of ref lectivity structures is, in
some cases, bigger than the number of excitonic
branches. To illustrate this effect we show in Fig.
6 the dispersion of the excitons and polaritons cal-
culated in the presence of a magnetic field of 70
kG, for k fl [110], H [I [110], and the m polarization.
In this case there are four active excitons which,
for k=0, can be labeled ~1.0), ~2.0), and ~2+2).
Under the influence of the magnetic field' plus the
k-linear terms, ' we found that the

~

2.0) —
~

1.0)
mixings are much stronger than the

~

2 + 2) —~1.0)
ones. We neglect, therefore, the ~2+2) states,
and the excitonic matrix interaction becomes

g, gj, ~H+ Ck„
3v3
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To close this section, we shall note that the
analysis of the experimental ref lectivity, as done
here, does not enable an accurate determination
of the excitonic parameters (I,„,C, y„y„d„
hr~, . . . ). This comes from several facts. First,
the experiment gives information on the energies
but not on the wave vector of the polariton singu-
larities. Second, there are too many parameters
to be considered simultaneously. Third, as noted
in Sec. IIIC the damping parameters probably have
a complicated k dependence which has not been
taken into account. For all these reasons, a quan-
titative comparison (by a best-fitting procedure,
for example) between the experimental and cal-
culated spectra cannot be done. Such a compari-
son will need, at most, too long a computation
time.

The same kind of difficulties are also encoun-
-tered by the authors of Ref. 8, who perform a
line-shape analysis of the 1s exciton of Cul in the
presence of a magnetic field. In Ref. 8, the po-
lariton dispersion is calculated following the clas-
sical approach of Ref. 7, which, as expected,
gives the same results as the second quantization
formalism. With the experimental situation being
comparable in CuBr and CuI, the same approxi-
mations are used in both cases and the excitonic
parameters which are estimated in the two cases
are comparable, as expected for these two similar
materials.

IV. CONCLUSION

The formalism we have developed to find the
polariton dispersion in the presence of a set of
interacting excitons is simple to use and does not
require more approximations than in the case of
isolated excitons having a simple dispersion. It
can be used when the exciton behavior is well. de-
scribed by a perturbation theory. It can.be easily
adapted to more complicated cases than those con-
sidered here if, for example, the excitonic inter-
action matrix contains terms proportional to
4', k4, . . . or if the exciton-photon interaction is
not restricted to the electric-dipole approximation

only.
The analysis of the ref lectivity of CuBr shows

clearly the necessity to use the polariton model.
As is well known, this model enables us to relate
the spectral singularities to the position of the ex-
citons and explains quantitatively the spectra re-
lated to several oscillators. However, the role
of spatial dispersion has been previously studied
in a restricted number of simple cases where it
essentially lowers the reflection coefficient in the
reststrahlen region. In the CuBr case, the spatial
dispersion plays a more essential role and explains
why a close correspondence does not exist between
the number of active excitonic branches and the
number of ref lectivity singularities. To our know-
ledge, this fact is reported here for the first time.
The spatial dispersion is also responsible for some
line splittings which are not understood in a simple
excitonic level. ""

Thus, even for a qualitative reflectance analy-
sis, the polariton model must be used in the pres-
ence of a complex set of excitons. To perform a
quantitative analysis, difficulties still remain,
such as the influence of the broadening effects and
the choice of ABC. However, we have been able
here to calculate reflection spectra which repro-
duce well the experimental ones and we have veri-
fied that the calculated singularities are not in-
troduced by some artifact depending, for example,
upon our particular ABC. It is therefore expected
that the method we have used will permit us to an-
alyze many other experimental results.
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