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Two-dimensional electron gas in a magnetic field: Polarjzability
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Due to the complete quantization of the energy spectrum of the two-dimensional electron gas,
even in weak (normal) magnetic fields, its properties are not separable into monotonic and os-
cillatory components as in three dimensions. This is exhibited explicitly for the longitudinal po-
larizabili ty.

Stemming from experimental studies of inversion
layers and electron surface layers on liquid helium in
the middle 1960's, interest in the two-dimensional
(2D) electron gas in a magnetic field has increased,
since many of these experiments require the presence
of moderate or strong magnetic fields perpendicular
to the electron plane. The 2D electron gas is also an
attractive model many-body system: the calculation
of ground-state properties is, in a sense, simpler and
freer of awkward divergences than for the corre-
sponding three-dimensional (3D) model, and these
properties are substantially different in 2D and 3D in
a way we shall try to make clear.

In three dimensions the electron gas in a uniform
magnetic field has a combined continuous and
discrete energy-level spectrum. As a consequence all

the properties of the system can be separated into
parts which are analytic (monotonic) or oscillatory
with respect to the magnetic field; this has been un-

derstood mathematically for nearly 50 years. In par-
ticular the monotonic field dependence arises from
the continuum portion of the energy spectrum and is
obtained by making a power-series expansion (in
terms of the magnetic field strength) at some point in

the calculation. However, the spectrum of the 2D
electron gas is completely quantized even in the pres-
ence of an infinitesimal magnetic field. This can be
shown to result in nonanalytic behavior in terms of
the field strength and, if the ground-state properties
are analyzed by the same procedure as in three di-
mensions, the introduction of the corresponding
power series must lead to spurious divergences.
(Such a procedure may be justifiable in a finite-
temperature formalism, ' where the divergences are
handled by introducing a temperature-dependent cut-
off, but then the zero-temperature limit cannot be
taken. ) We shall substantiate these remarks by
presenting an exact expression for the real part of the
longitudinal ground-state polarizability Xt(q, o&) in

the random-phase approximation (RPA) which ex-
tends Stern's expression to an arbitrary magnetic
field. For simplicity free-electron parameters are

used, f = 1 and the magnetic field strength is charac-
terized by the cyclotron frequency co, . In addition

g = kF'/2m denotes the chemical potential and
G =2me'N/ktq, where N is the electron surface
density, is Stern's parameter.

The longitudinal dielectric response of the 2D elec-
tron gas has been studied in the random-phase ap-
proximation by Horing and Yildiz who express the
polarizability as a complicated multiple integral. By a
procedure which differs somewhat from theirs we
have in essence performed all but one of the integra-
tions and obtained:

GM
X, (q, at) = — '

cos(cot) exp[a(cos~, t —1)]Nk' "o

x sin(a since, t)g„(&v, t) dt, (1)

where a = q2/2m au„n is the integer part of g/co, ,

g„(x) = L„[2a(1 —cosx) ] +2L„', [2a (1 —cosx) ]

(2)

and L denotes a standard Laguerre polynomial. Our
main point is that X~ is manifestly nonanalytic at
cu, =0 and cannot be expanded in a power series
about this point. However, X~ is continuous at
ao, =0 as may be seen by recovering Stern's expres-
sion by means of the classical asymptotic estimate

n L (x/n) —x zJ (2x' ')

n -~. )x) bounded .

(3)

This shows that

in terms of the standard variables u = mes/qkF, z
=q/2kF. The integral in Eq. (4) is

lim Xt(q, ~) = —2G 'l —cos(ut) sin(zt) Jt(t) (4)
cu ~0 rC
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[h (z + u) + h (z —u) ], where
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is a tabulated Fourier transform and 0 denotes the
unit step function. Therefore

lim X~( q, cu) = G (2z —sgn(z + u) 8( ~z + u
~

—I)
Ol «0
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x( ~z
—u

~

—1)[(z —u)' —1]'t'),
(6)

which is precisely Stern's result.
The expression (I) clearly displays features charac-

terizing a system with discrete energy levels. Thus, if
co is a multiple of co„by decomposing the range of
integration into segments of length 2n/t», and invok-
ing periodicity we find that X~ has a 8 function singu-
larity. When co is not an integer multiple of co, Eq.

(1) can be reduced to

Xl(q, cu) = e 'cosec(rum/r», )
2NkF

A+2%'

x Ji sin (t —n) e'""
t

~c

x sin(a sint)g„(t) dt

In particular, in the high-field limit, g„(t) =1. In this
case Eq. (7) can be expressed as an incomplete y
function and reduces to an expression obtained in-
dependently by Horing. 5

The same analytic structure has been explicitly
worked out for each te'rm of the RPA ground state
energy of the 20 electron gas and will be discussed
fully in a forthcoming report.
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Such an expansion is in essence ~ade in Ref. 1 to obtain

the low-field behavior of the correlation energy.
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