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The theory of vacancies near a bimetallic interface is developed within a tight-binding model. It is shown that the
local density of states is significantly influenced only in. the immediate vicinity of the vacancy, and that the vacancy-
formation energy is an oscillatory function of the distance of the vacancy from the interface. For the specific
interface considered the vacancies tend to be attracted towards the interface. In the extreme case a vacancy can gain
more than 10 percent of its formation energy by migrating from the bulk to the interface region. When two
vacancies are present in the system they interact due to the polarization of the medium. This interaction is shown to
have an oscillatory dependence on the intervacancy separation. The nearest-neighbor interaction of the interface
considered is found to be attractive with an energy which is about 1/3 of the vacancy-formation energy.

I. INTRODUCTION

The quantum-mechanical theory of solid-solid
interfaces is a relatively new branch of surface
physics. The electronic structure of such inter-
faces has been recently studied by several authors.
The interest in this kind of problem stems from
both theoretical and practical origins. One can
say that the technological need for a better under-
standing of metal-semiconductor and sem icon-
ductor-semiconductor junctions, bimetallic ad-
hesion, grain boundaries, friction, and similar
problems served as a catalyst for the various
studies in this area.

The electronic properties of a bimetallic inter-
face formed by two simple metals were analyzed
by Bennett and Duke, ' Ferrante and Smith, ' Hou-
hani and Schuttler, ' and Mehrotra, Pant, and
Das. 4 In these theories the two metals were
treated within the jellium model, using the den-
sity-functional formalism of Hohenberg, Kohn,
and Sham. '

The electronic properties of bimetallic and
metal-semicooductor interfaces were discussed
recently, using tight-binding models, by Davison
and Cheng, ' Allan, Lannoo, and Dobrzynski, '
Muscat, Lannoo, and Allan, ' Yaniv, ' and Lowy
and Madhukar. "

All the models developed thus far deal with an
ideal, coherent interface which is formed by
matching two semi-infinite solids having the
same translational symmetry parallel to the inter-
face. Such systems obey a two-dimensional Bloch
theorem, and the crystal momentum parallel to
the interface is a good quantum number. This
relatively high degree of symmetry was taken
advantage of by the above-mentioned investigators
in order to simplify the solution of the interface
problem. However, real interfaces certainly do
contain various types of defects near the interface.

The presence of such defects lowers the symmetry
of the system, and even the two-dimensional
Bloch theorem is not applicable. Therefore, the
crystal momentum parallel to the interface cannot
be used any more as a good, conserved, quantum
number.

One of the simplest possible defects which des-
troys the translational symmetry parallel to the
interface is the presence of a vacancy, i.e. , one
of the atoms is missing from its original lattice
site. The present work is devoted to the study of
the electronic structure of vacancies close to a
bimetallic interface. As our starting point we
adopt the tight-binding coherent interface studied
by us earlier. ' Similar models were used exten-
sively in the literature to study the electronic
properties of transition metals. The contribution
to var ious quantities, s uch as the bulk cohes ive
energy, the bulk vacancy-formation energy, and
the surface energy, evaluated within a one-electron
single tight-binding band, give quite a good quali-
tative agreement with experiment. Thus, correc-
tions due to electron-electron interaction, changes
in the elastic energy of the solid near the vacancy,
and other fine effects are neglected also in the
present work.

The one-band tight-binding model, whose details
are outlined in Sec. II, can be viewed as a crude
description of an interface formed between two
transition metals. The local density of states in
the vicinity of a vacancy close to the interface is
determined in Sec. III by using a Green's-function
perturbation technique. Also evaluated in Sec. III
is the vacancy-formation energy, whose dependence
on the distance from the interface is discussed.
Section IV analyzes the vacancy-vacancy interaction
mediated by the polarization of the medium.

II. THE MODEL

The electronic structure of a coherent, tight-
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6V= ~(EF —E~)

(2. 1)—~h, EF,

E~ and E~ being the Fermi energies of metal a
and 5, respectively. The common Fermi level,
after the junction is created, is given by

Ep =E~ —b V =E~+b, V = ,'(E~ +E~). — (2 2)

The Hamiltonian of the coherent interface, in the
Wannier representation, is taken to be

(2.3)~ ~m n crncn ~

S,I
where e~- and c- are the creation and the destruc-
tion operators of a Wannier orbital at the lattice
site m. The matrix elements I;- -„are

binding, bimetallic interface was studied by us
recently. ' This work will be used in the following
as a starting point for the investigation of the
properties of vacancies formed close to such an
interface. For the sake of simplicity, the present
article deals with a (100) interface formed between
two simple cubic metals. Each metal is described
by a single-band tight-binding Hamiltonian. We
shall treat explicitly the case where the two metals
are described by the same tight-binding param-
eters but have different Fermi energies. The
hopping integral between the two semi-infinite
metals is taken to be equal to the bulk value. We
also assume that the Hamil. tonian has a tenfold
degeneracy. This simple model can serve as a
crude model describing the electronic properties
of a (100}interface formed between two transition
metals belonging to the same series, and will be
referred to as such in the following. The inter-
face is taken to be in the xy plane, and the two
metals forming the junction, metal a and metal 5,
to occupy the upper and the lower semi-infinite
half spaces, respectively.

The difference in the Fermi energies of the two
metals l.eads to the creation of a dipole layer at
the interface, which in turn aligns the Fermi levels.
The magnitude of the dipole barrier is 26V, where

( g, n) =~ '
[

n)e'&~~ "~i
II ~

—
II

(2.5)

where
~
n) is a Wannier orbital localized at the

lattice site n, NI~ is the number of atoms in the .

interface plane, nII is a lattice translation parallel
to the interface which equals to the transverse
component of n, whereas n is the corresponding
perpendicular component. The basis functions
(2.5) are Wannier-type perpendicular to the inter-
face, and Bloch-type parallel to it. Thus ~k~~, n}
is localized around the nth plane parallel to the
interface, and has a crystal momentum k

II
in the

same plane. We note that the planes n & 0 are oc-
cupied by a-type atoms, whereas b-type atoms
occupy the n & -1 planes.

The diagonal matrix elements of the coherent
interface Green's function, in the Bloch-Wannier
representation, were determined analytically in
Ref. 9. The general matrix elements of this
Green's function, G'(m, n;k~~), can also be deter-
mined in an analogous way. For the model under
consideration these matrix elements, for a (100)
interface, are given by

&-4P if m =n and m is an g site,

+hV if m =n a,nd m is a k site,
t (2.4)

E, if m and n are nearest neighbors,
t

0 otherwise .

In writing the above expression we assumed that
the energy is measured relative to the center of
the bands. Also, E, is the transfer integral, or
the nearest-neighbor hopping amplitude.

The coherent interface Hamiltonian (2.3) has a
translational symmetry parallel to the interface.
Because of this symmetry, the corresponding
eigenfunctions can be chosen to satisfy a two-
dimensional Block theorem, and the crystal mo-
mentum parallel to the interface, kII, is a good
quantum number. Owing to this symmetry, it is
convenient to describe the coherent interface in a
mixed Bloch-Wannier representation"

(0~ +1/~ 1 QJ+ +Zp. ill ~ + (8 8E&z

for m, n~0 and by

(2.6a)

4E', +(p, , + ta&,}(p~+i&o~) 2E, 2E, (2.6b)

for m ~ 0 and n ~ -1. In these equations

(o, =E+b, V —2E,[cos(k, a) +cos(k,a)],
or~ = E —b, V —2E,[cos(k,a) + cos(k„a)],

(2.7a)

(2.7b)

I

and

~~

(4E2 ~2)l/2 for ~2 ( 4E2

i sgn(&o)(uP —4E',)'" for &u' & 4E', .
(2.8}
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When a localized vacancy is created, the transla-
tional symmetry parallel to the interface does not
exist any more. Under these circumstances, the
Bloch-Wannier representation (2.5) loses its con-
venience, and one has to turn to the Wannier, site-
localized, basis functions. It follows from the
transformation law (2.5) that the Wannier represen-
tation of the Green's function is related to its
Bloch-Wannier representation by

0 (m, n)=(2 )
' f dk~~G (m, m;k~~)e'"» ~=»- „&,

ity we obtain for the vacancy Green's function

G'(m, v)G'(v, n) (3.4)

In particular, the diagonal matrix elements are
given by

G'(m, v)G'(v, m)
G Iv, v)

(3.5)

The local density of states, at site m, is related
to this Green's function by

(2.9) n (E) =(1/p) ImG(m, m), (3.6)

where the k„ integration goes over the two-dimen-
sional Brillouin zone, defined by the coherent inter-
face symmetry.

In order to create a vacancy at a given site n,
we have to break the bonds connecting the atom
located at that site with its nearest neighbors. An
alternative method is to apply a very strong repul-
sive potential on the site under consideration. " The
application of such a potential ensures that this
site will be unoccupied. The second approach is
simpler from the computational point of view, and
will be adopted in the following. Therefore, the
perturbation potential, associated with the creation
of a vacancy at site n, is taken to be

V-„= lim Vpc c-„. (2.10)
Vp

This perturbation is applied in the following sec-
tion in order to determine the properties of a
vacancy near a bimetallic interface. In what fol-
lows we shall always assume that we are dealing
with vacancies formed in metal a.

where Im denotes the imaginary part of a complex
function. The local density of states can be evalua-
ted from Eqs. (3.5) and (3.6) by using the unper-
turbed Green's function (2.6) and the transforma-
tion (2.9). Figure 1 shows the results of such a
numerical calculation. The interface considered
in this case is one which is formed between two
metals with 4E~ =6E,. The vacancy was created
on the interface plane (v =0), on the side of the
metal with the higher Fermi energy. We take the
vacancy to be at the origin of the plane v =0. Fi-
gures 1(a) and 1(b) show the local density of states
at the nearest-neighbor site and the next-nearest-
neighbor site on the same plane, v =0. Also shown
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III. ELECTRONIC STRUCTURE AND THE
FORMATION ENERGY OF A VACANCY

In order to investigate the electronic structure
in the vicinity of a vacancy we shall use the
Green's-function method. Starting from the co-
herent interface Green's function we generate the'
Green's function in the presence of a vacancy by
applying the perturbation (2.10) via Dyson's equa-
tion

-9 -7 -5 -3 -l 0 I

'- nergy/ E.
~
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(b)

G=G +G VG, (3.1)
0.05

where Q is the vacancy Green's function and V is
the perturbation. For a vacancy created at site
v we have from (3.1)

0.0-9 -7 -5 -3 -I 0 I

Energy/ E i

5 7 9

G(m, n) = Go(m, n) + V,G'(m, v)G(v, n) .
This equation can be solved to give

( ),( )
V,G'(m, v)G'(v, n)

1 —V,G'(v, v)

(3.2)

(3.3)

Letting the perturbation potential Vp tend to infin-

FIG. I. Local density of states in the vicinity of a
vacancy located at the interface plane p= 0 of an inter-
face with AEz= 6E~. The sites considered are nearest
neighbors (a) and next nearest neighbors (b), both lo-
cated on the plane v= 0. Shown in a broken line is the
corresponding local density of states of a coherent in-
terface.
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det(1 —G'Vg =1 —V,G'(m, m) .

Letting V~ tend to infinity we obtain

6n "(E)= (g/v) (3/SE)argGO(m, m),

(3.6)

(3.9)

where arg denotes the argument of a complex func-
tion. The corresponding change in the integrated
density of states is given by

is the local density of states of the unperturbed
interface. As can be seen from these figures, the
presence of the vacancy introduces a significant
change in the local density of states in its immedi-
ate vicinity. However, this change becomes
small beyond the next nearest neighbors.

Let us turn. now to the determination of the
vacancy-formation energy. Since the presence of
the interface destroys the translational symmetry
perpendicular to the junction, this energy will
depend on the distance of the vacancy from the
inter face.

The change in the total density of states as-
sociated with the creation of a vacancy on a site
located on plane m is given by

6n (E) = (g/v)(8/SE)lm ln[det(1 —GOV-)], (3.7)

where V- is the corresponding perturbation nec-
essary to create the vacancy, Eq. (2.10), and g
=10 is the degeneracy of the bands. Explicitly we
have

The vacancy-formation energy is the energy nec-
essary to displace an atom from its original lattice
site to a bulk site far away from the interface,
while leaving a vacancy at the original site. From
the symmetry of the problem it is obvious that this
energy will depend on the distance of the vacancy
from the interface (and not on its transverse co-
ordinate). Thus, we shall use Ev„ to denote the
formation energy of a vacancy on plane number m.
This energy is given by

E'F

E~ = [6n "(E)+n', (E)]EdE, (3.11)

where n', (E) is the bulk density of states of metal
a, shifted by the value of the dipole barrier, and

6n (E) is the change in density of states due to
the creation of the vacancy. The fermi energy E~
differs from Ez by a term which is O(1/N), where
pf is the number of atoms in the system. This E~
guarantees the charge neutrality of the vacancy.
Expanding expression (3.11) to first order in

E~ —E~ and integrating by parts gives

Eg
E~ = [6N"-(E) +N'. (E))« (3.12)

In this equation N, (E) is the integrated bulk density
of states. Using Eq. (3.10) for 6N (E) and Eq.
(2.6) for the diagonal elements of the Green's
function we can write the vacancy-formation energy
as follows:

6N"(E) =(g/w) argGO(m, m) -g. (3.10)

In writing the above expression we take into ac-
count the fact that the Green's function Go(m, m) is
real and negative below the bands.

Using Eqs. (2.6) and (3.10) we determine the
change in the integrated density of states 6N"(E)
for two types of interfaces, one for which AEz
=2E„and the other for which hE~ =6E,. Figures
2 and 3 show the corresponding changes due to a
vacancy in the metal having the higher Fermi level.
The vacancies considered were created in two lo-
cations, at the interface layer m =0 and at the
next atomic layer m =1. Also shown in these
figures is the corresponding change in the inte-
grated density of states due to the creation of a
vacancy in the bulk, As can be seen from Figs. 2

and 3, the largest difference from the bulk values
occurs, as expected, when the vacancy is closest
to the interface (i.e. , a vacancy at m =0). In this
case there is also a significant difference outside
the bulk band. This difference is contributed by
states tunneling from the other side of the inter-
face. The change in the integrated density of
states due to a vacancy in the third layer, not
shown in Figs. 2 and 3, is almost identical to the
bulk values.
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FIG. 2. Change in the integrated density of states due
to a vacancy on the plane m = 0 (a} and the plane m = 1
(b} for an interface with 4E&= 2E~. Shown in a broken
line is the corresponding change due to a vacancy in the
bulk.
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EvF =g(E~ + 6E,) —— dE arg, —+g F dkII s 1 Q) +sf,
~ 00 (2 1T) /l p, + f&d 2Ei

~

~ ~

zP, + + +z 8E&$
4z', + (p, +is, )(p., +i+,))

F
yg& II Im (3.13)

We take now the case that metal a, where the
vacancy is created, has a half-filled d band (i.e. ,
5 d electrons). Applying Eq. (3.13) we calculated
the vacancy-formation energy for three vacancy
locations, m =0, 1, and 2. The number of d elec-
trons of the second metal, n„was allowed to vary
continuously between an empty band, z, =0, and a
full d band, n~ =10. Figure 4 shows the variation
of the vacancy-formation energy as a function of
the vacancy position and the number of electrons
of the second metal forming the interface. The
point n, = 5 gives the vacancy-formation energy of
a bulk half-filled band metal. This is of course
position independent, and therefore all three
curves of Fig. 4 intersect at the same point, where
yg~=5. As can also be seen from this figure, the
vacancy energy is the lowest at the interface plane
m =0. Therefore, once a vacancy is formed it
will tend to migrate towards the interface. How-
ever, to reach the interface itself it will have to

-4
IJJ -5Z',
40 -6
IJJ

-7

I

tunnel through a barrier, since the ener gy at
m =1 is always higher than the bulk value. As can
be seen from Fig. 4 the vacancy-formation energy
is an oscillatory function of the distance from the
interface, reminiscent of the P&uderman-Kittel"
inter action.

IV. VACANCY-VACANCY INTERACTION

The presence of a vacancy in the system polar-
izes the medium in its immediate vicinity. If a
second vacancy is created close to the first one,
the polarization of the medium will lead to an in-
direct interaction between the two vacancies. In
this section we discuss this interaction as a func-
tion of the position of the vacancies. Since the
presence of the interface destroys the transla-
tional symmetry, the vacancy-vacancy interaction
will also depend on their position relative to the
inter face.

The change in the density of states due to the
presence of a single vacancy at a given site m

was determined in the preceding section, Eq.
(3.11). If the vacancies were not interacting, and

a second vacancy was created at another site n,
then the total change in the integrated density of
states would have been just the sum of the corres-
ponding changes caused by the two isolated vacan-
cies; i.e. ,

I I I-8-7-6 -5-4 3 2 I 0 I

Energy /E~
2 3 4 5 6 7 8 9

5X'(E) = (g/w) arg[G (m, m)QO(n, n) j —2g. (4.1)

However, the actual change in the intergrated den-
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FIG. 3. Change in the integrated-density of states due
to a vacancy on the plane m = 0 (a) and the plane m = 1
(b) for an interface with AE&= 6E~. Shown in a broken
line is the corresponding change due to a vacancy created
in the bulk.
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FIG. 4. Vacancy-formation energy as a function of the
number of d electrons and its position relative to the
interface for the family of interfaces discussed in the
text.
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sity of states differs from the noninteracting ex-
pression (4.1). To determine this change we shall
create the two vacancies in succession. The change
due to the creation of the first vacancy at site m
is given by Eq. (3.10). The presence of this vac-
ancy pol. arizes the medium and induces a change in
the local Green's functions, given by Eq. (3.4).
Applying this equation and Eq. (3.1), we obtain that
the change in the integrated density of states
caused by the presence of two vacancies, one at
m and the other at n, is given by

6N(E) = (g/tr) arg[Go(m, m)Go(n, n)

—G'(m, n)G'(n, m)] —2g. (4.2)

Comparing this expression with Eq. {4.1) above
shows that the change in N(E) due to the vacancy-
vacancy interaction is

~N- -„(&)-=6N(Z) —6N'(&)

g G'(m, n)Go(n, m) ~

arg 1 o(» «) o(««) ] (4 3)

Figure 5 shows the change in the integrated density
of states due to the vacancy-vacancy interaction.
The interface considered is one formed between
an empty and a half-filled band metal. The two
vacancies are taken to be on the inter face plane,
m =0, of the half-filled band metal. The two cases
described refer to nearest-neighbor and next-
near est-neighbor vacancies.

From the knowledge of 6N -„(E) one can easily

g I' F
1

Go(m, n)Go(n, m)
tr ~ G'(m, m)G'(n, n)

(4.4)

For the numerical calculation we again consider
the interface treated earlier in this section (i.er r

the two metals having 0 and 5 d electrons, re-
spectively). Of the two vacancies one is taken to
be at the origin of the m =0 plane. Figure 6

describes the behavior of the interaction energy as
a function of the distance between the two vacancies
in the [100], [010], and the [011]directions. This
interaction has an oscillatory character very
similar to the Ruderman-Kittel-type" interaction
between two point imperfections in the bulk of a
free-electron gas. The origin of these oscilla-
tions is the sharpness of the Fermi surface. The
easiest way to see how such oscillations arise is
to look at the simpler one-dimensional interface.
In this case it follows from Eq. (2.6a) that inside

0.5-

«t IOIO] direction
o [Oil] direction

& [lOO] direction

determine the vacancy-vacancy interaction energy.
This is given by

Z[m, n)= —f EN@, „(E)d-Z
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FIG. 5. Change of the integrated density of states due
to vacancy-vacancy interaction: (a) nearest neighbors,
(b) next-nearest neighbors. The two vacancies are lo-
cated on the plane m=0.

Distance/a

I

2

FIG. 6. Vacancy-vacancy interaction energy as a
function of their distance, in the [100],. [010], and [011]
directions, for an interface formed between an empty
and a half-filled d-band metal. One of the vacancies is
always taken to be on the m = 0 plane.
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the bands the dependence of G' (O, n) on the dis-
tance ~ is via a factor of the form e' ~'", where
the real angle 8(E) is given by

(4 [(E+gV)/E ]2]1/2
8(E) =arctan (4.5)

As the energy varies from the botton to the top
of the band 8 varies from -v to 0. Equation (4.3)
shows that the change in the integrated density of
states is proportional in this case to terms os-
cillating like cos(2n8) or sin(2m 8), and the vacancy-
vacancy interaction will thus be proportional to an
oscillatory function of the form cos[2n8(Ez)] or
sin[2n8(Ez)], where 8(Ez) is the value of 8 evalua-
ted at the Fermi energy. For the one-dimensional
case the shifted bulk band is given by

E+b, V= —2E, cos(ka) . (4.6)

V. DISCUSSION

The properties of vacancies near a bimetallic
interface were evaluated in the preceding sections.
As can be seen from these results, the effect of a
vacancy on the various electronic properties has
a typical range of about three atomic layers. With-
in this range the corresponding energies exhibit
an oscillatory behavior whose origin is similar to
the one of the well-known Ruderman-Kittel inter-
action.

As was shown explicitly in Sec. III the vacancy-
formation energy E~, is an oscillatory function
of the vacancy's distance from the interface. For

Close to the bottom edge of the band we can write

(4.7)

and the corresponding angle 8 is therefore

8(E)=—-v+ka.
Thus, for a nearly empty band, where the effec-
tive-mass approximation (4.7) applies, the vacancy-
vacancy interaction energy will be proportional to
terms oscillating like cos(2k~na) [or sin(2k~na)],
where k~ is the Fermi momentum. Thus, the os-
cillations have a spatial wavelength of 2k~, which
is the typical wavelength of the Ruderman-Kittel
interaction or any other Friedel oscillations.

As can be seen from Fig. 6 the range of the in-
teraction is about three lattice spacings. Whereas
the nearest-neighbor interaction is attractive, the
next-nearest-neighbor interaction has a repulsive
character.

the specific family of interfaces considered in
this article the vacancy attains its minimum energy
as it reaches the interface. Therefore, an at-
tempt to "clean" the interface from vacancies by
heating the junction will fail, since the vacancies
will tend to migrate towards the interface. It is
interesting to note that the largest energy gain due
to such a migration is about 0.6E, for the inter-
faces considered. Since E, is typically 0.5 eV,
this energy gain is about 0.3 eV or about 13% of
the vacancy-formation energy. We also note that
the barrier height, through which the vacancy
has to tunnel in order to reach the interface in the
case under consideration, is of the order of 0.1
eV.

However, the opposite situation, where vacan-
cies are repelled from the interface, is also pos-
sible in principle for other types of interfaces.
Thus, the answer to the question whether heat
treatment improves or degrades the properties of
a given interface depends on the specific type of
junction under consideration.

The possibility of getting a delocalized vacancy,
a defeeton, due to a finite hopping amplitude, was
considered originally by Andreev and Lifshitz. "
We note that the breaking of the translational sym-
metry of the system due to the presence of the in-
terface is a possible mechanism for the localiza-
tion of such defectons, at least perpendicular to the
inter face.

As was shown in See. III, the vacancy-vacancy
interaction has also an oscillatory nature, being
attractive in some regions and repulsive in others.
The maximum attractive interaction, for the inter-
face considered, is of the order of 1.5Ey or
0.75 eV. This is quite a large energy, amounting
to about —,

' of the vacancy-formation energy. The
highest repulsion energy is between closest neigh-.
bors along the [011]direction, and is equal to
0.5E, or 0.25 eV, about 10% of E».

The oscillatory behavior of the vacancy-vacancy
interaction allows in principle for the formation
of a s uper lattice of vacancies. For the interfaces
considered in this article, this interaction is most
attractive for nearest-neighbor vacancies. It thus
seems favorable that the lattice parameter of the
super lattice will be the same as of the original
lattice, although this needs a more detailed cal-
culation. In general one would, however, expect
that such a possible super lattice will have a larger
lattice parameter than the underlying crystal struc-
ture.
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