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The statistical mechani'cs of one-dimensional scalar fields governed by nonlinear wave equations having
solitary-wave (soliton) solutions are discussed in detail. Previously neglected "phase-shift" interactions
between phonons and solitary waves (kinks) are taken into account and it is shown that these interactions
provide the mechanism for sharing of energy and degrees of freedom among the "elementary" excitations of
the nonlinear system. In particular, the ideal-gas phenomenology proposed by Krumhansl and Schrieffer for
the "P"' model is corrected and extended to the entire class of nonlinear Klein-Gordon models having
solitary-wave solutions (e.g. , P', sine-Gordon, double-quadratic, etc.). By a comparison of the results of the
phenomenological approach to those obtained via the exact transfer-operator method, it is found that the
ideal-gas phenomenology gives exact results for the various low-temperature thermodynamic functions and
correlation lengths.

I. INTRODUCTION

Recently there has been a remarkable surge of
interest in condensed-matter systems described
by one-dimensional nonlinear scalar fields go-
verned by nonlinear energy functionals. ' The go-
verning equations frequently admit large-amplitude
localized field profiles hich are physically dis-
tinct from those obtainable by superposition of
small-amplitude or "linearized" profiles. Fre-
quently these localized large-amplitude excita-
tions can propagate through the system without
distortion of shape and are commonly referred to
as solitary M)aves. They exhibit remarkable sta-
bility and other particlelike properties. (If they
retain their identity after collisions, they are
called solitons. s) Indeed, because of their lo-
calized nature, they have found widespread use
as one-dimensional models of extended particles
in nonlinear quantum-field theories, dislocations
in crystals, ' planar domain walls in ferromagnets'
and ferroelectrics, ' propagating flux quanta in
Josephson transmission lines, ' disgyration planes'
in superfluid 'He, charge carriers in weakly
pinned charge-density-wave condensates, ' and
charged dislocations' in superionic conductors,
to mention only a few examples.

In anharmonic systems where the number of
nonlinear excitations present is thermally con-
trolled, ' '"it is important to investigate the statis-
tical mechanics of the field in order to determine
their thermal density as well as their contribution

to correlation functions and other thermodynamic
quantities. In a general investigation one would
first identify natural elementary excitations, in-
cluding the nonlinear solitary waves. If these are
known, it is then physically and mathematically
advantageous to carry out the calculation of the
partition function in a representation treating
these excitations as distinct nonlinear modes.

In this paper we discuss a class of solitary-
wave-bearing Hamiltonians for which this ap-
proach can be pursued analytically. We have in-
cluded the effect of interactions between the ele-
mentary excitations and find that this leads to
"free -energy sharing" among the excitations.
These interactions are essential for a correct
interpretation of results available from a trans-
fer-operator evaluation of the partition function.
This approach provides considerable insight which
should be of use in analyzing the role of non-
linear excitations in the statistical mechanics of
more complex systems.

This investigation was initiated by Krumhansl
and Schrieffer' (KS) who studied the statistical
mechanics of a scalar field in a so-called "Ps"
or "double-well" potentiap' as a simple model of
a one-dimes. sional ferroelectric. Using the trans-
fer integral method discussed by Scalapino, Sears,
and Ferrell, "KS were able to calculate the clas-
sical partition function (and hence the free energy)
exactly. Moreover, they calculated the same
free energy phenomenologically at low tempera-
tures assuming an "ideal gas" of completely non-
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interacting solitary waves (kinks) and small am-
plitude "phonon" excitations and found reasonable
agreement with the exact results of the transfer
integral approach. They were thus able to identi-
fy terms in the free energy as arising from either
the kinks or the phonons. This led KS to propose
that the nonlinear solita, ry waves can be regarded
as "elementary" excitations. The inclusion of
interactions (in the form of residual phase-shift
interactions neglected by KS) between the kinks
and phonons allows us to obtain precise agree-
ment between the phenomenology and the exact
results.

Recently, the concepts and methods of KS have
been extended to cases where the "potential" for
the field is periodic (and hence bounded) as op-
posed to the unbounded p' potential treated by KS.
The transfer integral technique can be applied
to periodic potentials; Gupta and Sutherland"
have studied the potential V(((() =I —cosP in par-
ticular, finding sine-Gordon (SG) solitons' as the
elementary "kink" excitations. Currie, Fogel,
and Palmer" have analyzed the exact results"
from an ideal-gas viewpoint and find that this
viewpoint is natural and consistent with exact
results; moreover, solitons and "phonons" were
found to "share" free energy (and internal energy)
in much the same manner as that which occurs
for the Q' case. We shall show below that in the
general ease this sharing results from phase-
shift interactions between the kinks (solitons) and
phonons. Indeed, the p' kinks and SG solitons
-share the remarkable property that they simply
shift the phases of extended linear excitations
without reflection; as a consequence, -the role of
kink-phonon interactions in the statistical me-
chanics can be identified quite easily.

Although the p' and SG systems provide espe-
cially tractable cases for studying the role of
kink-phonon interactions in the statistical me-
chanics of solitary-wave-bearing systems, it is
by no means necessary to restrict oneself to such
"reflectionless"' cases. In addition to treating
these particular cases we a.iso describe a simple
system possessing kink solutions which are not
perfectly transparent to phonons, namely, the
double-quadratic (DQ) system which is obtained
by replacing the P' double well with a double well
consisting of two displaced parabolas. Thus, the
Q', DQ and SG cases span a large variety of po-
tentials [unbounded (p', DQ), bounded (SG), trans-
parent (p', SG), nontransparent (DQ)), and as
such these three cases serve as prototypical
models for a large class of solitary-wave-bearing
potentials.

The sine-. Gordon case is an integrable system
for which a Hamiltonian can be constructed with

pieces corresporiding to solitons, breathers, and
phonons as bona fide elementary excitations.
A canonical transformation'4 achieves such
a separation, and the contribution of each type
of excitation to the free energy can, in prin-
ciple, be calculated (with due regard for phase-
shift interactions and their modification of the
phonon density of states). The ((((' and DQ Ham-
iltonians are not rigorously separable as is that of
SG, but the phenomenological results obtained
by assuming separability at low temperature can
be verified by comparison with corresponding
exact transfer integral results, suggesting that
separability is approximately valid at low tem-
perature for the entire class of Hamiltonians
considered.

In Sec. II we define a general class of solitary-
wave-bearing one-dimensional Hamiltonians. We
use transfer integral techniques to examine the
exact statistical mechanics for this class, and we
present the low-temperature asymptotic results
for the Q", DQ, and SG cases. In Sec. III, we
consider the phenomenological approach to calcu-
lating free energies, etc. , based on the role of
kink-phanon interactions in the free-energy-
sharing process. Exact agreement with trans-
fer-operator results is obtained at low tempera-
tures. Section IV deals with the sine-Gordon case
in terms of its separability properties, and a
discussion is given of the problems we have en-
countered in an attempt to include SG "breather"
excitations in the phenomenology. In Sec. V we
examine equilibrium correlation functions and
the role of solitary waves in determining low-
temperature correlation lengths. Finally, in Sec.
VI we present our conclusions and discuss ex-
tensions of the theory.

II. EXACT STATISTICAL MECHANICS FOR A CLASS
OF NONLINEAR HAMILTONIANS

In this section we consider the classical statisti-
cal mechanics of a general class of nonlinear
Hamiltonians having kink or soliton excitations.
The class is restricted here to one-component
fields defined (initially) on one-dimensional lat-
tices (some generalizations are possible" ") and
has the following form:

1 c2
SC= 2 /Al *('t+ (('i„— , +(',(( tdl)(, ((2.()j 2 )2 f+1 f 0

where (Q) is a one-component dimensionless field
defined on a one-dimensional lattice of points
(labeled by i) with lattice constant I. The first
term represents the kinetic energy carried by
the field, the second represents harmonic cou-
pling ("strain" energy) between field values at
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neighboring lattice sites and the last term an
"on-site" or external potential depending only
on the field and not explicitly on lattice position.
The constant c, is a characteristic velocity and

co, a characteristic frequency. The constant A.

sets the energy scale and has dimensions of
(energy) x (length) ' x (time)'.

It is important to distinguish two quite different
regimes according to whether the length d—= c0/ru0
is on the order of the lattice constant l or large
compared to l. The first results when the inter-
action energy between neighbors is small com-
pared to the on-site potential and is termed the
"order-disorder" limit, since field values on
neighboring sites can fluctuate (thermally) almost
independent of one another. In the opposite limit
(d» I), the coupling between sites is strong enough
to ensure that variations of Q from site to site.
are quite small, at least at low temperatures. In
this "displacive" limit we may replace the site
index i by a continuous position variable x so that
(t( becomes a continuous function of x and t, (t( =Q

(x, t). Although the order-disorder limit is a
physically interesting case (e.g. , Ising), we shall
restrict ourselves to the displacive limit where
nonlinear kinks become well-defined" elementary
excitations with long lifetimes and as such behave"
very much like particles.

In the continuum (displacive) limit the Hamil-
tonian (2.1) is transformed approximately to

X=A dx(—', [(t((x, t)]'+—,'c', [Q,(x, t)]'+to'V(Q)],

(2.2)

where Q„(x, f) = (8/8 ) tx( ((tx) replaces the fi.nite
difference (Q„, —(t(, )/I. We shall have occasion to
employ both forms [(2.1) and (2.2)] of the Hamil-
tonian for the system. The discrete form (2.1) is
used in obtaining exact statistical mechanical re-
sults via the transfer-operator formalism, where-
upon the explicit process of taking the continuum
limit follows. The continuum form (2.2) is used
to study the nature of the solitary-wave (kink)
and linear (phonon) excitations of the system;
these excitations arise as solutions to the Euler-
Lagrange equation of motion following from Eq.
(2.2):

Q
—C0$„+((10 —= 0 . (2.3)

The only restriction on the local dimensionless
potential V((P) is that it have at least two degen-
erate minima (V=O) at, for example, (t( =(t(, and
(((( =(t(2 (see Fig. 1). This is sufficient to admit
elementary solitary-wave (kink) solutions (t(»"' to
E(I. (2.3). We look for a kink moving with velocity
v and impose appropriate boundary conditions,

pt g ————~- —~----~ —~—————~
0

FIG. 1. Schematic plot of a double-well on-site po-
tential. The lowest two eigenvalues of Eq. (2.23) are
represented by the horizontal solid lines. These two
eigenvalues are symmetrically tunnel-split (total split-
ting=2to) from the lowest level Eo of an isolated har-
monic well. The height of Eo above the potential mini-
mum and the magnitude of the splitting are greatly ex-
aggerated for clarity.

viz, d(t(»(" '(s )/ds(s =+ ~) =0, V((t1»" '(e = + ~)) =0
(a convenient energy zero), (t(»"'(s =+~) =(t(, ,
with s —= s -vt. The solution is obtained from the
first integral of Eq. (2.3), .

2 v2 -1 1/22&0
~

1
v

V(p (0&)
de C L C K (2.4)

by integrating a second time:
1

v' 'I2 d ez. x- vt(y)( )

x —vt=+ 1-
2

=— d V
C0

' d2 "O (0~(0)

(2.5)

(P -E 0 (1 —v2/c2) 1 2
0 (2.6a.)

(E 0 2 +p2C2)1 2
IC 0 (2.6b)

where p =M» v(l —v'/cg ' ' is the relativistic
momentum and E~"' is the rest energy of the kink:

E")=M c'
K IC 0'

The kink rest mass M~ is given by

(2.7)

2A
M» = -2

~
dx V [Q»0'(x)] (2.8)

'dy
~
V(y) ~'/2 (2.9)

(

In I ig. 2, we plot a schematic kink solution (2.5)
in its rest frame. The kink carries the field from

E(luation (2.5) provides an implicit solution. for
y„("' as a function ofx —vt. The "relativistic" de-
pendence on v follows from the covariant form
of Eq. (2.3) and appears again in the energy, E»,
associated with a single kink:



gURHIF, , KRUMHANSI, , BISHOP, AND TRUI, I. INGER

p(V) l)
K

continuum (Debye) dispersion (2.11) with that ap-
propriate for the discrete lattice:

(o2, =(o2, +4(c,/l)' sin2()lk) . (2.13)

x-vt
d( I

—v/co)

FIG. 2. Schematic waveform of a traveling kink pz'"~

viewed in its rest frame. An antikink waveform can be
obtained by reflection through the horizontal axis.

one minimum (P,} of the local potential (see Fig. 1)
to another (Q2) or vice versa (antikink), over a
"kink width" given roughly by 2d. It is worth no-
ting that if V(Q) has sufficient structure, more
than one type of kink may be Possible. ' At low
temperatures one may obtain a dikink" or poly-
kink ideal gas using the same formalis~ developed
below for a monokink (plus antikink) gas.

Familiar analytic results for Q' and SG poten-
tials are readily retrieved from Egs. (2.5) and
(2.9), and Table I shows the local potential, kink
solution, and kink rest energy for these two spe-
cial cases, as well as for the double-quadratic
(DQ) potential (see below). The stability of these
one-dimensional kinks against internal perturba-
tions is guaranteed on grounds of topological sta-
bility" or by explicit calculation (see below).

The other significant excitations are quite dif-
ferent in character and physical significance from
the large-amplitude, spatially localized kinks,
namely, the approximate, small-amplitude, ex-
tended harmonic solutions (phonons) to Eg. (2.3)
when linearized with respect to a potential mini-
mum:

Z Zg~g

with

and

(2.14)

(2.15)
\

Z2 = Q exp( —PA (y2Lg „),
where P -=(ksT) ', I2 is Planck's constant, and
L =Ã/ is the total length of the system of N parti-
cles with assumed periodic boundary conditions:

Of course, other types of boundary
conditions may be appropriate as dictated by the
particular physical context. The quantities &„
appearing in Eq. (2.16) for the "configurational'*
partition function Z~ are the eigenvalues of the
transfer integral operator defined by

(2.16)

where

=exp( —PlA&u2c„)C „(Q„,), (2.1'I)

The lattice parameter E appears in the free-energy
expression obtained phenomenologically as well as
in the exact free energy for the discrete lattice, as
we show presently. One can then compare these
two results in the limit as the ratio l/d is expli-
citly taken to zero.

We now consider the exact calculation of the
one-dimensional classical partition function for
discrete systems governed by the Hamiltonian
given in Eq. (2.1) above. We shall be particularly
interested in the low-temperature free-energy,
correlation functions, etc. , in the continuum limit
{as l/d-0) where we expect to identify kink and
phonon contributions separately. The use of a
transfer integral operator technique for this pur-
pose has already been well documented. '"" The
classical partition function factors

y(x, t}—y, 2
~ exp[i(kx —u)2t)],

with the continuum dispersion relation

(2.10) 1d'
f(41+11 ~$) 2 I 2 (~1+1

(2.18)
(y2 =~2 +g&jP .0 0 (2.11)

In writings Eqs. (2.10) and (2.11), we have as-
sumed for simplicity that V(Q) is symmetric
[V(- Q) = V(P}] and has been scaled so that

d'V
d

The eigenfunctions (C „] constitute a complete
orthonormal set on the interval P c ( —~, + ~).

In the thermodynamic limit (N- ~, L -~, L/N
= l constant), Z~ is dominated by the lowest eigen-
value zo, so that the configurational (i.e. , poten-
tial energy) contribution to the free-energy den-
sity E [=——(ksT/L)lnZ] becomes

in the harmonic approximation.
In Sec. III it will be necessary to replace the F~ A COO/0.

gw OO

(2.19)
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Other equilibrium properties can be calculated'"
with the same technique. For instance, the static
correlation functions for the field and the squared
field are given by

C, (x) =- (5y(x)5y(0))

= pl (nl5ylo) l exp[-p~~;(g„-g, )x]

(2.20)

C, (x) —= ( 5$2(x)5/2(0) &

= g I (nl5y'lo& l exp[- p~~, (.„-.,)x],
n

(2.21)

respectively, where 5$(x) —= Q(x) —(Q) and 5/2(x)
—= $2(x) —(P2). At large distances, C, (x) and

C,(x) are dominated by the state with the smal-
lest eigenvalue for which the corresponding ma-
trix elements are nonvanishing (excluding the
n =0 terms). It should be noted that if V(P) is
periodic, a more interesting correlation function
is

~o Eo ~o (2.27)

where t, is the tunneling component. At sufficientl
low T (large m*), E, is accurately approximated
by the lowest harmonic oscillator level:

We are thus faced with a pseudo-Schrodinger equa-
tion for a single particle of dimensionless "mass"
m* in one dimension, moving in the nonlinear
potential V(Q). We note that V, acts as a tem-
perature-dependent "energy" minimum which is
important for free energy, entropy, etc. , but not
for correlation functions. No real quantum me-
chanics is involved in Eq. (2.23) (I is replaced
essentially by temperature) but intuition from the
familiar quantum problem is very helpful.

Physical interpretations of thermodynamic func-
tions following from Z are possible at both high'
and low temperatures. We shall concentrate here
on the low-temperature region, specifically
pE2"'» 1, where kink excitations play a pro-
minent role. In this regime en*»1, and the
eigenspectrum will be "tunnel-split" to remove
degeneracy from the eigenstates of individual wells
in V(P). Referring to Fig. 1, if E, is the lowest
level in a single isolated well (measured from the
minimum V,), then

(&j2 (2) -ie (O»
Oer iodi c E =-'m*-'"+O(T'). (2.28)

=g l (nle lo&l exp[-p~~, (g„-&,)x], The splitting to is given reas'onably accurately by
a standard WKB tunneling formula":

(2.22) f, = (E,(T)/n] exp[ —f(T)], (2.29)

1 d'
H(~) =- . . +V(e)+V. , (2.24)

and

m|2 -+2 2c2p2 ~ (pE &0 ~)2

V, =(2P+2lA) 'In(Ac2'P/2ml).

(2.25)

(2.26)

since the density of kinks at low temperatures can
be more easily extracted from this function rather
than C, (x). We return to this point in Sec. V.

The transfer-operator eigenstructure can be
obtained under general conditions (displacive or
order-disorder) by solving Eq. (2.17) numeri-
cally, ""via a re normalization group procedure, "
etc. However, much more intuition can be fos-
tered from a differential approximation valid when
l/d «1, i.e. , in the displacive limit of slowly
varying fields. The Fredholm integral equation
(2.17) for 4(Q) can be replaced in this limit by
the following eigenvalue equation [(valid to O(l/d)]
for a related eigenfunction g(p) =exp[-2pM~DV(p)]
x @(y):

H(Q)g„(&f&) =2„g„(Q), (2.23)

where

where

(2.30)

The quantities 5$, (T) and 5/2(T) determine the
temperature-dependent "turning points" for the
WKB integral. Familiar limitations of WKB mean
that the prefactor in (2.29) is only approximate2'"
but important parameter dependences are re-
produced as we shall see. For detailed numerical
comparisons, "

qo should be taken from a direct
numerical solution of Eq. (2.23).

Periodic potentials (e.g. , SG) differ from un-
bounded ones in several respects. The transfer
operator technique is still available, but the
pseudo-Schrodinger equation (2.23) now poses
a one-dimensional band-structure problem. If
V(Q +X) = V(Q), then, in a reduced-zone scheme,
we can label the eigenvalues &„~ with a band in-
dex n (=0, 1,2, . . . ) and a wave vector k in the
first Brillouin zone (—2'/A(k ~ v/A). By I"loquet's
theorem the corresponding eigenfunctions have
Bloch form
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)I)„,(y) = exp(i&@))i„.,(y),
with

u„,(y +)).) =u„ „(p) .

(2.31)

(2.32)

l(d'
, +a —2qcos2z ~)1)(z) =0

(dz' j
with

z =-,' y, a =8m¹(c—1), q = —4m¹.

(2.33)

(2.34)

Reciprocal-lattice vectors are integers, since
X=2))' for SG. The (characteristic) Mathieu func-
tions at the zone center (1'2 =0) are periodic in Q
with period 2r, while those at the zone boundary
(k =-,') are 4w periodic. These solutions are either
even or odd.

The kink (soliton) rest energy [see Eqs. (2.7-2.9)
and Table I] enters m* [Eq. (2.25)] as

()PE (0))2
i q i

(1PE
(0) )2 (2.35)

Asymptotic expansions for the position and width
of each band at low T are available. " The center
of each band is given by

(2n+1)2 )' 3
,~ ~

2n+I+ - ~ ~ ~2'I@i' '
),

' 2n+I
(2.36)

(n=0, 1,2, . . . ),
which becomes

&„=4(2n+1)(PE„"))' —[(2m+1}2+1](PE"')'
——,'(2n+1)[(2n+1)2+3](PE"') ' —~ ~ .

(n=0, 1,2, . . .). (2.3V)

The tunnel-split levels in the case of two wells
(Fig. 1) now form the extremities of a sequence of
continuous bands. The low -temperature regime
(pEz"')) 1) corresponds to a tight-binding (narrow-
band) limit, where the periodic functions (u„2] are
almost A independent and increasingly localized

'(in each well) as T-0. (At high T a free-electron
picture is more appropriate. ) For periodic po-
tentials the lowest eigenvalue is not separated from
from its neighboring excited states by a finite
amount, so that Eq. (2.19) does not follow tri-
vially as it does for any potential with a finite
number of wells. However, a slightly more re-
fined argument shows that (2.19) still applies.

In the case of the SQ.equation the eigenproblem
(2.23} reduces to an analysis of the Mafhieu equa-
tion which is extensively documented. "'" (For
other periodic cases a more general Hill equa-
tion is involved. ) For SG we can rewrite Eq.
(2.23) in standard Mathieu form as

The terms linear in T are simply harmonic-
oscillator levels [c.f. (2.28)] fnr the sine-Gordon
potential expanded to quadratic order about a sin-
gle minimum. Eigenvalues in the nth band differ
by exponentially small (tunnel-split) factors at low
T. According to the improved WEB calculation
by Goldstein, "the bandwidths are giv'en to leading
order by 2t„(T), where

24 &&+& & 2

No@o ~a~~ lQ+e ++ (do ~o (2.40)

This appealing identification of Eo leads na-
turally to the equally physical speculation' that the
tunneling contribution to corresponds to the free
energy of a gas of independent kinks defined by
Eqs. (2.4}-(2.9). To investigate this suggestion
consider first the limit T-0 in Eq. (2.30). Sincem¹-~ and 5$, 2-0 we find

f(Z) =f(0) =(2m¹)' ' ' dg[y{y)P '
0

pE(0) (2.41)

where we have used Eqs. (2.4) and (2.9). Thus the
tunneling free-energy density F, has the asympto-
tic form

(2.38)

Contrast this behavior with that for the band gaps:

c„„—a„—= 8(PE'"') '+O(T') . (2.39)

Returning to our general problem (2.1) we would
like to know whether the kink [Eq. (2.5)] and pho-
non [Eq. (2.10}]excitations appear as elementary
modes in the formal statistical mechanics, and in
particular to what extent the excitations may be
treated as a composition of noninteracting gases.
Following the qualitative suggestions of Krum-
hansl and Schrieffer' (KS) in the P example, it
is not difficult to demonstrate that the compo-
nent E0 of c0, taken together with all of E¹[from
Eq. (2.15)] and F~, corresponds exactly to the
free-energy density Fo of a set of one-dimen-
sional classical harmonic phonons (2.10) calcula-
ted to O(l/d) to be consistent with Eq. (2.24). It is
also essential that the lattice-dispersion relation,
Eq. (2.13), be used in order to be consistent with
the transfer-operator technique which was per-
formed for a lattice. We find

+r /l

E0 = dk In(phu2)
-rh

=I 'kBT(ln(k&u0p) +In( 2'[I +(I +4d2/P)' ']]}
= ksT[I 'In(li+0pd/I)+(2d) ']
0
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F,(T) = —A&u20t, (0) ~ksTd 'exp( —P&z").
P 0

(2.42)

The coefficient of proportionality omitted from
Eq. (2.42) depends on the actual potential V(p)
and the accuracy" of the WKB approximation
(2.29). This result is equivalent to the KS re-
sult for the classical free energy of a one-dimen-
sional gas of indistinguishable, independent, sta-
tic particles of width - 2d and rest energy &~"
with kink density

&r ~d exp( PE-x ) (2.43)

The results expressed by Eqs. (2.40) and (2.42)
represent a general theorem, and in the g» case
led KS to suggest a phenomenology of independent
gases of kink and phonon excitations. This im-
portant suggestion does indeed reflect quite gen-
eral and central features of the nonlinear systems
described by Eqs. (2.1) and(2. 2). Inone dimen-
sion some kinks will always be demanded by en-
tropy considerations"; however, corrections are
necessary because of interactions between kinks
and phonons (and other excitations generally) for
which we have so far not accounted; superposi-.
tion is impossible in a nonlinear system. Fortun-
ately, for some rather special examples of kinks
exhibiting ref lectionless (Bargmann") potentials,
the interactions (at least at low T) are especially
tractable and allow some substantial analytic pro-
gress and physical interpretation, as we demon-
strate in the next section. Both SG and p» exam-
ples fall within this special class, but it is im-
portant to emphasize that the physical utility of a
configuration-space philosophy is no less useful
and applicable in more general cases'"" ". In-
deed, for a simple example involving a double-
quadratic potential well of the form'» "V(y) = ~

( ~p ~

—1)', the kink presents a nonreflectionless
potential for the phonons which can nevertheless
be treated" analytically using both the transfer-
operator approach and the phenomenological ideal-
gas approach.

Improvements on Eq. (2.42) are clearly neces-
sary: To obtain that result we took the limit
1' 0, in which case the kink velocity certainly
tends to zero but so does the kink (and phonon)
density. Similarly, we observe from Eq. (2.40)
that all of the dynamical free energy (F~) is
apparently taken up by the phonon modes as & 0.
We shall see in the next section that this is re-
medied by a subtle free energy sharing p-rocess
via kink-phonon interactions, but from the formal
transfer-operator point of view the remedy is
that, to be consistent with a harmonic descrip-
tion, we must calculate 5$, ,(T) to the same (lin-

ear T) order as E„(T) in Eqs. (2.29) and (2.30).
Clearly f(T) & l(0) for all T &0. Explicit calcula-
tion within the WKB. approximation [Eq. (2.30)]
to linear-phonon order gives for the SG, p», and

DQ examples:

F =——YJA(d' (We/7r)(P& "&) 't' exp(-PEP&')

(2.44 a)

where rl(SG) = 1 &/ 2, q(p») = 2v'2/3, q(DQ) = 1. Note
the identical functional forms —potential details
only affect the numerical prefactors. In fact, further
improvements on the WKB approximation correct
Eq. (2.44a) by the same factor" "'""of (e/w)'t'
yielding

F, = W~-o~ "'(P&x ') "'exp( PE~"-) (2..44b)

The correction of Eq. (2.42) by Eqs. (2.44) can
be viewed as a, (downward) thermal renormaliza-
tion of the kink energy (see also Sec. P), but to
make a detailed comparison with our phenomeno-
logy of excitation gases we require knowledge of
how the excitations interact. In. the next section
we give a discussion of these interactions and
their role in the phenomenology.

III. KINK-PHONON INTERACTIONS AND IDEAL-GAS
PHENOMENOLOGY

In the previous section the free-energy density
obtained via the transfer operator technique con-
tained several features which suggested that one
might be able to view the system as a gas of phon-
ons and kinks, as originally proposed by Krum-
hansl. and Schrieffer' (KS) for the p» problem.
The phenomenology proposed by KS neglected all
interactions between phonons and kinks and, as
a consequence, some essential features of a more
appealing phenomenology were missed. Consid-
erable progress has since been made in under-
standing the nature of the previously neglected
kink-phonon interactions, and we devote this
section to a discussion of their role in the statis-
tical mechanics of the system.

The key to manageable calculation of kink-phonon
interactions lies in recognizing at low tempera-

(0)tures, 03'«&z, the kink density will be very
low, and as a consequence, the behavior of small
oscillations (phonons) of the field in regions be
tween the kinks will be very similar to the be-
havior of such oscillations in the kink-free sys-
tem as a whole. This observation prompted KS
to neglect' kink-phonon interactions altogether.
Nonetheless, the phonon waveforms are modified
in the presence of kinks, and the first step is to
analyze this behavior and the resulting modifica-
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tion of the phonon density of states (and free en-
ergy). To this end, we consider a system with
only one kink present and find the resulting change
in the phonon density of states. Then for a low
density of kinks we assert that the total change
in the phonon density of states is given approxi-
mately by the sum of the changes caused by each
kink independently. We may view the kink mod-
ification of phonon free energy as a kink self-
energy correction. This view is quite appealing
since it provides us with a general prescription
for any kink-bearing system of the wide class
described by Eq. (2.2).

The behavior of small oscillations (e.g., phonons)
X(x, t) in the presence of a single static kink p»o'(x)
is determined by solutions to Eq. (2.3) of the form

y(x, t) = y»~'(x)+ X(x, t) . (3.1)

X(x, t) =f (x)e-'"' (3.3)

leads to the following eigenvalue equation:

c'of..+ ~OV" (-0»"(x))f= ~'f . (3.4)

Owing to the localized nature of the kink wave-
form p»' (x), the function V (p»' (x)) varies only
in the region near .the kink center (x =0) to any
appreciable extent and approaches unity far away
from the kink center:

V'(y "' (x))
fg) w oo

(3.5)

Moreover, the function V (p»o'(x)) has a minimum
at x = 0 such that

V "(y»o'(x = 0)) & 0 . (3.6)

From these properties we see that there exists
a close analogy between Eq. (3.4) and the Schro-
dinger equation for a particle moving in a one-
dimensional potential well &2OV (p»o (x)). The
bound state(s) and scattering or continuum states
for this potential are of fundamentaI importance,
not only for the statistical mechanics investigated
here but also for use in perturbation theories'
involving kink response to external perturbations
or forces, as well. as quantization procedures for

Phonons in the presence of moving kinks can be
obtained from those for a static kink by boosting"
to the kink-rest frame. Substitution of Eq. (3.1)
in Eq. (2.3) and linearization in X leads to the
following equation for p:

X - c'.X„.+ ~'.V "(p»"(x)) X= 0, (3.2)

where V"=d'V/dp' and the static kink waveform
P»o (x) is obtained from Eq. (2.5) with v =0.
Writing X as

kink states""". Examples of the potential func-
tion V (p»o (x)) for the p', SG, and DQ cases are
given in Table I. Equation (3.4) can be solved
exactly for these three cases, but for the moment
we focus on general features for any V(p) in the
broad class of kink-bearing potentials.

Since our general Hamiltonian (2.2) possesses
translation invariance, the spectrum of small
oscillations about a single kink must contain a
zero-frequency (e =0) translation mode (Gold-
stone mode) that restores4O the translation invar-
iance broken by the introduction of a kink into
the system. This means that Eq. (3.4) must always
possess abound-state solution with &u2~, = 0 (and
perhaps other bound states with 0«o'«~,') and
the corresponding bound-state wave function f~, (x)
will be proportional to the spatial derivative of
y»~'(x):

A, i(» (3.7)

It is trivial to show that [@»' (x)]„always satisfies
Eq. (3.4) with ~'=0 by considering the spatial
derivative of Eq. (2.3) [with p = g»o (x)]:

—cgy»o'(x)]„„„+coo V"(y» '(x))[y» '(x)]„=0 .
I

(3.8)

Comparison of Eq. (3.8) with Eq. (3.4) shows the

f, ,(x) ~[p»o (x)]„with &u', = 0 is indeed a solution.
Multiplication of [p»' (x)]„by a small constant and
substitution into Eq. (3.1) yields a kink which had
been uniformly translated by a small amount
(hence the term translation mode"). The fre-
quency of this small oscillation is zer'o since the
energy of a kink depends only on its velocity not
on its position.

In addition to the translation mode at ru'=0 there
may exist additional bound-state solutions of Eq.
(3.4) with nonzeio frequencies (between 0 and u&o).

The solutions correspond to internal oscillation
modes in which the kink waveform undergoes a
harmonically varying shape change localized about
the kink center. The p~ case provides an example
of this kind; there exists" exactly one additional
bound state with &u~, = (W3/2) &u,. For a general
kink-bearing system [Eq. (2.2)], we denote the
bound-state eigenfrequencies by My y 0 (dy

3p ~ ~ ~ p $ + p
where N~ is the total number

of bound states. 'The lowest of these will of course
be u&~, =0 (the translation mode) since all other
&~ „must be non-negative if the kink i.s stable
against small oscillations. In Table I we have
listed the bound-state eigenfunctions for P, SG,
and DQ potentials.

In addition to the bound-state solutions of Eq.
(3.4}, there exist continuum states (extended
modes) which we label by a wave vector k. These
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states have eigenvalues ~2k given by

(d =(d +c kk 0 0 (3.9)

of bound states is N» the total number of phonon
states must be decreased by N~; i.e.,

which is precisely the dispersion relation for
phonons in the absence of kinks. Equation (3.9)
fol.lows from the fact that far away from the kink
the potential V (p»0 (x)) approaches unity [Eq.
(3.5)]. Although the precise form of f~(x) depends
on the potential .and can be quite complicated in
the region of the kink, we know that very far
away from the kink the eigenfunction f~(x) must
approach the form of an unperturbed phonon. or
superposition of unperturbed phonons with + k
and —k. The most general asymptotic forms
needed for our purposes are

Clearly, the phonon density of states is changed
by the presence of a kink:

dn L 1 dh(k)
p(k}=—=—+-

dk 2m 2g dk
(3.12)

whereas the unperturbed density of states po(k)
in the absence of kinks is p, (k) =L/2v, so that
the change is given by

&p(k) = p(k) —p.(k) =
2,
1 dh(k) (3.13)

According to the Friedel sum rule, 4' there can
be no net change in the total number of states
when the kink is introduced. Since the number

g (&) g elf'+(1/2)h (k} 3 + ~ e-kfkX+(1/2)&(k~3
k

x (3.10}

where b,(k) may'be regarded as a phase shift which
of course depends on the particular potential at
hand. This phase shift contains all of the infor-
mation concerning kink-phonon interactions that
we shall need to construct the phenomenological
free-energy density.

For those special cases (e.g., p~ and SG) where
the potential V (g»0 (x}) is ref lectionless, "we
may choose B~ to be zero in Eq. (3.10), and the
constant A.» is then determined by normalization.
For less exotic cases (e.g., DQ) where the poten-
tial is reflecting, it is convenient to choose 8k
=2k, as first pointed out by Trullinger and De-
Leonardis. "

In order to make contact with the transfer-oper-
ator results of Sec. II we consider a large system
of length I and impose periodic (Born-von Ear
man) boundary conditions on the continuum (phon-
on) states f,(x). This periodicity condition, to-
gether with Eq. (3.10), gives the following con-
dition for the allowed wave vectors:

Lk„+ h(k„) =2vn (n=0, a 1, a2, . . . ), (3.11)

(3.14)

where P denotes the Cauchy principal value, and
we have used the fact that lim ~ „h(k) = 0. Note
that Eq. (3.14) also follows from Levinson's the-
orem42:

h(0+) =vN~ .

k,r P ' dk ln(pk&o~) hp(k),L (3.15)

or using Eq. (2.13)

kBT r g/g
In(pk(o, ) P dk hp{k)ga Ig

kBT /1
+ P dk hp(k) ln

ff/t

d . yr'lk
&& ln 1+ 4 — sin~~ — . (3.16)T ~2

In the limit as l-0, this becomes '

&E = — N~ln(Pjg&o, )
kBT

kBT 1 f'" dQ+ —
l~ dk ln(1 +d'k')L 27K d~ (3.1V)

In writing Eqs. (3.14) and (3.1V) we have made
use of the fact that d4/dk has a singularity on the

One way to view this decrease is that kink
traps" phonon states due to its very presence.

The number of states which it traps is unaffected
by its velocity [Eq. (3.13) can be boosted to the
kink rest frame4'] and this number (N~} must be
at least one (corresponding to the translation
mode). Not only is the trapping of at least one
phonon state unavoidable, it is precisely the
mechanism by which the kink can divert two de-
grees of freedom for its creation and translation
motion. If additional phonon states are trapped,
these provide the necessary degrees of freedom
for the internal oscillations of the kink corres-
ponding to the additional bound states of Eq. (3.4).
We have thus isolated the novel mechanism by
which degrees of freedom (or free energy, etc.)
are shared between modes of R nonlinear system.

We are now in a position to calculate the change~ in the phonon free-energy density due to the
presence of a kink moving at very low velocity
v«c, (there will be very few kinks traveling with
high velocity when ksT«E»o ). The velocity of
the kink may then be neglected to zeroth order.
We have then from Eq. (2.40)
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real axis only at k=0, so that P Jdk can be re-
placed by 2 f„dk if the integrand is even, and by
zero if the integrand is odd. We shall interpret
this change in the phonon free-energy density as
a contribution to the self-energy density of the
kink. This viewpoint is similar in spirit to that
adopted by Dashen, Hasslacher, and Neveu"'
in their calculations of the quantum renormali-
zation of the kink mass due to its effect on the
zero-point energy of the vacuum.

Another contribution to the kink self-energy
density will arise from the localized internal'har-
monic oscillations of the kink corresponding to
any additional bound states of the kink potential
V"(Q»' (x)) described above. The total self-
energy of the kink is thus given by

r (T) kkr(r)+k =Tf)n(()e+ „), (3.18)

where (vo g are the frequencies of the internal
oscillations. The second term in Eq. (3.18) is
absent if there is only one bound state (No =1).

At low temperatures (ksT «E» ') the kink den-
sity will be exponentially smp. ll [see Eq. (2.43)]
and hence the average separation between kinks
(and a,ntikinks) will be quite large. In this situa-
tion we associate the full value of Z»(T) with each
kink (antikink). With the large average separation
between kinks we neglect kink-kink interactions
to an excellent approximation.

In this phenomenological framework we may de-
velop the thermodynamic functions for a system
of phonons, kinks, and antikinks using the grand
partition function. We consider ensembles of

I

phonons, N~ kinks, and N~ antikinks. Of course,
the phonons are perturbed by the presence of
kinks, and the grand partition function, -, cannot
be rigorously factored; however, the implication
of the immediately preceding discussion is that to
a significant degree, the phonon-kink interactions
can be accommodated by the self-energy cor-
rections Z»(T). Thus, we approximate

wpw
p ~E lik (3.19)

where ' is the free phonon grand partition func-
tion (GPF),

(3.20)

»g K» (SG) k

ordered (y4 Dq)

(3.21a)

(3.21b)

In the former case

where

e "s"&Z& N~,
8~~0

(3.22a)

01&p

with Eo given by Eq. (2.40);:"KK is the kink-anti-
kink GPF.

In the general class of kink-bearing systems
it is necessary to distinguish between those in which
which sequencing of kinks and antikinks is or is
-not constrained for physical reasons. In the sine-
Gordon case, where the ground state is multiply
degenerate, any sequence of kinks or antikinks
is physically admissable; in the (t)' and DQ cases,
there being only two degenerate ground states,
it is necessary that kinks be followed by antikinks
(and vice versa). It follows that

ekk
2 N~

~»( K) =
K) t J "q» +'» exp( -&[(Cco+EK ) +ZK]3

lC' 0

and a similar set of expressions applies to antikinks with Ng, p,~.
For the constrained sequences in (3.21b)

(3.22b)

„ordered —~ eB(k»»g (N)IC, I7
N=o

where

(3.23a)

2 ~N 1
f+ yOO

)2 /
N

Z»»(N) = —„J dq, Jl dq, ~ ~ ~ dq„dP» exP(- P [(P2»e'o E+)»('o~' Z+]]»
~ 00

(3.23b)

2 Z," N

dP»exp(- P[(P»c2+E»" )'"+Z ]]N1 h" (3.23c)

Here N is the total number of kinks and antikinks
(N= 2N„ in the limit of a large system); the multi-
plicative factor of 2 derives from the fact that

sequences may start with either kink or antikink.
In the general sine-Gordon case, one may admit

sequences for which N„WN~, and their difference
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W=N» N-» (called a windmg number) has physical
significance. "" However, for systems with no
externally applied bias toward kinks over anti-
kinks, we expect N~ =Ng on the average, and
p, ~ = p g. Restricting consideration here to that
situation we find from Eqs. (3.22) and (3.23)

or, using Eqs. (3.19) and (3.24)

-k T e»ge "(&g +x:~)2Ez
Bhc, PE»&' &

(3.26)

:"»»=exp[(2L /Bh)c&e&'"»], (3.24a) The average total kink-number density n"' = (N
+N») /I =N»"'/L is then given by

exp[ —P(E»&" +Z„)]. (3.24b)
o K

~ ~

When working in the low-density limit, except for
the sequencing restriction taken care of numeri-
cally by the quantity B above, the kinks and anti-
kinks may locate freely along the chain and we
may choose to regard them as independent so that
"z 17= "z"z where

:-» =:-»=exp[(L/Bh)c&eo "» ]. (3.24c)

The grand canonical potential density 0 is given
by

0 = -(ksT /I. )ln=, (3.25)

where B =1 (SG), B =2 (p', DQ). The quantity &»

results from the integration over p; it is ex-@''
pressible in terms of the modified Bessel function
EC, (PE»&o '). Asymptotically, for large (PE»)

its
0

Ii

Ee&rc& r, r
(3.27)

2Eg 2w 1

g (g (p)+g )
(p) i/2

Bhc, PE~«')
(3.28)

The free-energy density is given by F =Q (with
&u» =0) or

F =F
p

—kBTngtot (3.29)

The temperature dependence of n~" can be ex-
plicitly displayed by combining Eqs. (3.17) and
(3.18) to rewrite Z»(T):

We shall set the kink chemical potential p.~ equal
to zero, since there is no eternal constraint on
the kink number; the average kink density is then
determined solely by the temperature. We set
t&» =0 after performing the derivative in (3.21) to
obtain

d4'I
Z„(T) = —ksTN, ln(phoo) +ksT — dk iln(1 +d'k') +k T g ln(pil~, „)

p+ ?1 2

Nb

k Tin(p@~, ) ksT g ln-+ksT
2 J dki dk

ln(1+d'k'),~o 1 1'" (d&

n~2 b, n p+
(3.30)

where we have used the fact that Nb ~ 1 to isolate
the first term in Eq. (3.30) and combine the re-
maining —ksT(N, —1)ln(PS&so) with the sum over n

The temperatur e dependence of Z~ is thus quite
simple and motivates the following separation:

Z»(T) = -ksT ln(Ph&uo) —ksTo, (3.31)

where the temperature-independent quantity a is
defined by

4)p 1 ( dLh

cL) b „2'F ap dk

(3.32)

We note that since 4(k) is a decreasing function
of k and ~b „&cop, the quantity 0 is positive. Equa-
tion (3.28) for n» ' may now be rewritten as

(p)n"' =(2«) ' '(2e'/Bd)(PE" )' 'e» (3.33)

where we have used d=c /ur oWoe emphasize that
the only temperature dependence appearing in
n»"' occurs through the ratio E»" /ksT =PE»&o . The
temperature dependence of n~t ' is therefore the
same for all kink-bearing systems in our general
class.

Using Eqs. (3.29) and (3.33) and the values of B
and o from Table I, we see that the kink free-
energy density ( —ksTnz'") agrees exactly with the
tunneling free-energy densities [Eq. (2.44b)]. Now

that we have determined the free-energy density
F given by Eqs. (3.29), (3.33), and (2.40), the
other thermodynamic functions can be readily
obtained. For example, the internal energy den-
sity u = U/L =s (pF)/s p becomes

u =l 'ksT +(E»" ' —2ksT)n»" . (3.34)

This can be rewritten in the more suggestive form
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or

u =(l ' —N~nt")k~T

+nt» t [E» + 2k&T + (N& —1)kJtT], (3.35)

g(0)
+Ntot(»

(ksT 2 (3.37)

and the specific heat cz =(eu/BT)~ has the form

c~ =k~l '+ke([(E»0'/ksT) =,']' ——',}n» '. (3.38)
I

All of the thermodynamic functions (F,u, S, c~)
are, of course, dominated by phonon contributions,
since the kink density is exponentially small at
low temperatures (PE»to'»1). However, the den-
sity of kinks is quite important information for
several features which are insensitive to phonons;
for example, the dc conductivity in charge-den-
sity-wave condensates' and certain correlation
functions for the field as discussed in Sec. V.

We conclude this section with some remarks
concerning higher T orders in the functional in-
tegral result for the free-energy density. For
integrable systems such as SG (see Sec. IV) a
formally analytic configurational phenomenology
is still possible. In other cases (including P' and

DQ) it is not, and a phenomenological picture has
to be approximate. Nevertheless, such a picture
can still be remarkably successful even at k~T
= E~"' and is a very pertinent conceptual device
even though approximate schemes to renormalize
the kink energy must be used. ""In general two
new features appear in the exact transfer-operator
expressions at higher T. First, a polynomial
series" in (keT/E»0 )' ' replaces the simple pre-
factor in Eqs. (2.44). This is expected because
the second change is that E,(T) develops a power-
series form as shown for example in Eq. (2.37) for
SG. Similarly, deviations from the tight-binding
band structure develop for cases where V(Q) is
periodic (e.g. , SG). It is clear that these cor-

U=Lu =(L/l —N Nt")k T

+N'"[E»"'+ ,'k T-+(N, —1)keT)]. (3.36)

This is simply the internal energy of a system
with (L/l N~N-»"') classical phonon modes and
N~~o& nonrelativistic particles of x est energy E~ '

each having —,'k~T translational energy and thermal
energy (keT) for each of the N~ —1 internal oscil-
lation modes. Thus, the kinks obtain their neces-
sary degrees of freedom at the expense of pre-
cisely the correct number of degrees of freedom
in the phonon modes. The entropy S is easily
found to have the form

S L l i( d—=—1 ———Inj Pa(o, —
k~ l 2d '( 'l

respond to anharmonic kink-phonon effects. Note
from Eq. (2.37) that the free energy is lowered
by the negative anharmonicity consistent with
general theorems. 4' Rigoxous phenomenology
(certainly in nonintegrable systems) will be dif-
ficult; these new terms have to account for (vi-
rial) kink-kink corrections, as well as interactions
with anharmonic phonons and other excitations
appearing beyond linear order. "" Interactions
between modes have been little-explored in these
regimes. The corrections to E,(T) itself have
nothing to do with kinks (which are related to
exponential tunneling factor s).

In this section we have seen that kink and pho-
non excitations give rise to characteristic con-
tributions to the equilibrium thermodynamic func-
tions for a general class of nonlinear Hamiltonians
[Eqs. (2.1) and (2.2)]. Detailed interpretation
even at low T, however, was found to require
knowledge of interactions between these excita-
tions. This knowledge was shown to reside in the
phase-shift function L(k) which was found to have
a particularly simple form for the three example
cases presented (P', SG, DQ). We have shown
that the low-temperature statistical mechanics
can be interpreted in terms of mode conservation
and energy-sharing mechanisms and that the low-
temperature ideal-gas phenomenology is exact.

In the following section we discuss the sine-
Gordon case in particular since it provides an
example of a completely integrable system for
which the above phenomenology should, in princi-
ple, be extendable to all orders of nonlinearity by
inclusion of breather excitations.

IV. SINE-GORDON AS AN INTEGRABLE HAMILTONIAN
SYSTEM: THE BREATHER PROBLEM

In principle, totally integrable Hamiltonian
systems, such as the continuum SG, are ideally
suited to an exact phenomenological formulation
of classical statistical mechanics. 'The concepts
of partitioning solution space into nonlinear nor-
mal modes and energy-sharing (developed to
linear order in Sec. III) generalize exactly. This
is because exact soliton equations are (with
some restrictions on boundary conditions} com-
pletely soluble via (for example) the inverse
scattering transform, " " a canogicgl trans-
form to functions of generalized action-angle
variables which serve to label allowed types of
elementary excitations. Among other r emarkable
properties the allowed excitations are infinitely
long-lived, suffering purely asymptotic pair-wise
additive phase shifts and forming nor'mal modes
in the sense (for instance) that the Hamiltonian is
exactly separable into contributions from eaCh
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constituent mode. These properties will be re-
cognized as nontrivial generalizations of those
used in Sec. III, which were only valid in a 1ow-
density regime. The same separability extends
to quantized integrable Hamiltonian systems;
eigenstates appear" as solutions derivable from
a generalized Bethe ansatz~ and all collisions are
elastic and preserve momentum, so that the S

. matrix is exactly factorable. In the case of SG,
the nonlinear normal modes are solitons (and
antisolitons), continuum excitations, and breath-
ers. Only the first two of these mode types

were needed in the low-7 theory of Sec. III.
Complete details of action-angle variables for

SG can be found in Hefs. 14, 51, and 52 with
necessary phase-shift results in Befs. 14 and
43. We have chosen not to reproduce these here
because fundamental obstacles to the inclusion of
breather modes in a classical statistical-mechan-
ics calculation remain and we will postpone de-
tailed discussion to a succeeding publication
except for the following brief remarks.

The single SG breather translating at velocity
v (v ac,) (see Sec. II for notation) has the form

4,
~

(&u'/&u~ —I)'I' sin[@&us(t —vx/c', ] 'I

cosh[yd '(x -vt)(l —(02'/(p', )'E') j

with energy

&,(v, &s) = 2V~»' (I —"a/"o)" (4.2)

Here, Ez ' is the SQ kink rest energy'given in

Table I, &g& (0(u&(&d,) is the frequency with which

the breather envelope oscillates harmonically (in

its center-of-mass frame), and we have omitted
two phases representing conjugate variables to the
translational and internal momenta. Note that as
&~- 0, the breather amplitude approaches 2m,

its width approaches twice the soliton width, and

it unbinds to become a soliton-antisoliton pair. Qn

the other hand as ~~ ~0 the breather profile be-
comes very extended and of low amplitude. As

might be expected from these limits, breathers
can be viewed either as soliton-antisoliton bound

states or as anharmonic phonons. " Indeed, .upon

quantization, "~"breathers appear naturally as
multiphonon bound states and the lowest-energy
breather coincides with the fundamental quantized
mode (phonon) in all physical properties. Never-
theless, classically, the breather does not be-
come a linearized phonon as ~~-co„since its
frequency must be less than co, and its amplitude
still depends on its frequency.

Breathers are of interest in several physical con-
texts""'" "because they combine internal dy-
namic structure with a particlelike envelope. In
particular, their contributions to thermodynamic
quantities need to be considered at all but the
lowest temperatures where linear phonons are
sufficient (Sec. III). Certainly breather excita-
tions are observed in molecular dynamics simu-
lations of sine-Gordon" and P' (Ref. 56) chains,
although they do not enjoy the topological stability
of kink solitons and are more sensitive to dis-
crete lattice effects.

Since breathers do not break global symmetry,

anharmonic-phonon perturbation theories or njode-
mode coupling theories of suitable finite, order
for equilibrium or nonequilibrium statistical
mechanics accurately include low-amplitude brea-
ther contributions. However, these will not em-
phasize the distinctive spatial and temporal
coherence characterizing breathers. This can
be important, especially when shorter breathers
are substantially populated and for interpreting
certain dynamic responses. " It is important to
note that the several phenomenological approach-
es57~' to nonlinear statistical mechanics (as well
as the transfer integral technique) which treat
the dynamic and configurational. partition function
components separately can accommodate kinks
naturally, since these appear as static steepest-
descent trajectories in a path integral represen-
tation. Breathers or phonons are less natural.
They require perturbation around steepest-des-
cent trajectories and their internal dynamics
means they must be reconstructed by a suitable
recombination of dynamical and configurational
components. 'The direct nonlinear normal-mode
phenomenology available for integrable systems
already includes such spatial and temporal or-
dering. This is why it is so physically appealing.

Many of these statements for breathers apply
equally to all nontopological pulse solitons as in

the nonlinear Schrodinger equation, ' solitons of
the Heisenberg ferromagnetic chain, ~ Korteweg-
de Vries equation, ' 'Toda lattice, ' etc. Statistical
mechanics in a soliton basis is intrinsically more
difficult in these cases than for kink solitons.
The latter have a finite creation energy so that
there will always be a temperature (=creation
energy) below which the soliton density is expon-
entially low. Pulse solitons, however, have a'
range of creation energies extending to zero. We
can then expect power-law temperature dependen-
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cies in the free energy, soliton density, etc.,
rather than activated forms. In addition, mode
counting will be more critical than for a dilute
kink gas —arbitrarily low-energy pulse solitons
can be populated with arbitrarily high density, so
that discrete lattice and finite-size limits need
to be handled carefully.

In the case of SG breathers, these concerns be-
come clear if we use the inverse-scattering the-
ory naively. Namely, as a generalization of the
low-T kink approach (Sec. III}, we can construct
a grand canonical partition function for an ideal
gas of renormalized breathers. The renormal-
ization derives from pair-wise additive phase-
shift interactions with phonons (as in Sec. III),
which can be given exactly for integrable sys-
tems. ' ~ Each breather removes two phonon
modes consistent with its interpretation as a
soliton-antisoliton pair. Integrating over all
breather velocities, internal frequencies, and

conjugate variables it is possible" to evaluate
a breather partition function to all orders in T.
The corresponding free energy contains a power
series in T as expected [c.f. the transfer integral
expansion (Sec. II)] but also an explicitly divergent
term. As anticipated, this divergence arises
from the high-frequency (&us- &u,) breathers.

It is clear that the large number of breather
modes expected even at low T directs attention to
several points. These include the following: (i)
The inverse-scattering theory which generates
the separable Hamiltonian structure used in the
above approach distinguishes coincident breathers
or kinks, i.e., multiple numbers of these with
the same momenta and conjugate (position} var-
iables. Formally, solitons and breathers appear
in inverse-scattering theory as poles and pairs
of poles in the eigenvalue plane of an auxiliary
linear operator. The usually quoted" separable
form assumes only simple poles: Multiple poles
and pairs of multiple poles must be treated spec-
ially. This area is little studied and is omitted
in the calculations of See. III and the above des-
cription. We cannot expect an important effect for
kink contributions at low T because the kink. den-
sity is activated and coincidences are of a much
lower order. However, such coincidences wiB
become important even at low T for breathers
since arbitrarily low creation energies are pos-
sible classically. (ii.) The possibilities of arb-
itrarily low-energy breathers and correspondingly
high densities means that mode conservation must
be included precisely. In particular, the order of
thermodynamic limit and integration over breather
variables has to be handled carefully —boundary
effects for extended breathers are important.
(Note that the most-studied inverse-scattering

procedure assumes decaying boundary condi-
tions. ") (iii) Since linear phonon modes are
viewed quantum-mechanically as the low-energy
part of the breather spectrum"'" we can expect
that the classical statistical-mechanics limit will
have to be defined carefully, particularly with

regard to the high-frequency breathers. Recall
that the classical limit was introduced explicitly
in the transfer integral approach by the separa-
tion of dynamic and configurational free energy
(Sec. II}. Similarly, the kink-phonon phenomen-

ology (Sec. III), included the classical criterion
k~T»S+, in the harmonic phonon free-energy
expression [cf., Eq. (2.40)]. We will return to
the analysis of statistical mechanics for breather-
like excitations in a separate publication.

V. CORRELATION FUNCTIONS

The concept of a configurational phenomenology
is especially important in the analysis and inter-
pretation of equilibrium static and dynamic cor-
relation functions (as well as in certain transport
coefficients"}. The soliton solutions, in particu-
lar, manifest themselves as long-lived excita-
tions (at low T) with novel physical consequences-
for example, an intrinsic low-frequency response
mode. ' Although in principle the knowledge of the
complete evolution available for totally integrable
Hamiltonian systems (Sec. IV} allows S(q, &u) to
be formulated in normal-mode basis, in practice
this has been of limited value and little analytic
improvement on bare phenomenology' has been
made. 4 ~ ' A complete survey of phenomeno-
logies (in integrable and nonintegrable systems}
for S(q, u&) and of experimental implications is
beyond the scope of this work and will be given
in a separate publication. " Here me mill limit
discussion to the static structure factor, i.e.,
the integrated intensity J d&u S(q, &u) or equivalently
the equal-time correlation function [e.g., (2.20)]
related by Fourier transform. In this limit an

exact solution via the transfer integral technique
is available against which phenomenologies can
be calibrated.

Typical correlation function expressions from
the transfer integral approach were given in Eqs.
(2.20-2.22) (generalization to some very aniso-
tropic higher-dimensional models is also pos-
sible" ). In q space the equivalent results are,
introducing the intermediate scattering function

z(q, f),

d(g S(q, (u) = E(q, 0) = dh C,(x)e'"

(5.1)
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where X„ is a characteristic correlation length:

X„-'(T)= PA&a', (s„—s,) . (5.2)

The distribution E(q, 0), then, appears as a
weighted sum of Lorentzians. (In this it is re-
lated to solutions of certain Fokker-Planck ems-
equilibrium distributions in a large damping re-
gime, which can also be reduced to a pseudo-
Schrodinger Hamiltonian problem. ~)

In many cases of interest it is possible to re-
strict the sum (5.1) considerably for la l

» &(T).
Consider, for instance, a symmetric double-well
potential V(p) in (2.2) (e.g., the p' model). We
deduce from symmetry that the lowest level with
nonzero-matrix element (i.e., coupling to the
ground state @= 0) is n = 1, the first excited level.
Then from (2.44b) and (5.2)

X,(T)- = (—,', v)' ' d(PE»') ' ' exp(PE» '), (5.3)
T» 0+

-s"')a r
X„~,~d(+O(ksT/E» '), O(e» s )) . (5.4)

In this situation X, » A.„» so that (5.1) is well
approximated (at large la l) by

E(q, 0) =
l (0 l @ l

1)l
'P.,/(q'x', + 1)],

(5 8)

The temperature dependence of the matrix ele-
ments is weak, "'"dominated at low T by phonon
fluctuations: l(0 lP ln) l'-1- &,ksT/Ez'" (n = 1,)
and-&„(ksT/E»0') (n ~ 2) (forn such that (Gled ln)
$0}with n„being numerical coefficients. Con-
sequently, in examples of this type (i.e., coupling
between tunnel-split levels) a characteristic kink
activation appears directly in the correlation
length. A simple phenomenological interpretation
is then available at low T similar to that for pure
one-dimensional Ising models. "' " ' 'We consider
a gas of independent kinks in one-dimension with

where we have adopted the specific numerical
coefficient for y'; the functional form of (5.3)
is general. The exponential kink-energy de-
pendence is characteristic of coupling between
tunnel-split levels (n = 0, 1). Higher-n-levels
differ from n=o essentially as different levels in
a single-well potential and give a dominant power-
law temperature dependence to the corresponding
correlation lengths. Indeed, at low T we can
approximate the levels with harmonic oscillator
states (2.28): c„—s, ~ksT/E» . Thus

a Poisson separation distribution. Each kink has
the property that its passage f1.ips the field var-
iable P from + P,(T) to + P,(T) with P,(T)- P,
(Fig. 1) as T-0+. Furthermore, the kink and
antikink always follow each other. Introducing
N»(x), the number of kinks in the interval x, it
is easily shown that

C (~) = (4(~) 4(0)) =P'.(T) ((-1)' ')

y 2(T)e-lail» (5.7)

with

X,(T}= [2 (n',"(T) )]-' . (5.8)

In this phenomenology, phonon fluctuations are
relegated (for large lx l) to p, (T) and the kink
dressing implicit in (n»'"(T)) (Secs. II, and HI).
With the identification &, —& = 2 A~' nz' T
(Secs. II and III) and y', (T)= (Glg l1}l', we see
that (5.7) and (5.8) agree with the exact result
(5 8).

This kind of strong signature for order-para-
meter defects in the correlations of strongly
nonlinear systems is in fact quite general, ex-
tending to models on higher-dimensional lattices
and with multi-component order parameters
[recent examples have included the classical
(isotropic and anisotropic) planar and Heisenberg
models" "]. However, there are other important
situations where phenomenological interpretations
are less transparent —for example, if we consider
correlations of a function E(p) which is unchanged
after the passage of a kink, e.g., E = p'" (n inte-
ger), lpl, etc. (relevant to, e.g., energy-energy
correlations}. Clearly, correlations in these
cases are dominated by the almost complete Bragg
peak [with weight softened only by the phonons
(Debye-Wailer factor)] and an exponentially small
volume occupied by kinks. Additional correlations
only reflect the phonon and local-defect (kink)
regions. Both of these are determined by the
shoR-length scale d (-kink width) and not the
average kink separation as in (5.8): The fluctua-
tion correlation length does not diverge as T- 0+
and does not reflect the kink activation energy.
Kinks are nevertheless still a striking physical
aspect of the dynamics and a phenomenology is
still possible which incor porates them.

In the static case, the differing properties of
this last situation follow immediately from the
transfer integral formalism. We simply note
that (0 lE(@) l0) w0, which in (5.1) gives us the
Bragg peak. Expansions of (0 lE l0) at low T
then allow us to identify kink and phonon deple-
tions of the Bragg amplitude. " By symmetry
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(0 ~E ~1)-=0 so that the characteristic kink corre-
lation length no longer appears and indeed all of
the contributing terms in (5.1) have correlation
lengths X„(T) of the form (5.4). The correspond-
ing matrix elements )(0 ~E ~n) ['each contain phon-
on and kink terms. ~ In such cases, then, kink
effects appear through the matrix elements and

not the eigenstructure of the effective Schrodinger
equation (2.23). In practice many terms must be
kept in (5.1) to reproduce the kink and phonon
effects adequately. Phenomenology is therefore
even more appealing.

It will appreciated that the q and T dependence
of E(q, 0) are quite different for the two types
of situations described above. Compare, for
instance, the different ways in which the event-
ual complete Bragg peak evolves as T-O+.

Essentially the same questions arise when we
consider examples of (2.2) with periodic V(y)
such as SQ. Here the appropriate order para-
meter or physically interesting variable fre-
quently arises as a periodic function E2(p) of
the field; g might be a phase, ' spin rotation, "
etc. In view of the Floquet structure of the eigen-
functions of the effective Schrodinger Hamiltonian
(2.23), matrix elements of periodic functions are
severely restricted. Matrix elements of.nonper-
iodic functions of y do arise in the analysis of
mass (charges, pin, etc.) ddfusion and transport '

described by SG-like models. " These have- very
different properties and consequences not available
in unbounded potentials —the possibility of mass
diffusion distinguishes periodic potentials V(p).
We will describe here correlations only of periodic
forms E~ which are of greatest interest in scat-
tering experiments, etc.

The two types of behavior we experienced for
p' both occur, depending on the specific form of

E2(y) and the relative periodicity of E2(p} and

V(y). For definiteness we choose E2(p) to be
2i/-periodic and freely oscillating [E2(p}= e'2,
cosy, etc.] as is most usual. Then, if V(p} has
periodicity 2z, a kink does not change the asym-
ptotic value of F~ and we anticipate analogous
behavior to p' correlations in the y' model. The
only characteristic length is again the kink width
d. On the other hand if V(p} is (2)//A/} periodic(¹2,integer), the analogy with y correlations
in an N well model ca-n be expected. [Lower-
symmetry cases (periods 2') will not differ
qualitatively from the 22-periodic case. ]

These physical expectations again appear natur-
ally within the transfer integral formalism. Con-
sider the correlation function C„„,«, (x), (2.22}.
(Other choices are entirely parallel. ) Adopting
the Bloch function form (2.31) we have now to
consider matrix elements .of the type

(0~e" ~k)=- J~ dy u, (y)u„(y)e'""", (5 9)

where u2(p) =u„(p+ P) with (=2)T/N. Here we
have adopted the extended zone scheme for ped-
agogic convenience (—~&k&~}. Despite the con-
tinuous (band-structure} eigenspectrum, the per-
iodicity of all functions in (5.9}demands the se-
lection rule (Bragg condition)

0+1=6, (5.10)

)i(»a 2 ) (T) ~ )d () 7/)
i / 2

(pE ()/ a 2 )) i / 2

x exp(E'"')/k T). (5.11)

The Ising-model picture (5.7) and (5.8) then
applies immediately. For H&2 coupling to a lower
state in the first band is allowed. Using a tight-
binding band structure (appropriate at low 7}we
find explicitly that [for a general V(p) of this
periodicity]

where G is a reciprocal-lattice vector, G= 2m'/$
(m integer). If )=2)/, then (5.10) shows that the

ground state k=0 is coupled to states k=O, a1,
a2, . . . , i.e., only to k=0 states of each band in

the reduced-zone scheme (2.31). The self-coupling
of the ground state simply provides the Bragg
peak as in the p' case for P' correlations:

[ ( 0 ~e'2 ~0) ('= 1 (- phonon and kink pieces, omit-
ting a trivial normalization factor). Fluctuations
with respect to this average arise from the ex-
cited A; =0 states, which are all separated from
the ground state by band gaps. At low T these
-keT/E»o [(c.f. (2.39)]: Tunnel-splitting correc-
tions are exponentially small, exactly as in y'.
From (2.38) we see that the correlation lengths
(5.2) for the SG example ar e X„-nd, as T - 0+ .
Again the fluctuations (with respect to the ground-
state average} remain short-ranged as T-O+,
and the only kink signatures arise in the matrix
elements as depletions of the Bragg peak or fluc-
tuations amplitudes. It is necessary to consider
the dynamic response S(q, &u) for a strong kink
characteristic (low-frequency mode) to appear. ""

Contrast the periodicity ) =2m with g =2v/N
(N= 2, 3, . . .). Now the Brillouin zones are
stretched, G=mN, and from (5.10) we conclude
that coupling exists between the ground state and
the excited state in the first band at k= (- 2/fi)
x (zone boundary wave vector, —,

' N). These states
are separated by tunnel-splitting and therefore
dominate the sum (5.1) (for large ~x ~), directly
reflecting the kink activation energy. In partic-
ular for N= 2, coupling is to the top of the first
band and from (2.38) for the SG case
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2)(wa2) (E(»a2) E(») 2E(»M)/N)
1 —eos (2)t/N}

(5.12)

The divergence of the correlation length as T -0+
with kink activation is' Cherefore still dominant;
the phenomenological analogy is now with a higher
spin model. In all cases ¹2,(O~e(~ ~0)-=0 in
accord with our physical expectation that long-
range correlations in e'~ are destroyed by kinks
in these cases. Note from (5.12} that at suffic-
iently low T, A. (~')(T)&A.'"="(T): Physically,
each kink changes e'~ by a smaller amount for
N&2 but the kink density is greater and domin-
ates.

It may be useful to visualize the results of this
section by considering our periodic V((t)) models
as a classical one-dimensional XF fixed-spin
model in an N-fold anisotropy field (e.g. , ~
[I cos(Ny)]): SzS»"+S»S'r"- S cos(P, ,) —P,.)
=S'(d(t)/dx)'; S„=Scos(t), S„=.S sing. If N=1,
the anisotropy term is equivalent to an applied
field and (I(x) = 0 is the nondegenerate ground
state (c.f., &O~e'~ ~0&40 for N= 1). With N~ 2,
however, there are physically distinct minima
for (t) in (0, 2m) —the ground state is degenerate
(c.f., (e'~) = 0, N ~ 2). Kinks describe spin rota-
tions evolving between neighboring minima. Thus,
we again expect 2m-periodicity (N = 1) to be quali-
tatively distinct. Note;. iso from (5.12) that as the
degree N of the anisotropy , A.

'~' , and the
symmetry-breaking becomes irrelevant. This
behavior is also evident in treatments of the aniso-
tropic two-dimensional classical XF model. "

The spin example above is actually of current
experimental interest for the special case N=1-
CsNiF, (for example) in an applied magnetic field
is a planar ferromagnet quite well described by
the model'6 and evidence of soliton dynamics in

S(q, (d) has been reported. " Other physical real-
izations of the periodic V((t)) models include spin,
phonon, and electronic systems experiencing a
commensurability potential. " In fact, periodie-
ities of fractional order () =2@M/N; M, N inte-

gers} can then be relevant but the discussion
of correlations given above is readily general-
ized. A. recent numerical analysis" of a similar
model with twofold symmetry breaking ($ = v)
but incl, uding amplitude fluctuations in a complex
order parameter p= ~g ~e'~ has established sim-
ilar kink signatures in appropriate correlations,
and a recent analytic investigation" of this model
had confirmed the presence of two-component
kink excitatioYls.

VI. SUMMARY AND DISCUSSION

In this paper we have extended the ideal-gas
phenomenology of Krumhansl and Schrieffer' to

include the entire class of nonlinear Klein-Gordon
models [Eq. (2.3)] having, topological kink solu-
tions in one dimension. By taking into account
the phonon phase shifts which occur in the pre-
sence of kinks, we have isolated the mechanism
for sharing of energy and degrees of freedom
among the elementary excitations of the non-
linear system. We have shown that this configura-
tion or nonlinear normal-mode phenomenology
gives the exact low-temperature behavior of the
various thermodynamic functions and correlation
lengths by comparing the phenomenological re-
sults to those obtained via the exact transfer op-
erator technique. Thus, by properly incorporating
kink self-energies due to reduction of the phonon
density of states in the presence of kinks, we
have placed KH theory on a firm foundation. %'e

have found that the low-temperature density of
kinks is given by a universal temperature depen-
dence n» (PE»-(0 )'~'exp( —PE»" ), where only nu-
merical prefactors are model dependent and the
temperature enters only through the ratio PE»(o'

=E»(o)/kBT. The usefulness of the phenomenology
is now apparent since one need not carry out a,

calculation of the partition function for each case
of interest, but only a calculation of the kink rest
energy E»" via Eq. (2.9).

We conclude by mentioning a few extensions of
the phenomenology which are currently under in-
vestigation. While we have focused in this paper
on one-component fields, there may be several
situations where multi-component fields need to
be considered. "" For example, in solitary-wave-
bearing charge -density-wave systems, ' the am-
plitude as weQ as the phase of the condensate
carries degrees of freedom so that, in general,
the field has Aeo components. Evidence for two-
component solitary waves in the statistical me-
chanics of such systems has already been found"
numerically via the transfer operator approach
and also via a recent analytic treatment. " How-

ever, it remains to develop an ideal-gas pheno-
menology analogous to that developed here for
one-component models. The same physical ideas
should be applicable to the two-component problem
where both phase and amplitude-phonon densities
of states will be affected by the presence of kinks,
and an investigation is currently in progress. "

In this paper we have, considered only the clas-
sical statistical mechanics of one-component
solitary-wave-bearing fields. However, it is
clear that quantum corrections may become im-
portant at low temperatures. Indeed, it has re-
cently been shown" that the thermal density of
quantum SG solitons varies as n- (PE»(0)) '~3

)( exp (-PE»(0) ) which differs from the classical density
in the exponent of the prefa. ctor. This diiterence
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arises because" of zero-point renormalization
of the kink energy rather than the thermal phonon
renormalization considered here. The quantum
phenomenology" also needs to be extended to
multicomponent fields.

Another area of extension is to nonequilibrium
situations such as occur when the system is placed
in an external field and damping mechanisms are
included. A recent calculation" of the nonlinear
response of the SG chain has been carried out via
the Fokker -planck approach. In the low-tem-
perature, low-field limit, the response is dom-
inated by thermalized solitons. . However, at
higher fields the role of solitons has not yet been
explicitly identified in the exact results, although
recent molecular -dynamics simulations" clearly
show the existence of kink excitations. A non-.

equilibrium kink phenomenology is clearly de-
sirable and some efforts in this direction have
been made. "

Finally, in order to extend the phenomenology
to higher temperatures, we still need to deter-
mine how the breatherlike excitations (Sec. IV)
enter the statistical mechanics; in addition, as
the kink density is increased by raising the tem-
perature, we expect virial corrections to be-
come important. An investigation of the virial ex-
pansion is currently underway. "

emote added in p~oof. Very recently, DeLeon-

ardis and Trullinger (unpublished) have used the
analytic properties of the phase-shift function,
6(k), to obtain a closed form expression for the
kink self energy [Eqs. (3.31) and (3.32)j valid for
the entire class of kink-bearing potentials &(P)
considered here. In addition to explicitly demon-
strating the low-temperature exactness of the
ideal-gas phenomenology for all V(P) in this class,
they have obtained a general formula for the kink
density which does not rely on details of the kink
waveform or its small oscillations.
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