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Recently, a large number of surface-spectroscopic phenomena have been discussed in terms of models
which provide phenomenological equations for the response of the adsorbed molecule to the external fields
and compute these fields by assuming that the macroscopic Maxwell equations are valid, Since the
macroscopic equations neglect the spatial dispersion of the dielectric constant of the metal and its variation
with the distance to the surface, one expects that the computation of the field near or inside the interface
may have substantial errors. In order to study the extent of such errors, we use a jellium-electron-gas

-model to develop a microscopic theory of the electromagnetic fields at the interface. The electron-gas
properties needed in such calculations are obtained by using the random-phase approximation. Numerical

' results are planned to be presented in future papers.

I. INTRODUCTION

The interpretation of the experimental data ob-
tained by surface spectroscopy has widely used
phenomenological models based on Maxwell equa-
tions. The properties of the metal are described
by the frequency-dependent, zero-wave-vector
dielectric constant; the surface is represented by
the boundary conditions; the role of the molecule
is mimicked by a system of permanent or polari-
zable charge whose classical equation of emotion is
specified.

There are many important examples of such
calculations. In infrared, electron-energy loss,
and electron-tunneling spectroscopy image-field
interactions have been invoked to explain frequency
shifts caused by chemisorption and change of
coverage. In Raman, resonance Raman, and
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fluorescence spectroscopy, a 0rude- Lorentz
model and image forces are used to compute sur-
face-induced changes in the molecular polariza-
bility. Similar effects were invoked to argue that
the enhanced Raman scattering may be a surface-
induced resonance Raman effect. Finally, the
van der Waals interactions between two adsorbed
atoms is influenced by the presence of the metal
and Maxwell's equations have been used to in-
clude this effect.

In using macroscopic Maxwell's equations to
compute electromagnetic fields very close to a
metal interface, one may make substantial errors.
Two of them are discussed here: (l) The field
exerted by the molecular charges on the metal
electrons varies rapidly with distance. The spa-
tial Fourier transform of this field contains high-
wave-vector components, and the response of the
metal to such a field is described by a wave-vec-
tor-dependent dielectric tensor. In using pheno-

menological Maxwell equations with optically mea-
sured dielectric constants, this wave-vector de-
pendence (i.e. , spatial dispersion or nonlocality)
is ignored. (2) The electromagnetic field near the
interface is certainly influenced by the details of
the continuous polarization charge in the interface
region. The use of boundary conditions in the
macroscopic theory replaces the real charge dis-
tribution with a sudden jump, thus making an er-
ror that becomes more important the closer one
gets to the surface.

In this series of papers we use a jellium model
and the random-phase approximation (RPA), pre-
viously developed by Newns, Beck and Celli, and
Feibelman, to inquire numerically into the mag-
nitude of the errors introduced by the two approxi-
mations mentioned above.

Since we are particularly interested in the im-
plications of those errors to surface spectroscopy
we must be able to compute the electromagnetic
fields induced by (a) long-wavelength transverse
fields, caused by the laser source, and (b) high-
wave-vector longitudinal fields, caused by oscil-
lating charge densities and/or currents located
near the surface and representing the molecules.
Previous numerical work. by Feibelman ' has been
concerned with long-wavelength fields only. In
the procedure developed by him, the smallness
pf the wave vector is used to simplify the numeri-
cal work and it would have to be substantially
modified if applied to the case of high-wave-vector
fields.

In the present work we develop and apply a
method that can be used for all wave vectors.
The idea is very simple. We expand the RPA
equation for the polarization tensor in Fourier
series and turn this integral equation into an in-
finite, discrete matrix equation. By truncation,
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this becomes a finite matrix equation which can
be solved numerically. By taking a larger and
larger truncated basis set we can test whether
the computation is convergent.

It turns out, however, that this simple proce-
dure is not easy to implement. Difficulties ap-
pear because there are always two types of fields
in the problem. ' a sharply varying field, localized
in the immediate vicinity of the electron-gas
boundary and a smoothly varying field, which is
extended over a very large range on a microscopic
scale. In most cases these two ranges overlap,
thus leading to nonadditive mixing of Fourier com-
ponents of very high and very low wave numbers.
To describe simultaneously both the smooth and

the sharp parts of the field, an extremely large
basis set is therefore required. %e find that
within the normal financial limitations it is not
practically possible to get good convergence in the
interface region. For example, even in the favor-
able case of a dipole oscillating near the surface,
where one expects a sharply varying, short-range
(screened) field only, one runs intodifficulties. If
the dipole frequency is below that of the surface plas-
mon threshold and the dipole is close to the sur-
face, the convergence obtained in a direct applica-
tion of the method in the interface region is ex-
cellent. Once the dipole frequency is increased,
however, and the plasmon is excited, the direct
application of the method is prohibitively expen-
sive, since one cannot easily describe both the

smooth plasmon and the sharply varying interface
field in the same calculation.

For this reason the implementation of the above
idea must take advantage of specific details of
each problem and find ways of treating the smooth
and the sharp parts of the field separately. This
requires nontrivial analysis, which is the subject
of the present work.

This planned series of papers is organized as
follows. The present one (paper I) contains a
very brief presentation of the basic theory and of
those computational aspects common to all planned
applications. In paper II we plan to present re-
sults for the interface field caused by laser radia-
tion. Paper III will apply the method to thin
films and paper IV to the case of a dipole or,
more generally, a time-varying charge density
located near the interface. The specific methods
used to treat separately the smooth and the sharp
parts of the field will be discussed in papers II
through IV.

The outline of paper I is given below. In Sec.
II we give the basic equations in a mixed Fourier
representation, which we found very convenient
for numerical work. In Sec. III we show how one
can define a dielectric matrix which includes sur-
face effects but results in equations that look like
those used for the bulk. In Sec. IV we introduce
the relaxation-time approximation in a manner
which preserves gauge invariance and conserves
charge.

II. OUTLINE OF THE MODEL

A. The basic equations

In what follows, Ao is the scalar potential multiplied by minus one, and Ag, A2, A3 are the components
&„,&„,&, of the vector potential. An external field, described by A„'*'(r, t), v=0, . . . , 3, polarizes the
metal and induces a charge density and a current. The electromagnetic fields caused by them is given by

pl l 3

A„(K,z; (o) =- D„(K,z —zg,' (u) Q Iip, ~ (K, zg, z2,' (o)A~*'(K, z2,' (u)dzgdz2 .
~0 o p, =o

(2.l)

Here D„ is the retarded bare-photon Green function in the Lorentz gauge, II„„is the retarded-polarization
tensor. All quantities are Fourier transformed with respect to time and the coordinates x and y (which
are parallel to the surface of the metal). K is the parallel momentum and v is the frequency. We con-
sider a metal slab of thickness l. We use a model in which the electrons are confined inside the metal
by infinite barriers located at z =0 and z =l. The expressions for D„and II„„aregiven below.

The random-phase approximation gives for II„,„ the integral equation

II„,„(K,zq, z2,' u) = II„,„(K,zq —z2, e)
l

dz3 dz4 g II0 „(K,zg, zgI QP)D„(R, zs —z4I (0)II„,„(K,z4z2I QP) . (2.2)
0 0 )t=o

Here II„,„ is the retarded bare polarization tensor,
i. e. , the retarded polarization of a free-electron
gas.

B. The mixed Fourier representation

The first step in solving Eq. (2.2) is the expan-
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sion of II„,~(K, zq, zt, ,'(d) in Fourier series. Since
II„,„vanishes when zq or z2 is equal to 0 or l, one
would think that a sine expansion will be the most
convenient. It turns out, however, that subsequent
calculations are greatly simplified when we use
what we call the mixed representation. For an
arbitrary four-vector f„(z), v = 0, . . . , 3, this is
defined by

2 t
l

f„(k)= —, y„(kz)f„(z)dz .
Jo

(2.5)

r~(z, z') =g P r„.(k, k')y, (kz)y„. (k'z'),
kvOk' +O

(2.6)

In a similar manner the components T ~ (z, z')
of a four-tensor are expanded in

f.(z) =Z f.(k)e.(kz), (2.3) with

with

and

kao

coskz for v = 0, 1, 2

sinkz for v=3 (2.4)

2')t2 1 .
t

l

Z„„,(k, k') = —
I dz J dz 7.„.(z, z')y„(kz)

o o

xy„, (k'z') . (2.7)

The expressions for II,' „and D in this repre-
sentation-are given below.

C. The bare polarization

To compute II„„weuse a model in which the electrons are confined inside the metal by two infinite bar-
riers located at z ='0 and z =l. Computationally this amounts to using in the one-particle Green function

GO( ). ) (4f 2)-1 -iR'(a-R')
y ( )y ( ))

7 (o —+g „+i& + —&g - i'g
~ K t tlC

the basis set

(r)„(z) =(2/l) sinkz, k=nm/l, n=0, 1, 2, . . . ,

where l is the thickness of the slab. Furthermore, we use (k'k'+5'K')/2m instead of hQ)k. The above spec-
ification of G determines completely" II„„,.

As is well known the polarization tensor has a diamagnetic II„,„. and a paramagnetic II„',~. part:

11„',„ (R, k, k'; ~) = 11„' „,(K, k, k'; ~) + 11„',„,(K, k, k'; ~) . (2.3)

The expressions for these two quantities in the mixed representation are given below.

1. The paramagnetic part

We can write II„,~ as the sum of a surface part and a bulk part:

11„';t.(K, k, k'; ~) =- P„",„.(K, k; ~)~„.—J „' „'. (K, k, k; ~) .

The bulk term is given by

&t't (K, k; (d) = P P Z„(Q + t'K, q + 2k; 1)J„.(Q + 2K, q + ~k; 1)R(Q, Q + K, q, q + k; 1)
2c

(2.S)

(2.10)

and the surface term by
2 k' k k'+k

P„;„'(K, k, vk)=, E J(Q k —,'K, —,'k', a)J„.(Q+-', K, —,'k )k Q, Q +K, , ; a) (2.II)

if the integers n, n' defined by k =nv/l, k' =n'v/1 have the same parity. If the parity of n and n' is dif-
ferent, P„,„.(k, k, k'; &o) = 0. The functions J„and R are

and

' Se
I)
—)Q)y(-1) ', P = 1, 2
m

~„(Q, q, )-=~
@,q(- I)"', p = 3

II im
ec, p= 0

{2.12)
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fCQx, qx) -f(Q2, q2)
k (P„q,)- (0'„q,)+(-I)'( + n)'

where f(Q, q) = e(k]. —Q —q ) is the Fermi function.

(2.12)

2. The diamagnetic part

The diamagnetic part of the retarded-polarization tensor in the mixed representation is

II„;~.CK, k, k'; v) —= g(k, k') 5„,„,(1 —5„,0),

where g has a bulk plus a surface part:

&„(k, k') = g ' (k) 6„g,. —g "(k, k') .
The bulk term g' (k) is

]
~„"(k)=-

(2.i4)

(2.i5)

(2.16)

where n is the density of a homogeneous electron gas, n =k~ /Sv . The surface term is
2

4"(k, k')= — . ~n„(k, k')(I-II ~ ]+ [mk +It„(k -k]8(g-k)il ]),
where &„=1 for p = 1,2 and &„=-1for p = 3, and

(2.iv)

(2.i8)

if the integers n and n' (defined by k —= nv/I and
k'-=n'v/l) have the same parity; furthermore,

~(k, k') =0 (2.1S)

if the parity of n' and n is different. The function
]I„(o') equals 1 for o'=0, 1, 2 and (-1) "for c(=3.

D. Sum rules in the mixed representation

For physical reasons the induced charge and
current density have to be zero for z = 0 and z =l,
since these are the positions of the infinite bar-
riers. This implies that the diamagnetic and para-
magnetic parts of the retarded-polarization tensor
II„„.(K, z, z'; &u) must also be zero for z = 0 or l.
Furthermore, physical arguments indicate that
II„,„(K,z, z'; &u) is zero when z'-0 or l.

If a sine Fourier series is used to represent the
polarization, the above conditions are automatical-
ly satisfied, since sinkz = sin[(nv/l)z]=0 for z =0
or l. If a cosine series is used, then the repre-

sentation

f(z) =g f(k) coskz =g c os(n]]'z /I )f(nv/l)
keP n&0

and the condition f(z) =0 for z =0 imply the sum
rule@ Of(k) =0.

When applied to the bare-polarization tensor
this argument yields a useful equation, relating
the bulk and the surface parts:

g II„';„'(K, k, k'; ~) = II„';„' (K, k; ~)
gt +0

(2.20)

for v' = 0, 1, 2. The v' = 3 component does not
satisfy such an equation since a sine series is
used for this case. Such sum rules are useful in
testing the numerical calculations as well as in
assessing whether the finite basis set (of cosines
and sines) used to obtain numerical results is
large enough.

III. THE SOLUTION OF THE BASIC EQUATIONS

We can now solve electromagnetic problems with the present model by developing a procedure to gene-
rate numerical values for II„,„.. For this we use the integral e(luation (2.2), which in the mixed represen-
tation becomes

S

II„„.(K, k, k';(d)=IIO„(K, k, k';~) —2L lg g II~„(K,k, q;~)DO(K, q, q', &u)II, ,„.(K, q', k';(d).
p, =0 q eq'&0

™
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This equation is valid for both time-ordered- and
retarded-polarization tensors. Our numerical
calculations are aimed at obtaining the retarded
quantity.

Note that k, k', q, q' all take values of the form
nm/l with n =0, 1, 2, . . . . One can show that
II„,„ (K, k, k';to), D, (K, k, k'; v), and II„,„.(K, k, k'; ar)

are all zero unless the integers n and n' in k = mn/

l and k'=0'n'/I have the same parity. Therefore
the equation (3.1) splits into two independent equa-
tions relating elements of the polarization tensor
having n and n' of the same parity.

In what follows we obtain a forrnal solution of
Eq. (3.1), which we found very useful in carrying
out numerical calculations. One could in principle
go on and perform numerically the matrix inver-
sion needed to obtain II ~ from (3.1}. Unfortunate-

ly, this simple idea does not work. The
problem at hand is complicated by the fact that the
surface electrodynamic properties vary strongly
over a range of few angstroms, while the bulk
properties vary on much larger length scale. If
we intend to treat surface and bulk behavior simul-
taneously by inverting Eq. (3.1}we have to use a
very large basis set. Many large values of the
wave vectors k, k', q, q' are required to generate
the surface behavior, ' furthermore, many small-
wave-vector components must be used to obtain
the smooth variations characteristic to the fields
in the bulk metal and the vacuum. The scheme
described below facilitates considerably the in-
version procedure and offers a prescription for
handling the problem mentioned above.

Here g„=1 for p =0 and -1 for v =1,2, 3 and

D'(k) =- 4»/(k'+ Z*') (3.3)

is the bare-photon propagator in an infinite vacu-
um. The other quantities appearing in (3.2} are

~=- (I~e-» ')R*/2»i (3.4)

and

1 for @=0,1, 2
(s.5)

The plus sign in Eq. (3.4) corresponds to the
case when n and n' (in k =n&/l and k' =n'v/l) are
both odd integers. The negative sign is for both
n and n' even.

Note that the bulk part D (k) is diagonal in k and
the surface part [second term in (3.2)] is sepa-
rable in k and k'. We shall take advantage of
these facts in what follows.

In order to simplify the equations we introduce
the notation

II,,„=-11„,„.(K, k,k '; ~)

and rewrite (3.1) in the following form:

(3.8)

We start by observing that all the quantities in
the problem can be separated into a bulk part and
a surface part. In particular, the bare-photon
propagator D„(K, k, k'; &u) can be written as

D„(K, k, k'; (u) = (1/2L l)

&& [D (k)&0,0

+ ag„(k)D (k)g„(k')D'(k') jq„. (3.2)

II,„,,„=II,„,,„-2L/g Iio,,q, D'(q')11, ,„2L'lag II„'„„n„D'(q)g,(q)g g„(q')D'(q')ll „,,„,.
q qP a

(S.v)

The third term originates in the surface part of
D . If we neglect for a moment this surface term,0

Eq. (3.'I) becomes

g [8,„„,+ 2L'ill,'„„„q,D'(q)]II„,„,= n,'„,„. ,

and write

(-
0v,0'v' ~ kv~v ~ 0+, 0'v ev, 0'v'

DO(kr) 2Ldl
qP

1 1 —1—2Lzl DO(kg) v~ 'v' vi v v' (s.11)

and by defining a matrix

we can rewrite (3.8) as

(3.8)

(s.9)

(s.lo)
qP

By using Eq. (3.9) we can eliminate II0 from (3.10)
a„,.(k) -=2L'ig 110 Z„D0(q)g„(q) (3.12)

We now return to the full equation (S.V} and
show that by introducing a "renormalized" bare
polarization we can write the expression for II in
a form which is identical to that of Eqs. (3.8}-
(3.11), even though the surface part is now in-
cluded. To do this we define a 4&4 matrix
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so that Eq. (3.7) may be written as where

g [6„,+ B, „(k)C,(q')]ll, .„,„
= II'..»; —21 'IZ 11»...~'%D'(q')4 ~,»"

where

c.(q') =- &g. (q')D'(q') .
Defining a matrix ~&„„„by

E~,.-=6».„.+B...(k)C. (q),

we transform Eq. (3.13) into

II«„».„.= 11»„,»; —21- lg II»„„&„D(q)II,

(s.is)

(s.i4)

(s.i6)

Il». ,»; =~ «.„,11,„»; .

Equation (3.16) is identical to Eq. (3.8) with II
replacing II . That means we can use any of the
Eqs. (3.8)-(3.11) provided that the matrix c»„,„ is
replaced by the dielectric matrix

~~„.= 6..„.+ (2~'I) 11'....n.D'(q) (s.is)

We are now left with the problem of calculating
the renormalized bare polarization tensor TI~„,~ „
which, in turn, requires E&„~» this can be done
(see the Appendix) and the result is

(s.i6)

where TI~„,~„ is a.renormalized version of the bare
polarization tensor II~,~ „given by

T,„„„=-,[B(k) '(I+E) 'B~(q)]„,„. (3.24)

Q II „, „=0 for v=0, 1, 2, (3.26)

The optical properties of the metal slab are now

described, in this model, by an infinite dielectric
matrix &&„„„. The 4~4 tensor character appears
because the presence of the surface destroys the
isotropy of the medium.

In particular, this allows a nonzero coupling
between the current and the charge density. Owing
to this a longitudinal (transverse) field can ex-
cite transverse (longitudinal) waves in the slab.
This has interesting physical consequences to be
discussed when we present numerical applications.
The presence of the surface also eliminates mo-
mentum conservation in the direction perpendi-
cular to the surface. Owing to this, & depends
on both k and q,' an excitation with yerpendicular
momentum q can induce a current or a charge
density with a different perpendicular momentum
k. On the other hand, the parallel momentum is
conserved.

The numerical calculations involve the calcula-
tion and inversion of the matrix &. To do this we
use a finite basis set of sines and cosines (the
mixed representation) to turn the integral equa-
tion in a finite dimensional matrix equation. A

very useful test whether the size, of the set is
large enough is provided by the following sum
rules:-

B~ „=6,„„—[B(k)(I+L) ']„„c.(q). (s.i9) which in turn yields

Here I is the 4&4 unit matrix and E is a 4&&4 ma-
trix defined by

Q e»„,»„=5„,„, p=O, 1, 2.
k

(s.26)

C„.q'a„. „q' . (s.20)

, [B(k)(I+a}'B*(k')]„,„,, (3.21}

where

B„*„(k') —= 21 l Q II„, „g„(q)D'(q) . (3.22)

The final result for the dielectric matrix &&„„„
is

4V yg P ~V yg g

+ 2L'I (II,'„„—T,„„,)D'(q) q „, (3.23)

The quantities I3, &, and I are multiplied and in-
verted as 4 x 4 matrices. The expression for
TI&„,&„ is now given by

—0 a~a„o; =L„a;

IV. GAUGE INVARIANCE AND RELAXATION
PROCESSES IN THE COMPUTATION OF THE BARE

POLARIZATION

The calculation of the bare polarization II is an
intrinsic part in the computational scheme that
ultimately yields the electromagnetic fields at the
surface. This quantity is expressed in terms of
the free-electron Green functions Go defined in
Sec. II. As a result, near singularities appear

0in the bare polarization II in the long-wavelength
limit, which are difficult to handle on the compu-
ter. Their presence is in a sense unphysical,
since they appear because we have ignored elec-
tron scattering by impurities or phonons. If
these are taken into account, a self-energy cor-
rection appears in Go and the singularity is thus
removed. The simplest way of removing the
singularity in a gauge-invariant manner is to use
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the continuity equation relating the induced charge
and current densities:

derive relationships between various components
of the tensor II:

.=~ad
fnd

Bt
(4.i)

3

II(),0(1', 1'
~ (8) = Z 8

ng, o(rp r j &) (4 2)
CtP ~ y 8X~

Since p" and j" are determined by II, we can and

3 2

Ilpp(F, r'; w) = ~ E tt(,„.(r, r'; w) +;(t)(r))ll„,„~(I —ll, ,p)5(r —r')), (4.s)

where n~,„.(r, r'; ~) is the full paramagnetic re-
sponse function and (p(r)) is the full electron den-
sity (i. e. , including electron-electron interac-
tion}. These relations should hold to any order
in the bare electromagnetic propagator. In par-
ticular, one gets to zeroth order (that is, for the
case of noninteracting electron gas):

3

II0,0(1', 1'; (d) = —g II„,D(1', 1'; (()),
(0 p $ Xla

a'
rro, ()(r, r", a))=~ Q rl', , (r, r';(u).

g BX„BX„

(4.4)

(4.5)

p( ($) ' Go(f t )Go(t~ $)q@"((f~)(ftI

Now, in the relaxation-time approximation the
time dependence of Go is of the form 8'"""'' and

therefore the derivative of p"" with time is sp("j
()t -i(&a+i/T)p" . Because of this, ('/~ in Eq.
(4.4) must be replaced in the relaxation-time ap-
proximation by i/(~+i /T). The same argument
can be made in Eq. (4.5). Therefore, if we use
the relaxation-time approximation to replace
Gp((()) by Gp((ar + f/T) in the expression of IIO,„' vari-
ous components of II are related by

rr', , (r, r", (u+f/r)
3

(0 + Z/7' ~ g ~Xp

and

(4.8)

Let, us now use these equations to introduce the
effect of electron scattering (by impurities or pho-
nons) into the polarization tensor. Within the
relaxation-time approximation the self-energy in-
sertion into the single-electron lines amounts to
the replacement of &u by &u +i/~. But if we do this,
the resulting polarization tensor does not satisfy
the continuity equations'. To see this let us write
schematically the expressions for p"~(t). We have

II('),p(r, r'; cu + i/r)
3 2

(~ + /~)2 Q 8 n~, ~ (1', 1'
~ (d + (/T) .

However, these equations are different from the
continuity equation, and therefore the currents
and charge densities computed from II„,„(K,k, k';
~+i/r) w'ill violate charge conservation. A de-
tailed analysis of the diagramatic expansion for
II will indicate that the error comes from the
neglect of vertex corrections. Using the con-
tinuity equation we can obtain these corrections
in a simple manner. We define the polarization
tensor II, „in the presence of impurities or pho-
nons and request it to satisfy the continuity equa-
tions

3

n00 0(~) =-p no,"0(~),
(d~ y 8X~

(4.8)

82
n', ,(cu)=~ Q no,";(cu).„, g BX„BX„

We know that the elements of II " must be pro-
portional to those of II (++i/7). In ord. er to sat-
isfy continuity equations we define

(4.9)

n,';(,((u) = [(&u+ i/7)/(u]no ~, ((u+ i/v. ),
n", ;0(~) = n'„,, (a) +i/7),

n,';"„,(&u) = n, ,„(&u+f/~),

n', , ((u) = [(u/((a+i/~)]II'„„. ((a+i,/r),

(4.iO)

(4.ii)
(4.12)

(4.is)

where p, p'=1, 2, 3. Now since the elements of
n. (~+i/7) satisfy Eqs. (4.6) and (4.7) the elements
of II '" satisfy the continuity equations (4.8) and
(4.9}.

Once the relaxation time is introduced into the
problem, as specified above, the singularities in
G are removed with no violation of conservation
laws. We find that the presence of 7 in II " sim-
plifies considerably the computations. Purther-
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more, in some problems, the presence of 7 modi-
fies considerably the results of the calculations.
This is planned to be discussed in future papers
in which numerical applications are reported.

In using these equations one should keep in mind
that the relaxation-time approximation has seri-
ous limitations. In addition, we have neglected .

(when using this approximation} the fact that the
impurities renormalize the Fermi level, that the
relaxation time may be dependent on wave vector, '
and that the relaxation time near the surface will
differ from that in the bulk.
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5&~,a; E~.—.a; =B..;(k)C'(k')

g B„„(k)F.„,C„, (k )

We are grateful to the National Science Founda-
tion (CHE V8-1618}and to the Research Committee
at the University of California at Santa Barbara
for supporting this work. H. M. acknowledges
support of the Alfred P. Sloan and Camille and

Henry Dreyfus Foundations.

+ Q B„„(k)F„,„F,,„C„(k')+

with

F„,=g C, (q) B, , (q) .

(A4)

(A5)

APPENDIX

We want to invert the matrix ~k„„,defined by
Eq. (4.15). We begin by considering that

Ag,„„„=B„„(k)C„(q) (A1)

is a perturbation. Since (3.15) can be written as

(A2)

standard perturbation expansion yields

This yields

B~~ „.„=6», I, „-QB(k)„„(I+F),;C; (k'),

(A8)

where I is the unit 4&4 matrix. The advantage
of this result is that it allows us to invert the ma-
trix ~k„,». of very high dimension, by inverting
the 4X4 matrix I+F.

*Permanent address since September 1980: Department
of Physics Technion, Israel Institute of Technology,
Haifa, Israel.

R. M. Hammaker, S. A. Francis, and R. P. Eischens,
Spectrochim. Acta. 21, 2195(1965); J. Kirtley, D. J.
Sca1apino, and P. K. Hansma, Phys. Rev. B 14, 3177
(1976); R. A. Shigeshi and D. A. King, Surf. Sci. 58,
484 (1976); G. D. Mahan and A. A. Lucas, J. Chem.
Phys. 68, 1344 (1978); F. Delamaye, M. Schmeitz, and
A. A. Lucas, ibid. 69, 5126 (1978); M. Sheffler, Surf.
Sci. 81, 562 (1979); S. Efrima and H. Metiu, ibid. 92,
433 (1980).

S. Efrima and H. Metiu, J. Chem. Phys. 70, 1602, 2297
(1979).

S. Efrima and H. Metiu, J. Chem. Phys. 70, 1939
(1979).

R. R. Chance, A. Prock, and R. Silbey, Adv. Chem.
Phys. 37, 1 (1978).

S. Efrima and H. Metiu, Chem. Phys. Lett. 60, 59
(1978); F. W. King and R. P. van Duyne, J. Chem.
Phys. 69, 4472 (1978); S. Efrima and H. Metiu, Isr. J.
Chem. 18, 17 (1979); Surf. Sci. 92, 417 (1980); G. L.
Eesley and J. R. Smith, Solid State Commun. 31, 815
(1979).

A. D. McLachlan, Mol. Phys. 7, 381 (1964).
See for example: K. L. Kliewer and R. Fuchs, Adv.

Chem. Phys. 27, 355 (1974); K. L. Kliewer, in Photo-
emission and the Electronic Properties of Surfaces,
edited by B. Feurbacher, B. Fitton, and R. F. Willis
(Wiley, New York, 1978).

D. M. Newns, Phys. Rev. B 1, 3304 (1970).
D. E. Beck and V. Celli, Phys. Rev. B 2, 2955 (1970).
P. J. Feibelman, Phys. Rev. Lett. 34, 1092 (1975);
Phys. Rev. B 12, 1319, 4282 (1975); 14, 762 (1976).
(a) J.R. Schrieffer, Theory of SuPerconductivity (Ben-
jamin, Reading, 'Mass. , 1964); (b) A. A. Abrikosov,
L. P. Gor'kov, and I. Ye. Dzyaloshinskii, Quantum
Field Theoretical Methods in Statistical Physics (Per-
gamon, London, 1965); (c) A. L. Fetter and J. D.
Walecka, Quantum Theory of Many-Particle Systems
(McGraw-Hill, New York, 1971). (d) 6. S. Agarwal,
Phys. Rev. 11A, 230, 243, 253; 12A, 1475 (1975).
P. M. Platzman and P. A. Wolff, Waves and Interac-
tions in Solid State Plasmas (Academic, New York,
1973).
S. Doniach and E. H. Sondheimer, Green's Functions
for Solid State Physicists (Benjamin, Reading, Mass. ,
1974).
N. D. Mermin, Phys. Rev. B 1, 2362.(1970).

SN. W. Aschroft and N. D. Mermin, Solid S'tate Physics
(Holt, Rinehart and Winston, New York, 1976).


