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A semiclassical investigation of the linear dispersion relation and the stationary energy-transport velocity
associated with coupled LO phonon-plasmon waves in polar semiconductors is made. The influence of a free-carrier
drift velocity on the frequency dispersion of the modes is considered, The complex wave vector of the coupled mode
is obtained from the roots of an effective dielectric function which has been calculated on the basis of the appropriate
linearized Boltzmann transport equation, the Maxwell equations, the long-wavelength equation of motion of the
polar-optical lattice- vibrations, and the Born and Huang expression for the lattice polarization. The minor
contribution arising from the collision-drag effect associated with impurity scattering is included in the general
framework of the theory. With main emphasis on small or even vanishing electronic drift velocities, inverse
dispersion relations valid for low-density Maxwellian plasmas are obtained and discussed. The limiting cases,
outside the quantum region, where local or extremely nonlocal approaches can be adopted, are examined. By means
of a simple nonlinear Boltzmann equation the energy-balance equation associated with the LO phonon-plasmon
mode is derived. A general expression for the stationary energy-transport velocity associated with damped (or
amplified) coupled modes is established. Finally, the basic concepts of velocity of energy propagation are applied to
classical plasmas.

I. INTRODUCTION

In polar semiconductors the free charge-car-
rier system is coupled to the longitudinal-optical
lattice vibrations via the quasistatic, nonradia-
tive longitudinal electric field associated with
the LQ modes. ' ' The coupling modifies the dis-
persion relation for both the plasma oscillations
and the optic modes of vibration, especially if
the free-carrier plasma frequency is comparable
to the LQ phonon frequency, the collective modes
cease to by Pkononlike or Plasmonlike in a broad
wave-vector range. From a theoretical point of
view the investigation of the dynamical properties
of the coupled LO phonon-plasmon system con-
veniently is based on three different approaches.
Thus, if the mean free path of the conduction
electrons is small compared to the wavelength
of the coupled mode a macroscopic classical
analysis can be used. Vfhen nonlocal electronic
transport effects are of importance, the LQ
phonon-plasmon system can be investigated by
means of the Boltzmann transport equation,
assuming the characteristic electron de Broglie
wavelength to be small compared to the wave-
length of the coupled mode. Finally, for coupled-
mode wave vectors which are not small com-
pared to the Fermi wave vector of the electrons,
a quantum-mechanical description must be
applied.

The purpose of the present paper is, on the
basis of the semiclassical approximation, to
study the dispersion relation of the coupled LO
phonon-plasmon mode and the stationary energy-

transport velocity associated with the propaga-
tion of the wave.

Quantum-mechanical studies of the dispersion
relation have been given by Varga4 and Kim
et al. ' in the case where no dc current is flowing
through the crystal. In the quantum theories of
Spector' and Gunn' the dispersion relation is used
to calculate the real and imaginary parts of the
wave vector of the coupled modes in the presence
of a dc electric field.

Spector' ' also has considered the interaction
of conduction electrons with acoustic waves in
the presence of an external field on the basis of
the Boltzmann equation. Although the basic con-
cepts in his semiclassical investigations display
points of resemblance to our theory, the quali-
tative differences between optical and acoustical
lattice vibrations are so, pronounced that only
formally can one be guided by the work of Spector.
For instance, if one considers acoustic waves in
the long-wavelength limit it is, for not too low
temperatures, permissible to assume that the
free-carrier plasma is collision dominated,
whereas with respect to optical lattice waves,
often the plasma can be considered as collision-
less at long wavelengths. Furthermore, Spec-
tor's method is less general than the present
theory in the sense that it neglects the reaction of
the conduction-electron system on the acoustic
wave. Expressed in a different way, Spector
uses an impressed-wave method; that is, he
regards the wave number as a constant and the
attenuation of the acoustic wave is taken into
account by calculating the power transferred to
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the electrons. In the present paper the attenua-
tion (or gain), and the wave numbers of the
coupled LO phonon-plasmon mode are calculated
with the aid of the dispersion relation, relating
the real and imaginary parts of the wave vector
of the coupled mode to the (real) frequency of the
wave. This kind of approach is of course neces-
sary when the LO phonon and the plasmon are
strongly coupled.

A phenomenological approach to the investiga-
tion of optical lattice-wave amplification in semi-
conductors which neglect nonlocal transport
effects has been undertaken by Woodruff. "

The most significant new material presented in
this paper is (i) the introduction of collision drag
for the optical-phonon case, (ii) the exact solu-
tion of the dc part of the Boltzmann equation in
the relaxation-time approximation, and (iii) the
analysis of the stationary energy transport.

In Sec. 0 the framework of the theory is given.
Combining the two inhomogeneous field equations
from the theory of classical electrodynamics,
the equation of motion for the optical lattice vi-
brations, the mell-known constitutive equation of
Born and Huang" describing the lattice polariza-
tion, and the constitutive equation for the longi-
tudinal free-carrier current density, the disper-
sion relation can be derived from the usual con-
dition that the effective complex dielectric func-
tion vanishes. The strict additivity of the ionic
and free-carrier contributions to the dielectric
function noted by Varga' is destroyed in the
present analysis. This is due to the fact that the
collision-drag effect" has been incorporated in
the equation of motion of the ionic lattice. In the
calculations it has been assumed that point im-
purities are the dominating scattering sources
for the conduction electrons. In the treatment
of Woodruff the collision drag was neglected.

In Sec. III the response functions relating the
self-consistent ac electric field, the free-carrier
density fluctuations, and the mean displacement
amplitude of the ions in the unit cell to the ac
part of the free-carrier current density are cal-
culated by means of a linearized Boltamann
transport equation. Although we treat the con-
duction electrons as obeying Maxwell-Boltzmann
statistics, and thus restrict the application of
our theory to low-density plasmas in semicon-
ducting crystals, the collision-drag effect,
which roughly speaking is supposed to be of
importance in high-density plasmas only, is
retained for completeness. In a subsequent
paper we shall study the dynamical properties
of the LO phonon-plasmon system at degenerate
free- carrier concentrations. The Boltzmann-
equation calculation presented in this paper is

more general than that of Spector' because we
solve the dc part of the transport equation exactly
and next use this dc distribtuion function to eval-
uate the explicit form of the ac distribution func-
tion. In the limit where the free-carrier drift
velocity is very small, the dc part of the free-
carrier distribution function approaches that ob-
tained by Spector, ' i.e., a displaced Maxwell-
Boltzmann distribution. Also, the ac part of the
free-carrier distribution functionWkes the ap-
propriate form at low drift velocities.

In Sec. IV the linear dispersion relation is
studied in the important cases where (i) the
free-carrier drift velocity vanishes and (ii) the
drift velocity is so small that the de distribution
function is just a displaced Maxwell-Boltzmann
distribution. Explicit expressions are derived
for the real and imaginary parts of the LO phonon-
plasmon wave number as functions of the mode
frequency in the regions of long and short wave-
lengths. In the appropriate limits our results
for the effective conductivity are reduced to those
obtained by Lindhard" and Spector. ' As required,
the equations for the frequency dispersion of the
complex wave number also contain the familiar
results of Spector' and Woodruff" as limiting
cases.

In Sec. V the stationary energy-transport
velocity associated with the LO phonon-plasmon
wave is examined. For an absorbing (or ampli-
fying) medium, the group velocity can no longer
be identified with the velocity of energy propaga-
tion. ' " Under steady-state conditions, given by
the requirement that the cycle=averaged energy
density in the mode is time independent, one can
define the stationary energy-transport velocity
as the cycle-averaged Poynting vector of the
coupled LO phonon-plasmon mode divided by the
cycle-averaged stored-energy density of the
wave. "" Considered somewhat unambiguously,
the Poynting vector is composed of contributions
from the. radiative part of the electromagnetic
field, from the ionic system, and from the energy
flux carried by the conduction electrons. In the
present case the contributions from the electro-
magnetic field and the ionic vibrations are absent
since purely longitudinal plane waves do not
radiate electromagnetic energy, and since the
LO phonon frequency is assumed to be independent
of the wave vector of the mode. The calculation
of the induced Poynting vector and the induced-
energy density of the free-carrier system is
obtained by means of an approximate solution to
the nonlinear Boltzmann equation. Next, on the
basis of the Boltzmann transport equation the
energy-balance equation associated with the LO
phonon-plasmon mode is derived. To the stored-
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energy density of the mode, both the material
oscillators, bound as well as free, and the elec-
tromagnetic field contribute. Finally, an explicit
expression for the stationary energy-transport
velocity is given in the case where the collision-
drag effect can be neglected and the external dc
electric field is absent. In a subsequent paper
numerical results for low-density plasmas in
semiconductors will be presented and compared
to experimental results.

II. FRAMEWORK OF THE THEORY

The present description of the dynamical prop-
erties of a coupled LO phonon-plasmon system is
based on a dispersion relation which is obtained
by a linearization of the corresporiding set of
coupled (differential) equations. The lineariza-
tion leads to the existence of elementary solutions
in the form

A, (r, f) =A, (Q, n) exp[i (Q r —nt)]

with the understanding that the real part of Eq.
(1}should be taken to obtain the appropriate
field components. Solutions more general than
those of Eq. (1) are obtained by superposition
to form Fourier integrals to fit the boundary or
initial conditions with use of the Fourier inver-
sion theorem. Since the equations controlling
the dynamics of the system are linear, the in-
verse dispersion relation

Q=Q(n)

is reduced to a relation between the complex
wave vector (Q) and the complex angular fre-
quency (n) of the mode. In a more general non-
linear dispersion theory the amplitude appears
in the dispersion relation which now is associated-
with periodic, nonsinusoidal wave trains. " As
limiting cases of these wave trains, solitary
waves are found. " Because we are interested in
steady-state mode propagation, 0 is taken as a
real quantity. To account for amplitude attenua-
tion (or amplification) in space, a nonzero imag-
inary part of Q must be retained.

Restricting the analysis to pure longitudinal
modes in nonmagnetic materials, one obtains
from the two inhomogeneous macroscopic Max-
well equations

and

V E=(1/~, )(p-V P)

the following relations between the Fourier am-
plitudes of the electric field (E,}, the polariza-

tion (P, ), the free-carrier density (N, ), and the
free-carrier current density (J,):

ink. E,(Q, n)+ P, (Q, n)] = ~,(Q, n)

and

if'+, (Q, n)+ p, (Q, n)]=-eN, (Q, n),
where e denotes the numerical magnitude of the
free-electron charge. The macroscopic polar-
ization of the medium is throughout the work
assumed to be adequately determined in the
dipole approximation.

To proceed further, an equation of motion for
the ionic lattice vibrations must be established.
For simplicity, the discussion is limited to cubic
crystals containing two nonequivalent ions in the
primitive unit cell, and it is assumed that the
wavelength of the optical mode is sufficiently
long that the purely elastic part of the restoring
force can be considered as independent of the
wave vector of the mode. With these restrictions
the equation of motion for the relative longitudi-
nal displacement (W, ) of the two sublattices takes
the form

where M is the reduced mass of the two ions in
the unit cell, I' is a pheoomenological wave-
vector-independent damping constant accounting
for loss of energy from the ionic motion by coup-
ling to excitations in the solid other than those
associated with the free-carrier system, ~~o is
the long-wavelength transverse-optical phonon
frequency, and e* is the effective charge" of the
mode. The force term F~~ arises from the fact
that the velocity distribution towards which the
conduction electrons relax is a Fermi-Dirac
(or eventually a Maxwell-Boltzmann) distribution
centered, not at the origin of the velocity space,
but at a point equal to some characteristic veloc-
ity related to the instantaneous local lattice-dis-
placement velocities of the two ionic sublattices.
The interaction mechanism described by the
term F, is analogous to the collision-drag
effect'" well known from the theory of ultra-
sonic absorption in metals and semiconductors.
To the author's knowledge the collision-drag
effect has been neglected in previous studies of
coupled LO phonon-plasmon systems. In Sec. IV
it will be discussed under which conditions the
contributions arising from the collision-drag
effect can be neglected in the LO phonon-plasmon
dispersion relation. The Fourier amplitude of
the relative ion displacement obeys the equation

M(-n'- irn+ ~'„)w, (Q, n)
=e*E,(Q, n} +F; (Q, n). (8)
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(10)

and the relative displacement

W, —U~ —U,

are related by the equation

m I'1
2 Pf' MM) (12)

Because the local conduction-electron velocity
averaged over the velocity distribution of
the electrons before a collision ((v)) differs
from that after the collision, which is just Rg, /Rt,
the mean velocity of the lattice, the average loss
in momentum per electron per unit time is
m*((v) —(& $,/Bt)/r, where m* and r denote the
effective mass and the energy independent relaxa-
tion time of the free carriers, respectively.
Since the rate of loss in the local momentum
density of the conduction-electron system equals
the local force density exerted on the lattice, one
obtains the following expression for the local
collision-drag force:

F"(»»)= " ' '
1(»»(» ')) — ' '

) ((&)
¹

where N, is the free-carrier density in thermal
equilibrium and N, is the number of unit cells
per unit volume. Equation (13) shows that the
Fourier amplitude of the collision-drag force is
given by

F;~(Q, A) = (m*/eN, 7)

&&[ieNOA), (Q, A} —J,(Q, A)]. (14)

Combining Eqs. (8), (12), and (14), the equation
of motion of the relative ion displacement is
equivalent to

By assuming that (i) point impurities are the
dominating scattering source for the conduction
electrons and (ii} these impurities are uniformly
distributed throughout the crystal with equal
densities on the two sublattices, a phenomeno-
logical expression for F;~(Q, A) can be obtained
as follows. The conduction electrons will relax
toward a distribution centered at the local aver-
age velocity of the two ions in the unit cell. This
velocity is denoted by (&g,/Bt. Since it is required
that the center of mass in the cell remains fixed,
x.e.,

M'U;+M U, =0,
where M', M and U, , U, denote the masses and
displacements of the positive and negative ions,
the mean displacement

M -A'-iA I'+-~ ~, +&u2ro W, (Q, A)y¹ 2M M

eN, A, — 1'(Q, A)W, (Q, A) .

The explicit expressions for the frequency and
wave-vector-dependent quantities Z, R, and T
will be derived in the next section.

The two inhomogeneous field equations from
the theory of classical electrodynamics, the
equation of motion for the relative displacement
of the two ions in the unit cell, plus the constitu-
tive equations of the material [i.e. , Eqs. (5), (6),
(15)-(17)]involve the five unknown Fourier am-
plitudes @x, +x, &„J„and 8', . By using the
condition that the determinant of these algebraic
equations must equal zero in order to obtain a
nontrivial solution, one can derive the LO pho-
non-plasmon dispersion relation A = A(Q) in
implicit form. After some straightforward but
tedious manipulations one gets

e„f(Q, A)+ i[c„f(Q,A)/ADA] =0, (18)

where the superfluous vectorial specification of
the direction of phase propagation has been
suppressed. Above, we have introduced an
effective long-wavelength frequency- and wave-
vector-dependent dielectric function of the
lattice via

+&1"' —Lo' A'+ll'&'&(Q A)A- (19)

= e*E,(Q, A) —(m+/eN, r)J,(Q, A) . (15)

To complete the framework of the theory one
needs constitutive equations for the solid involv-
ing the polarization and the current density. In
the present approach we shall describe the lattice
polarization by the familiar equation of Born and
Huang, '

P,(Q, A) =N,.e*W,(Q, A) + e,y "E,(Q, A), (16)

where X" is the high-frequency linear dielectric
susceptibility of the crystal. For our purpose,
the attractiveness of the formulation given in Eq.
(16) lies in the fact that although it incorporates
the deformability and polarizability of the ions,
it involves the macroscopic electric field only.

On the basis of a Boltzmann-equation calculation
the constitutive relation for the Fourier amplitude
of the longitudinal free-carrier current density
takes the form

J,(Q, A) =Z(Q, A)E, (Q, A)

—e(A/Q)N, (Q, A)H(Q, A)
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and an effective frequency- and wave-vector-
dependent longitudinal conductivity by

1 —eg„"A/So,.
1 -R(Q, 0) —Z(Q, 0)/S, '

where &„"= 1+X" is the relative high-frequency
linear dielectric constant, and the quantity S„.
is given by

e* ( ¹ee*y
j

i
Pl N P

0

denoting the dc conductivity of the conduction
electrons by o,. In usual notation

(dgo = [(opo + Np (e +) /eotpM ]

(21)

(22)

denotes the longitudinal-optical phonon frequency.
It should be stressed that although the form of
the dielectric function g« is identical almost to
that of the conventional long-wavelength dielectric
function of the lattice, it only is Phononlike be-
cause it contains the coupling to the free-carrier
distribution in the effective damping coefficients

(~ 1 N m*(M' —M )
M' (23)

and

T(q, n)
'*z(q n}

' (24)

III. DETERMINATION OF THE MATERIAL
DESCRIPTORS Z, R, AND T

To include nonloeal free-carrier transport
effects in our analysis of the LO phonon-plasmon
system we solve the linearized Boltzmann equa-
tion for the conduction electrons in the presence
of an optical lattice mode. Since we exclude a
quantum-mechanical description of the electronic
motion, our treatment will be valid only as long
as the characteristic electron de Broglie wave-
length is short compared to the wavelength of
the LO phonon-plasmon wave. It is assumed that

Thus the collision-drag effect destroys the strict
additivity of the ionic and free-carrier contribu-
tions to the dielectric functions noted by Varga. '
Furthermore, spatial dispersion effects are
introduced in the phonon-like part of the long-
wavelength dielectric constant due to the collision-
drag effect. Note that I",«& —I",,", in the limit
T/Z 0.

Facets of the dispersion relation of the LO
phonon-plasmon system, given implicitly by the
usual condition [Eq. (18)] that the total dielectric
function vanishes, will be studied in Sec. IV.

the free carriers are subjected to an external
homogeneous dc electric field Ep.

Inserting a phenomenologieal collision term to
simulate the effects of electron-impurity scat-
tering, the dynamic changes in the free-carrier
distribution function f(r, v, t) are determined by
the Boltzmann equation

Bf Bf e Bf f f, -—+v ~ ~- (E +E ) ~ —=—
Bt Br m* (25)

ef (
v — ', N+N),f BU,

+1 f ( )
B4& Bfo(v)

N p Bt Bv
(26)

where f,(v) is the thermal-equilibrium distribu-
tion function of the electrons. In deriving the
second step in Eq. (26) it has been assumed that
BU;/Bt, BU,/Bt «(v} and N, «N, The las.t term
on the right-hand side of Eq. (26} arises from the
collision-drag effect.

Of interest in the present work is classical,
low-density plasma. Thus, treating the electrons
as obeying Maxwell-Boltzmann statistics, one
has

f,(v =Ã,( ) exp(- ), (2t)

where k~ is Boltzmann's constant and T is the
absolute tempe rature.

To solve the Boltzmann equation we make the
ansatz

f(r, v, t) =f~, (v) +g(v) exp[i(Q ~ r —Qt)], (26)

where the first term represents the free-carrier
distribution in the presence of the dc electric
field, but in the absence of the longitudinal-optical
lattice wave, and the second term represents the

part of the distribution function which is induced

by the wave. For simplicity, the free-carrier
drift velocity given by

e7
m* E (29)

is assumed to be parallel to the wave vector Q
of the coupled LO phonon-plasmon mode.

where f, is the distribution function to which the
electrons relax in the presence of the longitudinal-
optical lattice wave. Since (i) the impurities are
uniformly distributed with equal densities on the
two sublattices and (ii) the scattering is local
and therefore does not change the local electron
density, the distribution function f, is given by
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A. Solution of the linearized dc part of the Boltzmann
equation

By neglecting the nonlinear contribution to the
dc part of the Boltzmann equation present in
Eq. (25) and by choosing the drift 'velocity of the
free electrons in the direction of the positive z
axis of our Cartesian coordinate system, it is
seen that f~,(v) obeys the inhomogeneous first-
order differential equation

v, 3' +f„(v)=f,(v).af„(v}
~vg

(30)

f~,(v}= ' exp —
)

—

~

-~+ '"
~

erfc(u),
271 No I v~) 5 vg)

vuHtb kvo, i vz 2vu

(32)

where we have introduced-the component of the
electron velocity perpendicular to the dc field,
v, = (v'„+ v'„)'f', the thermal electron velocity

v, „=(2k~T/m+}' ' (33)

The solution of Eq. (30) satisfying the boundary
condition f~,(v, ——~) =0 is conveniently written

kg "g dv, 'I

f~,(v,)=v,' f,(v,')exp — —'~dv,', (3l)
5~

g

where the dependence of the distribution function
on the x and y components of the electronic
velocity has been suppressed because this de-
pendence is unaffected by the impressed external
dc electric field. Inserting the Maxwellian veloc-
ity distribution in Eq. (31) one obtains the exact
solution

and the complementary error function"

erfc(v)= f e ' dt
7T ((

of the (real) argument

8 = Vt) /2Vg —'ff /'ffgb .

(34)

(35)

Alternatively, the dc part of the free-carrier.
distribution function can be written on the illus-
trating form

f~,(v) =f,(v —v~)b(v„v~), (38)

F(u) = exp(u') erfc(u) . (38)

Excluding from our considerations the small
number of conduction electrons ig the spectrum
having very high velocities, i.e.,

~

v
~

» v,„, one
obtains" for v~«v&„, F(M) = (2/v v)(v~/u, „). In-
serting this value of F(u) in Eq. (37}, it appears,
to lowest order in v~/v, „, that ~=1. This implies
that the dc part of the distribution function for
small drift velocities equals a drifted Maxwell-
Boltzmann distribution, a result obtained pre-
viously by Spector. '

where f,(v v, ) i—s just a Maxwell-Boltzmann dis-
tribution displaced an amount v~ in velocity
space. In order to get the correct dc distribution
function this drifted Mmcwell-Boltzmann distribu-
tion must be corrected by the factor

a(v„v„)=)( w '"F(u) exp (t ~1-vtn v ' I' 2v,
2v~

(37)
where

B. Solution of the linearized ac part of the Boltzmann equation

(39)

Linearizing the ac part of the transport equation one obtains the following inhomogeneous first-order
differential equation for the Fourier amplitude of the distribution function:

I+i(Q ~ v —Q}r+v (v)= E (Q Q) ' + ' ' f (v)+iQ) (Q Q) ~

The formal solution of Eq. (39) is given by

e Bf~,(v ) ~N f,(v } .Q Rf,(v') "
~

.(, } ~dv, (40)

To derive an explicit expression for g(v} one utilizes

af,.(v) f,(v)(( Wv v,„)
Then, by combining Eqs. (27), (35), (38), (40), and (41) one obtains the result

g(v) =ge(v) +g„(v) +g, (v),

where

g*(v)=,' .I( —(Q( ") «V — '
~ '( &(v)- "G(a))@(Q,&),2vm* v,v,„'

& 2v, &
v',„ Vg

(41)

(42)

(43)
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and

g„(v)= + i
I-iQl " exp' — ', 'lE(n)N, (Q, Q),

1 ( . Vth t vd+vI
2vvn th ( 2vz vth &

(44)

g, (v)=, /, ', 1 —iQl '" exp —,' 1 —(1 —iAr) '" 1 —iQl '" E(c(} $,(Q, Q).
v@vth 2v~ v th ]- v„2v„2 (45)

In the above equation for the amplitude of the free-
carrier ac distribution we have introduced the
function G(o.}by the integral representation

I

and

x exp(-. ax '}E(b —cx}dx
ne GO

G(n)=exp(n ) f E(n')exp[ —(n') ]dn',

where v„. v,„)'/'
n=(I in'-) " I-iQI '"

~2v~ 2v~ j

th z

(46)

(47)

c
gl /2(g e2)

b

(I e2/&)&/2 (I c2/&)&/'d I

straightforward calculations show that the linear
constitutive equation for the current density takes
the form

C. Linear constitutive equation for the free-carrier
current density

The amplitude of the longitudinal ac current
density induced by the optical lattice wave is
given by

d, (G, G) = —%,d (e)d'e .

By making use of the formulas'

(49)

f ( j. /2
exp(- uP)E(b —cx)dx =

~

&a —c'
bI 2 i/2 50

The transformations u-u' and a —~' are ob-
tained by the replacement v —v,'. The electron
mean free path (I) has been introduced using
l —vt„v'.

It should be noticed that the expression derived
for the free-carrier distribution function in this
section is also valid for acoustic lattice waves
which generate longitudinal electric fields. For
long-wavelength acoustic phonons the deformation
of the energy bands can be incorporated in the
expression for g(v) by making the following re-
placement for the self-consistent electric-field
amplitude':

E (Q, fl) —E,(Q, fl) —(I/e)QQ :- 5, (Q, II), (46)

where " is the deformation-potential tensor and

$, now denotes the displacement amplitude of the
acoustic wave.

In the limit of small drift velocities, where the
dc part of the distribution function is just a
drifted Maxwell-Boltzmann distribution, the
result for g(v) is reduced to that obtained by
Spector previously. '

(53)

and

R(Q, n) =(inc) '[I —7('/2ym(y)],

T(Q, n) = 2(1 —in') 'y 2[I —~'/2'(y)].

(54)

(55)

For brevity, the quantities

1-sn7 z. 2v,1+—
Ql Ql v,„

(56)

OO

v 2

I = v,' v, exp —~ G(o)dv,
vth

(57)

have been introduced in Eqs. (53)-(55). Insert-
ing Eq. (12) into Eq. (52) one obtains the consti-
tutive relation for the free-carrier current
density postulated in Eq. (17).

IV. LINEAR DISPERSION RELATION

By means of the explicit expressions for the
material descriptors Z(Q, Q), R(Q, Q}, and

T(Q, 0), which were obtained in Sec. III, the
frequency- and wave-vector-dependent response
functions e,«(Q, 0}and o,«(Q, 0) can be obtained.
In turn, the real and imaginary parts of the LO
phonon-plasmon wave number can be determined
implicitly as functions of the coupled-mode fre-

J,= ZE, —e(Q/Q)RN, +ieQN, TP„, (52)

where the material descriptors of conduction (Z),
diffusion (R); and-collision drag (T) are given by

v, '"
YZ(Q, n)=c, iQI '"

e
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quency using the condition O,f f Q0e,«Q. To
obtain, in the most general case, the inverse
dispersion relation one must take recourse to
numerical methods. In this section we shall
undertake a qualitative study of the linear dis-
persion relation in some important special cases.
Numerical results will be presented in a forth-
coming paper.

tary error function of complex argument via"

zo(z) = exp(-z') erfc(-iz) =F(z/i) .
Without the external dc electric field one

obtains

(» «) 1 N~ N e ~)m (M'-M )
7.

¹ N e j 2M+Mi 0

(63)

A. No free-carrier drift velocity

1. Arbitrary wavelengths

which shows that the effective dielectric function

q,« is independent of the wave vector of the mode.
Furthermore, the contribution from the collision-
drag effect to e,«can be neglected if

In the limit where the external dc electric field
vanishes, i.e., v~-0, the material descriptors
now denoted by subscripts zero are given by

,m*jM'-M
( N ¹

e+
2M'M N,. N, e (65)

and

2z' am
T,(Q, A) =

( zw(z) —(),
where

z =(i+ n7)/ql

and

E,(Q, A)= '. —. zw(z) —1),2(r,z' Wir

1 —iQg i

a,(q, n) = -(in')-'[(W/i)z~(z) —I],

(58)

(59)

(60)

(61)

assuming (N, /N, }(e*./e)) 2 or (0. If these last
inequalities do not hold, one should, according
to Eq. (23}, replace the factor

~

1 —(N,./N, )(e*/e)
~

by unity to obtain the appropriate condition for
the negelct of the collision drag. In lightly doped
(i.e., N, =—10"—10"m ') polar III-V semicon-
ducting compounds such as InSb and GaAs, for
which numerical results will be presented in a
forthcoming paper, the collision-drag effect can
be neglected with confidence.

By inserting into Eq. (18) the wave-vector-
independent effective dielectric function

' dt
zv(z) =-

7t - 8-t' (62)
n'+ir&»n- '

(0) (g) co + ef f ~I.O
&eff &r g2+ ZZ'(0)g ~Seff TQ

(66)

For Im(z) )0, co(z) is related to the complemen- and the effective conductivity

i p L $~

the implicit form of the dispersion relation is obtained. In the above equation the high-frequency
screened free-carrier plasma frequency

(o~ = (N, e'/eg„"m+)'~'

has been introduced.

(67)

(68)

2. Long wavelengths

In the limit of long wavelengths, i.e., in the local regime Ql«1, where consequently iz~ » I, one gets
by means of the asymptotic expansion"

OO

~(z) -- 1+ Q .. . ~»gz~( —' (69)

the following expression for the effective conductivity

1-'0 +N " ('
g 2 '0 kl —'0 )

(70)

with the abbreviation

eN0
I —iQz e*¹i

~
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If the collision-drag effect can be neglected Eq. (VO) is simplified to the form

3,',)(Q, O)= '. 1 ——', (3 —. )(, ) + —', (15-. —,)( . ) +O((Q)) ) (72}

The result in Eq. (72) can be compared with that obtained by Spector in his study of the interaction of
acoustic waves and conduction electrons. For acoustic waves one has Q7 =Ql(V/V, „)«1 for Ql «1 y
being the phase velocity of the soundlike mode. Neglecting terms of order (Ql)4 and higher in o,(~«&, one
obtains precisely the results of Spector. '

Combining Eqs. (18), (66), (70), and (Vl), one obtains to second order in Ql the inverse dispersion
relation

Q = (.„,)- (3O, ,'-,',",')""O, +;(1 '„"„)
*'*

((((3&~ ) 7/0 —eNO/e*N; 02 + il'(Of) Q —(u To
(73)

3. Short wavelengths

In the limit of short wavelengths, i.e., in the extremely nonlocal regime Ql » 1, but still outside the
quantum regime, one has

~

z
~

«1 so that it is appropriate to use the series expansion"
OC&

cv(z)= Q (74)

where I' denotes the I' function. On the basis of Eq. (74) the effective conductivity takes the form

3t[)(Q, O) = 1, ' (1 — ' —„-(~,"v) ') (1 + iv m + i[w —3(3 —3 ')(1 —iO~)], O((Q)) ')) .oft 3 I 2 e3ig

By combining Eqs. (18), (66), and (75) one obtains to lowest order in (Ql) an inverse dispersion
relation

(75)

(76)

It should be remembered that particle-hole exci-
tations giving rise to Landau damping" are
neglected in the present semiclassical treatment.

&(Q, 0)= [2v,/(I —iQr)]y'[I 7('~'xE(x)] —. (V7)

where

I - i(n -Qv, )~
Qf[I + z(2vgv, „)(QI)-']'~2 * (78)

j.n accordance with the analysis of Spector. '- In-
serting the effective damping coefficient

B. Small free-carrier drift velocity

1. Arbitrary wavelengths

Let us consider free-carrier drift velocities so
small that the conduction-electron distribution
function is accurately described by a drifted
Maxwell-Boltzmann distribution. Under these
conditions the material descriptors R(Q, 0) and

T(Q, 0) are still given by Eqs. (54) and (55).
However, the descriptor Z(Q, 0) given by Eq. (53)
will take the reduced form

I'("(Q 0)=I'- —~
¹eg1 gx/2yE y
X,e 1 ~'"xZ(x)

in Eq. (19), and the above simplified expression
for Z into Eq. (20), the appropriate form of the
dispersion relation for small free-carrier drift
velocities can be obtained numerically via Eq.
(18).

Z. Long wavelengths

In the local regime, i.e., for Ql «1 or equiva-
lently ~z~»1, one has

(80)

so that F(2f&& = I'fo&f and consequently e ff (Q 0)
=e(~oj(A). The long-wavelength approximation
to the effective conductivity can be obtained by
making the replacement z iy in Eq. (6V}. Doing
this one has
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2 ' ( eN Q eg
(81)

i

A further simplification of the expression for o,«can be achieved if Iyl »1. Thus, by using the
asymptotic expansion in Eq. (69) for E(y) =N&(iy) one finds

"=I-'~n. l('-.*~, (;)",I '-2I('-~n. I(I ~n.i li".,„' ' ')

(82}

In the limit v~ 0 Eq. (82) reproduces the result in Eq. (70).
By combining Eqs. (18), (66), and (82) to second order in y, one obtains the following important dis-

persion relation at long wavelengths:

v, 2inr(1 —in')' Q(n+i/7) ( eN, Q ' Q'+ir,",)Q —ro'„ /~v)' '~'
iv,„d(1—3inr) d((o~)' ( e+N, ((o~)'r n'+ir~~&n —(gTo

If no electrons are Irapped and one substitutes
the relations urn -=v~/D„=2(vgv, „)'/r and &u,
—= a,/(eg,") for the diffusion frequency (a&n) and
the dielectric relaxation frequency (e,) into Eq.
(83), one obtains, neglecting the collision drag,
essentially the results of Woodruff" in the limit
where the plasma is collision dominated.

-2iAvop eNp 0
())))* e )) fry")'r)

+1&r'2 (g~- .,)~th &Q

+ ol (qf},I

~
I (@I)'~

~thi-

3. Short wavelengths

In the extremely nonlocal regime (Ql » 1) one
has for small drift velocities (v~/v, „«1)

x= y+~=——.+V 8 V~

vth ~ vth
(84)

which shows «t lyl
"»nd

I
"I"'~ T""' "y

using the series expansion in Eq. (V4), it follows
that the effective damping coefficient 1 &',f&(Q, Q}
approaches a wave-vector- and frequency-inde-
pendent damping constant P~J given by

(87)

to third order in the quantities (Ql) ', v~/v, ~ and
products of these. The above results, being
valid for arbitrary magnitudes of Qv, agrees
with that obtained by Spector' if one neglects the
collision-drag effect. In the limit v„- 0, Eq.
(8V) becomes identical to Eq. (75), as required.
Note that o,«(Q, Q) is a linear function of »~ in the
present approximation.

The inverse dispersion relation, determined
by the usual condition 0,« ——icy,«Q, is obtained
by solving the cubic equation

&g ( )
1 ~N tB (M+ M )
7' N 2M'I

N e*x 1
Kpe v,»i, (s5)

v
I

I-»'~' ' Ql+im'"Qr =0. (88)

V. STATIONARY ENERGY-TRANSPORT VELOCITY

in the approximation s)(e) =1. Notice that r,fj
is a linear function of the free-carrier drift
velocity. Now, the phononlike wave-vector-
independent dielectric fucntion becomes

0'2 + iI (qxf) g &2io
"n'+ir«&(v )n- '

ef f
(86)

On the basis of Eq. (84) the effective conductivity
takes the form

In Sec. IG we solved the linearized Boltzmann
transport equation in order to obtain explicit
expressions for the material descriptors Z, R,
and T. However, to study the energy transport
associated with the LO phonon-plasmon wave one
cannot neglect the nonlinearities in the transport
equation. In the present work we shall examine
the energy-transport velocity by retaining in the
dc part of the Boltzmann equation the contribu-
tion arising from the nonlinear term E,(r, t)
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~ Bg(r, v, t)/Bv only. Thus, second and higher
harmonics in the free-carrier distribution func-
tion and the electric field are neglected. Fur-
thermore, the small contribution from the col-
lision-drag effect will be neglected in our calcu-
lation of the energy-transport velocity.

induced part of the dc distribution equivalently
can be written

f„„(») 1 E~*(Qv 0)
Cc

1 Vz /

x d(v) —— exp ' ')d{v')dv,'
V( V~

A. Solution of the nonlinear Boltzmann equation x exp( —2z Imp) . (94)

v, " +je (v) f,(v).r =){e(3,"(Q, tt) ~

x exp(-2z Imp) . (89)

To determine approximately f~,(v) and g(v) from
the coupled differential equations (39) and (89)
the dc part of the distribution function is split
into a sum of a large real linear term (f~,) and

a small complex nonlinear term (f~m,"). Thus,

f„(v)=f,",(v) +-,' Q„","(v) + [f,","(v)]+). (90)

To solve the nonlinear Boltzmann equation we
make the ansatz given in Eq. (28). Retaining the
dc contribution arising from the nonlinear term
E, - Bg/Bv only, the ac part of the free-carrier
distribution function still is given by the Fourier
amplitude in Eq. (39). The dc part of the Boltz-
mann equation is changed to

In the remaining part of this section the contribu-
tion from the collision-drag effect to g (v) will
be neglected.

B. Energy balance

To study the energy balance in the coupled LO
phonon-plasmon system the Boltzmann equation
(25) is multiplied by —,'m*v' and then integrated
over the velocity space. Hence, one obtains

+ v St ——(E„eE, ) ( v* d'v)

+ —,—d'V=O, 95

where we have introduced the energy flux density,
or Poynting vector, of the free-carrier system

Inserting Eq. (90) into Eq. (89) one gets dt(r, t) fv'vd'(r, v=, t)d v' (96)

and

vt(' B» +fgq(v) =f{)(v)

Bf~ (V) N~(») eT
( )

Bg(V)

v ~c 2m* ' ' av

(91) and the free-carrier energy density

zu~(r, t) = v'f(r, v, t)d'v .

Since integration by parts gives

x exp(-2z Imp) . (92)

Now, the procedure for obtaining the nonlinear
part of the dc free-carrier distribution is straight-
forward. Since the differential equation (91)
determining the linear part of the dc distribution
function is identical to Eq. (30), f~,(v) is given by
Eq. (32). Inserting f~,(v) =f~,(v) into the d—iffer-
ential equation for the ac part of the free-carrier
distribution function, i.e., Eq. (39), one obtain
the solution given in Eq. (42) for g(v). By using
this approximative solution for g(v) on the right-
hand side of Eq. (92), the forinal solution of this
differential equation takes the form

v ~d3v= —2 vf d v =—(J + J ),Bf 3» 3 2

av 0 j.

where J, is the dc free-carrier current density,
and since from the Maxwell equation (3)

(98)

aE, ap,' at at ' (99)

=—( 'A+3)+E ' —E ' J -E J —E J2 1 I .a] 0 0 0 1 1 0'

(100)

the nonlinear term in Eq. (95) can be transformed
as

"d Bg(v') f "3dv,"
a "8

x exp(-2z Imp) . (93)

By integration by parts the LQ phonon-plasmon

Combining the equation of motion for the relative
displacement of the two sublattices (suppressing
the collision drag) [Eq. (7)], and the Born and

Huang constitutive equation for the polarization
[Eq. (16)], the second term on the right-hand
side of Eq. (100) can be converted to the form
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ap, aw, ' a~,. a, a aw,V ~ S&+—(wz+ w, + w,„)+N, e+.E, '

where

NM (aW
2, ( at (102)

aw, 'I'
+ eN, E, ' v~+N, M I'

Bt j+, de gp Ep 0, 104
is the energy density of the oscillating ions. ~ The
fourth term on the right-hand side of Eq. (100)
can be written

-E J =—[e(1+X )E'E]+N e+E . .p 1 at p p ' p at

(103)

if one uses Eqs. (16) and (99). By combining
ls. (95), (100), (101), and (103) one obtains

where we have introduced the energy density of
the electromagnetic field, including the energy
of excitations in the dielectric background as
evidenced by the presence of the high-frequency
susceptibility, via

w-=-'~. ('+& )IE.+E.I' (105)

If the external electric field is removed, one
obtains after integration of Eq. (104) over a fixed
volume V of the solid

&a%~~ m* a
S dA+N;MI'

I

'
I dV+ (f-f,)v'd'v dV= —— (w +w;+w, )dV. (106)

The interpretation of Eq. (106) from the principle
of energy conservation is straightforward. Thus,
the time rate-of-energy loss in the volume V due
to transfer through its closed surface A '(first
term on the left-hand side of the equation) and
dissipation via frictional damping of the harmonic
oscillators plus collision losses of the free-
carrier system (neglect of collision drag) (second
and third terms) is balanced by the total rate-of-
loss of the energy stored within V (term on right-
hand side). Notice that f~L, =f„ f&,

"—fz",L (v~
=0), g=g (v, =0), and w,„=w,„(E,=O) in Eq.
(106). When E, a 0 the contributions N,.e+E,

(BW,/Bt) representing the rate of work per unit
volume done by the external dc field on the ionic
oscillators, and NpeEy v„giving the power per
unit volume transferred from the drifting car-
riers to the ac part of the electromagnetic field,
must be incorporated in the considerations on the
energy balance. However, since these products
of ac and dc quantities give no cycle average they
are of no significance for our study of the station-
ary energy-transport velocity associated with the
LO phonon-plasmon mode. Also the dc joule-
effect density Ep Jp is unimportant in our context.

t

B&w)/Bt =0, where w is the total energy density
of the coupled mode.

According to Eq. (104) one has

(w) =&wg+&w, .) +&wq) . (107)

The cycle-averaged energy density in the electro-
magnetic field is given by

&w4 = 2 ~o(I +X")E:+&w.".'& (108)

Finally, the cycle-averaged energy density of the
free-carrier system is given by

&wq) =&wys) + &wp) + &wg"),

where the first term is the contribution from the
external dc field, and the second term

&w,"„)=—,
' ev(l +y")

I
E,(Q, 0)

I
exp(-2z ImQ)

(109)

is the contribution associated with the LO phonon-
plasmon mode. The cycle-averaged energy den-
sity stored in the ionic oscillators is ((w,) =&w", "))
&w",. ') = ,'N,.M(n'+ ~») IW-, (Q, n) I' exp(-2z imq).

C. Velocity of energy transport

l. Basic concepts

where

&wgs) = )I v'f, (v)d'v (112)

In the following the energy transport associated
with the coupled Lo phonon-plasmon wave is
studied under steady-state conditions, given by
the requirement that the cycle-averaged energy
density in the wave is time independent, i.e., f lf," t~l f.(~71&'~'. -(113)

is the energy density bound in the thermal bath of
the free carriers,
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is the energy density induced by the external dc
field, and

NL m
(t()f""&= v'[f,","(vjd'v+ c.c.j exp(-2z ImQ)

(114)

is the energy density associated with the bunching
of the free carriers. Note that any partitioning
of the energy of the system between the material
excitations and the electromagnetic field is inevi-
tably associated with an element of arbitrariness,
because of the impossibility of assigning the in-
teraction energy to either source. Only the total
energy is unambiguously defined for such a
system.

The cycle-averaged Poynting vector of the free-
carrier system can be decomposed into

&s,& =&s"& + &s"'& (115)

(SNL)
Z (t()NI ) + (t()NL& y (~NL&

(119)

2. No external electric field

stressed that only the total Poynting vector is
unambiguously defined for a coupled matter-
electromagnetic wave.

For an absorbing (or amplifying) medium, the
group velocity

v2 =v-n(Q) (118)

cannot be identified with the velocity of energy
,propagation. "" Instead, under steady- state
conditions, the energy-transport velocity (vz)
of the LO phonon-plasmon mode can be defined
as the time-averaged rate of energy flow per unit
area associated with the wave divided by the time-
averaged stored-energy density of the wave, ""
l.e.,

where

(Pz) p%*v]f=,".(v) f.(v)]z('v-(116)

In the absence of the external dc electric field
the Fourier amplitude of the free-carrier dis-
tribution function is given by

is the energy flux density induced by the external
dc electric field, and

(Szee)= *fv'v]fe,"(v)d'vecc. ]exp(-tzrmQ)

(117)

is the part of the Poynting vector which is asso-
ciated with the LO phonon-plasmon mode and
which arises from the nonlinearity of the system.
In general, in a coupled matter-electromagnetic
wave, the total Poynting vector is composed of a
contribution from the material and one from the
electromagnetic field. However, since we are
considering purely longitudinal modes the electro-
magnetic radiation field is absent. Thus, the
electromagnetic Poynting vector equals zero.
The energy flux associated with the ion system
also vanishes, because it has been assumed that
the frequency of the LO phonon is independent of
its wavelength. In parallel to a previous comment
on the enrgy density of the mode it should be

(~ N, (Q, 0)/NQ —(eI'v, /IQ T)EI(Q, 0)
(Q (120)1+i(Qv, —Q)7

if the collision-drag effect is neglected. On the
basis of Eq. (120) the nonlinear part of the dc
free-carrier distribution is obtained via

By inserting Eq. (121) into Eqs. (114) and (117),
and then making use of the formulas

"te '
dt = ztv(z) —III —f.',

8 —t i (122)

"t'e" m
dt =—. z2tt)(z) —III f2z,

8 —t i (123)

and

f e 7T &Z /2
dt =—. z2t()(z) —III f 2z '—

8 —t z 2
(124)

one obtains for the energy density associated with
the free-carrier bunching the result

fz,"(v)=
2

E, (Q, 0) ' exp(-2zImQ). (121)

(mz") = . "2,"(Q, Zl)]~ zm(z) —1 ' ' — Z, (Q, ZZ))+ c.c. exP(-tv ImQ),eN, 2,
(II'f' N, (Q, 0) 2eI.z

4iQ ' '
], i No m*eth

and for the Poynting vector of the free-carrier system the equation

&X /2
(SNL) Z 0 th Eet(Q g) (3Z 2 + 1) ( ) 3 I(

(125)

&X/2
(Sz +()zzc(z) —Pz' ——' Z, (Q, ZZ) +c.c.Iexp(-tzlmQ),m*v z

where 2 is a unit vector in the direction of the positive z axis.

(126)
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To obtain the stationary energy-transport velocity it is necessary to relate W, (Q, n) and N, (Q, n) to
E,(Q, n}. From the equation of motion for the lattice vibrations [Eq. (8)] it follows that

e* E,(Q, n}
'n-'' ir-n (127)

when E;~=0. By using this result with the Maxwell equation (6}and the constitutive equation (16) one
finds

(Q n) g.Q~(I+ ( ";)'
g (Q A)ie ( (o2To —A' —irn j

(128)

fly (eg)2) 1/2
(129}

denotes the high-frequency screened-ion plasma frequency.
Finally, by using the implicit form of the dispersion relation

P'

n + ZI n COLo + 2MTOZ
( n ) ] l(1I

( ) Ill 0"A2+irn ~.. .,n(1 in. )
' ' +

( i ' ' (130)

(131)

and by combining Eqs. (109), (110}, (119), and (125)—(128), on normalized form one obtains the following
expression for the stationary energy- transport velocity:

vz(Q, n) 2Re[H(Q, A)Y(z) —5i(ur~r}2/Ql]

1+, ' „, ,'o, + 2 Re[a(Q, n)X(z)]

where

X(z) = (v'~'/i)zcv(z) —1,
Y(z) = (v' ~/i)(3z2 + 1)se(z) —3z,

and

2s((o,"7)' z
Ql 1+ (in') 'X(z) '

(132)

(133)

(134)

In Eq. (131) the stationary energy-transport velocity is a function of Q and n. To eliminate Q one has to
apply the dispersion relation given in Eq. (130}.

In the long-wavelength regime (Ql «1}one obtains by means of the asymptotic expansion for xo(z) given
in Eq. (69)

and

&(Q, n)Y( )- "' =,. ', G» —5(n )'1 '+o( ')] (135)

H(Q, n)X(z) = . ' (I+—,
' [3 —(in7.) ']z '+ O(z ')] . (136)

Inserting Eqs. (135) and (136}in Eq. (131) the expression for the normalized stationary energy-transport
velocity takes the explicit form

v, (Q, n)
~~h

Ql «1, Av'»1, r 0
(d 0 +GO

(137)

if it is assumed that the solid-state plasma is
collisionless and that the intrinsic damping of the
bound harmonic oscillators can be neglected.
The above expression for the energy-transport

I

velocity holds in the frequency region where mode
propagation takes place. The real wave number
can be eliminated from Eq. (137) by using Eq. (73),
letting 1"-0and (dv- ~.



THEORETICAL STUDY OF THK LINEAR DISPERSION. . .

VI. OUTLOOK

The present theoretical investigation of the
linear dispersion relation and the stationary
energy-transport velocity, associated with a
coupled polar LO phonon-plasmon system under
the influence of an impressed free-carrier drift
velocity, has been limited in several respects.
Thus, it seems natural to generalize the self-
consistent field approach, based here on the
Boltzmann-Vlasov equation, into the quantum
regime to study the LO phonon-plasmon modes
at degenerate free-carrier concentrations in polar

semiconductors. At high carrier densities, where
the collision-drag effect plays an essential role,
the treatment of electron collisions with thermal
lattice vibrations from the standpoint of a basic
electron-lattice interaction theory will be appro-
priate. A detailed analysis of the energy-trans-
port velocity assoicated with quasilongitudinal
modes which radiate electromagnetic energy and
with dispersive phonon modes which themselves
transport energy will be essential. Finally, it
would be interesting to study the nonstationary
energy transport connected with anharmonically
coupled systems of polar lattice vibrations and
plasma modes, especially solitary waves.
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