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Pressure-induced structural transitions in partially ionic semiconductors:
Self-consistent pseudopotential approach to ZnSe
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%e present a self-consistent pseudopotential study of the pressure-induced phase transition from the zinc-blende to
the rocksalt structure in ZnSe. Our results for the dependence of the band structures on the lattice constant show
that the transition is not accompanied by an insulator-metal transition. The dependence of the various contributions
to the total energy on the lattice constant and on the. structure is discussed. In agreement with current bond-charge
models, we find that the strong dependence of the electron-ion interaction on the lattice constant is responsible for
the phase transition.

I. INTRODUCTION

A. ~B' compounds, when subject to hydrostatic
pressure, transform to more dense structures due
to the driving term PsV in the expression for the
Gibbs free energy. In particular, partially ionic
semiconductors, which at atmospheric pressure
crystallize in the sphalerite structure with four-
fold tetrahedral coordinates, undergo a phase
transition to structures with six-fold octahedral
coordination, either ideal (rocksalt) or distorted
(e.g. , white Sn).

Both the transition pressure I', and the volume
6V, are known experimentally only for a few cases.
However, a common trend can be recognized"
which consists in an abrupt density change b V/V,
of about 20% at the transition pressure. The con-
nection between this structural change and the na-
ture of the chemical bonds has been extensively
treated by Phillips' and Van Vechten' on the basis
of their spectroscopic definition of ionicity f,

Qn the other hand, only a rather limited effort
has been made4 so far to describe this phase
transition on the basis of full quantum-mechanical
calculations. The reason for that is mainly their
limited accuracy in predicting the total energy dif-
ferences involved in the transition, typically of
the order of a few tenths of an eV per atom pair
(a few percent of the cohesive energy). The prob-
lem of accurately calculating equilibrium lattice
constants and cohesive energies has been con-
fronted only recently, for simple as well as for
transition metals' and among semiconductors' '
only for the case of Si.

The purpose of quantitatively predicting
pressure-induced phase transitions and tran-
sition heats E'b, P is even more ambitious. In this
paper, we attempt joy' the first time a self-con-

sistent calculation and apply it to ZnSe, a typical
partially ionic semiconductor which most prob-
ably transforms from the zinc-blende (zb) struc-
ture to the rocksalt (rs) structure at moderate
pressure [-100-200 kbars (Refs. 10-12)].

Our approach is based on a self-consistent cal-
culation of the total energy of this system in both
structures for various lattice parameters. Our
aim is to understand the basic mechanism which
drives the transition, in terms of the single con-
tributions to the total energy of the electron-ion
system.

Besides the total energy our calculation allows
us to discuss:

(i) The energy bands and charge densities in the
two different structures for various atomic den-
sities (Sec. II). The former results can be com-
pared to experimental and theoretical values of
deformation potentials" and to some previous pre-
dictions' based on the bond-orbital method"
(BOM). Comparison of the charge densities allows
a better understanding of the chemical binding for
different structures and atomic densities.

(ii) The reliability and the limitations of soft-
core pseudopotentials for the understanding of
structural properties.

The balance of the different total-energy contri-
butions which determines the crystal structure is
analyzed (Sec. III) and further extensions and im-
provements of our approach are envisaged (Sec.
iv).

II. CHANGE OF ONE-ELECTRON PROPERTIES
UNDER PRESSURE

Our calculation is based on the local soft-core
pseudopotential models for Zn" and Se' ions pro-
posed by Hamann. " Their general. expression is
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v„,(r) = w, (r) + tv, (r),
where

tv, (r) =(v, +v, r')e

(la)

(1b)

E(eV j

and tv, (r) is the electrostatic potential of a Gaus-
sian positive-charge distribution

p(r) =Z(u/w)"'e ~" . (1c)

Z denotes the number of valence electrons. Note
that throughout the paper energies are given in Ry.

The Fourier transform of v„„(r) is

2 Sws

0-

-5-

For later purposes we define

v„,(G) = v„„(G)+
2 8mZ

(2a)

(2b)

-10-

s= 565A

which describes the ion potential in the presence
of a compensating homogeneous negative back-
ground. The parameters of the ion pseudopoten-
tials are listed in Table I.

Energy bands and charge densities were calcu-
lated self-consistently for both the zb and the rs
structures at various lattice constants. Conver-
gence was generally obtained with about 90 plane
waves, a typical number for soft-core pseudopo-
tentials. To speed up the self-consistent iteration
procedure, we used the Baldereschi point" for the
calculation of the charge density. The exchange-
correlation potential for the system of valence
electrons was approximated by the Wigner expres-
sion"

E(eV j

5-

0.

(a)

0.944 + 8 77n" '(r)').
(3)

-5.
where n(r) is the electron density.

In Fig. 1(a) the solid line represents the energy
bands of ZnSe in the zb structure with the experi-
mental equilibrium lattice constant a = 5.65 A.
They compare reasonably well with other nonrela-
tivistic band structures available in the kiter-

8=v.IA

TABLE I. Pseudopotential parameters for Zn2+ and
Ses+ (Ref. 16). The units used in the expression (1b) are
Ry for energies and a.u. for distances.

-15-

V( V2

X I

(b)

Zn
Se

5.7924
4.7656

-1.8480
-3.1002

0.61
0.61

FIG. 1. Band structures of ZnSe for two different val-
ues of the lattice constant: (a) a = 5.65 A (b) a = 5.1 A.
Solid line = zb structure; dashed line = rs structure.
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ature "
The comparison with experimental data is ob-

viously of limited accuracy due to the fact that we
do not take into account either nonlocality of the
pseudopotential or relativistic effects. Valence-
band widths, which are most affected by both ef-
fects, can be reasonably compared to photoemis-
sion data. ""' The worst theoretical result is the
energy gap at F, for which we obtain 3.8 eV. The
experimental value is 2.67 eV." If we subtract
the spin-orbit splitting (b,„=0.43 eV) (Ref. 23)
from our nonrelativistic value, it reduces to 3.66
eV. The gap at L, is higher by about 0.16 eV (to be
compared to the experimental value 5 eV)." Non-
locality of the pseudopotential is expected to be
responsible for changes of the order of a few tenths
of an eV as has been shown by Chelikowsky and
Cohen" for QaAs.

In view of the present state of the art of band-

structure calculations, our results might appear
not accurate enough. However, in this context,
we were not interested in the details of the one-
electron energies because they are not expected
to significantly change our general description of
the pressure-induced phase transition. Also,
comparison of the energy bands and charge den-
sities in the two different crystal structures and
at different lattice constants will not be altered in
a significant way.

In Fig. 1(a) the dashed line represents the energy
bands of ZnSe in the rs structure at the same eq-
uilibrium density (a = 5.65 A). In this configura-
tion, the indirect nature of the material is much
more pronounced. Also, the overall character of
the band structure is more metallic, both the di-
rect and indirect gape being smaller. In Fig. 1(b)
the two band structures are shown for higher den-
sity (a=5.1 A). The above comparison at lower

zinc blende a= 5.s5R zinc blende

(a) (b)

rock salt
Zn

a=5.65R rocksalt
Zn

a=5.1R

Zn

(c)

Zn

FIG. 2. Valence charge density in ZnSe: (a) zb structure (a=5.65 A), (b) zb structure (a=5.1 A), (c) rs
structure (a =5.65 A); (d) rs structure (a =5,1 A).
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density changes in a significant way. While the
I"—I' and the X'- I gaps increase with decreasing
lattice constant, the indirect I'-X gap strongly
decreases in the zb structure and changes only
slightly (~=0.01 eV) in the rs structure. This
behavior is in contrast to the non-'self-consistent
calculation of Ciraci" based on the BOM, for
ZnSe in the zb structure, which predicts both the
indirect gaps at I and X to increase as the lattice
constant decreases.

We find that the valence bands are nearly struc-
ture independent whereas the conduction bands
strongly depend on the structure. This behavior
can be qualitatively explained by inspection of the
respective charge densities. As shown in Fig. 2,
the valence states are essentially localized around
the anions and thus only slightly influenced by the
relative position of the anion and the cation sublat-
tices. The same argument does not hold for the
conduction states, which on the contrary are rath-
er extended in real space."

Both valence and conduction states depend rather
strongly on the lattice constant. The density of
the valence charge density for the zb structure is
also shown in Fig. 2. We notice that the electronic
charge density becomes more diluted with increas-
ing atomic density and we observe in particular a
decrease of the valence bond charges, which al-
ready indicates a destabilization of the zinc-blende
lattice.""We shall discuss this point in more
detail in Sec. III.

We have calculated the deformation potentials
for the lowest gaps at I', X, and I for the zinc-
blende structure. These are given in Table II to-
-gether with the available experimental values and
the theoretical. values derived by Cerdeira et al."
in their non-self- consistent Korringa-Kohn- Ros-
toker approach. Both our values and those of Ref.

. 13 are calculated with the experimental dependence
of the lattice constant on external pressure

III. CHANGE OF THE TOTAL ENERGY
UNDER PRESSURE

A. Formulation

The total energy of the crystal per unit cell (vol-
ume 0) is

E =E —E +E

where E» is the sum of the one-electron energies
discussed in Sec. II

E = Q J d%B„(lt),
Bz n ~az

with Q = volume of the Brillouin zone and n =band
index, running over the valence bands. E,, is the
Madelung energy of two ion sublattices of charge
Z,e and Z,.e, respectively:

(4b)

Z,Z,

and E„is the interaction energy of the electron
system:

(4c)

(4d)

namely, the sum of the Hartree (electrostatic) in-
teraction term which depends locally on the elec-
tron density n(r):

n(r)n(r')
lx —x I

(4e)

and of the exchange and correlation interaction
terms which are nonlocal in n(r). Within the
framework of local density theory, "ERc can be
reduced to a local form as

(Ref. 28). The agreement is rather satisfactory,
in particular if we keep in mind that our band struc-
ture differs somewhat from the experimental one
as discussed previously.

=-0.57x 10 cm /dyn
1 da -12 2

a dP with

XC . XC RC (4f)

TABLE II. Calculated and experimental pressure co-
efficients for ZnSe, (in 10 eV/bar) for various energy
gaps. Spin-orbit effects have been neglected in our cal-
culation.

E"'=— n r E„,n r d'x.

(4g)

(4h)

Present
calculation

Theoretical
(Ref. 13)

Experimental

7.3

10.8

4 0

6.0

-0.1
d [no„,(n)]

'U„(n (4i)

The one-electron term E» in (4b) can be further
decomposed in its single contributions as

here &„,(n) is the exchange-correlation energy den-
sity and is related to v„,(n) through the expression

' D. %. Langer, quoted in Ref. 13. E~8= TIE,] + 2E„+E'„", , (5a)
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where T is the kinetic energy

r = Q f i(%(iik(~ ~(iik)
sz

and E„ is the electron-ion interaction energy

E„=Qf d'iii(r)ii (F+„,((+i(.
lgj 0

(5b)

(5c)

E(Ry}

-22.0.

With Eqs. (5) we can rewrite the total energy as

E =T+E . +E +E .-E"&

which we will use in the later discussion. Since we
work in the pseudopotential scheme, n(r) in the
above expressions is obviously the pseudodensity
of valence electrons and U„, in (5c) is the ionic
pseudopotential given in Sec. II. E,, and E~ can
be calculated separately, provided this is done in
the presence of a uniform opposite charge distri-
bution that compensates unwanted infinite quantities
(see, for instance, Ref. 8).

-22S-

4 5 6 7
a(A}

FIG. 3. Total energy of ZnSe in the zb and in the rs
structure as a function of the lattice constant [uncor-
rected 8{q= 0)].

B. Determination of equilibrium lattice constants and
transition pressure

In Fig. 8 the total energy E„, (a) in (4) is shown
as a function of the lattice constant in both zb and

TABLE III. Total energy contributions (in By) lEqs. (4) and (5)] for the zinc-blende (above)
and the rocksalt (beloiw) structures at different values of the lattice constant (in A).

4.9 5.1 5.37 5.65 5.8

Eei

E(0

8.251
7.878

2.452
1.974

-2.259
-1.248

-7.225
-7.114

1.219
1.490

7,62
7.198

3.546
2.894

-4.492
-3.176

-6.934
-6.790

-0.266
0.126

7.355
6.945

4.102
3.400

-5.474
-4.088

-6.812
-6.661

-0.829
-0.404

7.054
6.669

4,854
4.115

-6.688
-5.270

-6.667
-6.511

-1.447
-0.994

6.793
6.446

5.630
4.876

-7.843
-6.441

-6.536
-6.381

-1.956
-1.500

6.673
6.348

6.032
5.274

-8.413
-7.030

-6.473
-6.320

-2.181
-1.729

E(2)

Eee

1.226
0.987

-7.225
-7.114

5.583
5.499

-0.416
-0.628

1.773
1.447

-6.934
-6.790

5.364
5.256

0.203
-0.087

2.051
1.700

-6.812
-6.661

5.273
5.189

0.512
0.198

2.427
2.057

-6.667
-6.511

-5.165
-5.047

0.925
0.593

2.815
2.438

-6.536
-6.357

5.068
4.950

1.347
1.007

3.016
2.637

-6.973
-6.320

5.021
4.905

l.564
1.222

E;;

Eee

Etot

—23.829
-24.641

1.219
1.490

-0.416
-0.628

-22.194
-22.523

-21.884
-22.629

-0.266
0.126

0.203
-0.087

-22.353
-22.416

-21.026
-21.742

-0.829
p 4p4

0.512
0.198

-22.367
-22.344

-19.969
-20.649

-1.447
-0.997

0.925
0.593

-22.341
-22.239

-18.974
-19.620

-1.956
-1,500

1.347
1.007

-22.277
-22.127

-18.488
-19.118

-2.181
-1.728

1.564
1.222

22 y2 33
-22.068
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rs structures. For the zb structure, our ab initio
calculation yields an equilibrium lattice constant
which is 10% smaller than the experimental value
(-5.1 A instead of 5.65 A). Moreover, the absolute
minimum of the total energy corresponds to the
rs structure, which makes the zb structure metas-
table at zero pressure.

It is well, known that the prediction of crystal
stability at the experimental lattice constant from
a fully ab initio calculation is a very difficult prob-
lem, in view of the delicate balance of the bonding
forces involved. In order to find the term respon-
sible for the deviation from experiment, we have
to study the single contributions to the total energy
(4) and (5), and to analyze carefully the assump-
tions of our calculation.

In Table III we quote the values of all the energy
terms in (4), and in Fig. 4 their dependence on a
in the zb structure is explicitly shown. It is evid-
ent that the most relevant contributions come from
the attractive Madelung energy E, , and from the
repulsive electron-ion interaction. The latter is
essentially caused by its contribution 8[v(;(0)
+Bs„',(0)j [see Eg. (2)] which describes the inter-
action of a uniform electron gas with the ions.
Unfortunately, this term depends on the assumed
model in a crucial way, as already pointed out by
Ihm and Cohen' in the case of Si. In full analogy
with the remarks of Martin and Wendel, ' Harris
and Jones, ' and Ihm and Cohen' about the Appel-
baum and Hamann pseudopotential for Si,"we find
that also for ZnSe the mean value v„,(0) of the
pseudopotential in Eqs. (1) and (2) is not suffic-
iently repulsive. This yields an equil. ibrium lat-
tice constant which is far too small.

Moreover, we notice that it strongly depends on
the lattice constant being linear in the total density
(-I/a').

v 5"'

3, (v l'» vZ,

0
45 50

—EH

a(A)
6,0

-10.

(2)
-Exc

Ee)

EIi

FIG. 4. Individual contributions to the total energy for
ZnSe in the zb structure. The notation is the same as in
Eq. (63.

stant and on the structure, plays a minor role in
the relative stability of the structures as will be
discussed later. This has already been pointed out

by Ihm and Cohen in the case of Si.'
We have adjusted the constant C in Eq. (6) to re-

produce the equilibrium lattice constant a,b
= 5.65

A. This choice (correction AC/C-0. 3) gives the
new dependence E„, (a) shown in Fig. 5, here also
the zb structure is correctly predicted as the sta-
ble one, and the rs structure has a metastable
minimum at a„-5.3 A. This implies that, on
passing from zb to rs structure, while the distance
between like ions decreases by 6%%uo, the bond length
Zn —Se increases by about 8/0 (from 2.45 to 2.65
A). This latter corresponds to the transition to a
less covalent type of bonding, for increasing den-
sity .

The total energy E„,is related to the external
hydrostatic pressure P by

Et.t =E0 —Pn

where E0 is the total energy per unit cell at zero
pressure. In Fig. 6 the total energy is plotted as
a function of Q; the external pressure is given by

-21Q-

With the potential parameters in Table I, we obtain
t" =254.35 Ryr~. It is worthwhile to point out that
a change in v„,(0) does not alter either the rela-
tive position of the energy bands or the wave func-
tions and charge densities (discussed in Sec. II)
and clearly is structure independent.

The other approximation involved in our calcu-
lation should be of minor importance, namely, the
treatment of local exchange-correlation interac-
tion and other features of the electron-ion pseudo-
potential model. In particular, the former term,
being only slightly dependent on the lattice con-

-21$-

a{A)
6

FIG. 5. Total energy of ZnSe in the zinc-blende and in
the rs structure as a function of the lattice constant.
Icorrected 8Q = 0), see textt.
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E(Ryl
-21,0-

dX&Ry

—Eei

-21,5- 0
4

rocksalt

II: I
' trans~
I

zinc blende
I

I I
I I
I
I I
I

I I

I

I I

(2j-Exc
6

T
EH

a4

go ~zb
'20 30 3 40 50

O(A l

FIG. 6. Total energy of ZnSe in the zb and in the rs
structure as a function of the unit-cell volume tcor-
rected 8(q= 0), see text].

the gradient of E,(Q). For the change of the lattice
constant as a function of pressure we obtain (1/
a)(da/dP) = —0.32 x 10 "which can be compared to
the experimental value of —0.57&& 10 "cm'/dyn. "
The straight line indicates the critical pressure
for which the rs and the zb structures coexist.
This equals the transition pressure if hysteresis
effects can be neglected. From Fig. 6 we obtain
a transition pressure of 282 kbars. The lattice
constant changes from 5.25 to 4.85 A during the
transition which corresponds to a volume change
of 21%. Experimental data"'" give a value of
137 kbars for the transition pressure (see, how-
ever, Ref. 31) and a volume change of about 20%.
The experimental value a = 5.08+ 0.03 A for the
lattice constant of the rs lattice under pressure, is
reported in Ref. 11. It is obvious that the calcu-
lated value for the transition pressure depends
critically on our choice of v„,(0): the original
value would have given P,&0. The calculated in-
direct gap is 3.3 eV just before the transition and
1.1 eV after the transition. Thus, as already men-
tioned before, the structural phase transition is not
accompanied by a semiconductor-metal transition.

C. Mechanism of the structural phase transition

To gain a physical understanding of the mechan-
ism that drives the structural transition, we anal-
yze the relative role played by the individual con-
tributions to the total energy for the two struc-
tures. This is done in Fig. 7 where we have plot-
ted the qo.antities

M =x(rs) —x(zb),
for each term "~"in the expression of the total
energy [Eq. (5d)]. We note that these energy dif-
ferences are not affected by our choice of v„„(0).
Figure 7 indicates that the electron-ion interaction
E„.and the exchange-correlation energy E'„", favor
the zb structure whereas the other terms (i.e., the
kinetic energy T and in particular the ion-ion inter-

EH+ Eii

aX= X(rocksaltj —X {zinc blende)

FIG. V. The difference bebveen the various contribu-
tions to the total energy of the rs and the zb structure
as a function of the lattice constant.

action E, , and the Hartree energy E ) favor the rs
structure. The exchange-correlation interaction is
rather structure independent and can be neglected
for the discussion of the relative stability of the
two considered lattices.

The covalent interaction energy, which is strong-
ly directional and therefore involves at least
three- body forces, is desc ribed by the electron-
ion interaction E„.. This term, which tends to
favor the covalent zb structure, decreases rapidly
for increasing atomic densities. This can be eas-
ily understood: E„.is strongly determined by the
distribution of the valence charge density and in
particular by the amount of bond charge Z, (Refs.
26 and 27) in the case of the zb structure. As
shown in Sec. II, our self-consistent electronic
charge density becomes more diluted as the lat-
tice constant decreases. The corresponding de-
crease of bond charge leads to a destabilization of
the zb structure for increasing hydrostatic pres-
sure. This ean be seen as the microscopic de-
scription of the mechanism of the phase transition.
The relevance of Z, for the stabilization of coval-
ent structures and covalent-ionic phase transitions
was already emphasized in Refs. 27 and 32.

, E„, and also the kinetic energy T favor the
rocksalt structure: the former because the re-
pulsion of the charges decreases with the nearest-
neighbor distance, the latter because the overall
electron density is smoother in structures with
higher coordination.

The density dependences of ~H and ~,, are
opposite, the sum of both being roughly constant.
This is again a consequence of the density and
structure dependence of the valence-electron dis-
tribution discussed in Sec. II. It thus appears that
the classical Coulomb interaction energies E„
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and E,, are the essential contributions which favor
the rs structure against the zb structure. The
phase transition itself, however, is driven by the
electron-ion interaction E„.which by itself always
favors the zb structure, but much less for small
lattice constants.

IV. CONCLUDING REMARKS

We have shown that the local-density approach
to the total energy of the system is able to describe
the basic mechanism which is responsible for
pressure-induced phase transitions. In this work,
we have considered ZnSe as a prototype of par-
tially ionic semiconductors and studied its tran-
sition from a tetrahedrally coordinated to an oc-
tahedrally coordinated structure. Such a transition
cannot be explained on the basis of simple Born-
type phenomenological models of atomic interac-
tions" in which only pairwise interatomic forces
are considered. '4

We have shown that the electron-ion interaction
plays a key role for the relative stability of the
two competitive structures. The density depen-
dence of the electronic charge density shows that
the bond charge decreases with increasing atomic
density, thus leading to a destabilization of the
tetrahedrally coordinated lattice. This behavior
of the charge density indicates a density-depend-
ent hybridization of valence states, changing from

sp' character with increasing atomic density.
Bonding Wannier functions, "if available, would
probably be a useful tool to investigate this point.

In agreement with previous studies of cohesive
properties in Si,' ' we have found that lack of ac-
curacy in the model pseudopotential for the elec-
tron-ion interaction does not allow a quantitative
picture of the transition. Fitting of the parameters
can be avoided if a totally ab initio pseudopotential,
which is able to reproduce free-ion energies as
well as wave functions, is used. This kind of
pseudopotential model starts now to be available. "
We plan to continue our work along these lines.
We believe that the extension of this kind of work
to other materials, together with more accurate
experimental results, would be of great interest
for the understanding of the structural chemistry
of semiconducting compounds.
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