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A standard diagrammatic theory is formulated for the density response function 2 (g,ro) of a system of independent

particles moving in a random potential. In the limit of small ii,m the Bethe-Salpeter equation for the particle-hole

vertex function may be solved for y(l){,re ) in terms of a current relaxation kernel M {(i,ra ) [essentially the inverse of the
diffusion coefficient D{g,co)]. M(g, co) is obtained as the sum of the imaginary part of the single-particle self-energy

and the current matrix element of the irreducible kernel and is determined diagrammatically. A theorem is

formulated, stating that any diagram for M(O, co) or D(O,co) containing a (bare) difFusion propagator belongs to a
well-defined class of diagrams whose divergencies cancel each other, and an exact proof is presented. In particular,
this implies that there are no divergent contributions to M(O, co) or D(O,co) from a difFusion propagator. However, in

the presence of time-reversal invariance, M(i),cg) is shown to have infrared divergencies in d &2, signalling a
breakdown of the perturbation expansion in terms of the scattering potential which has first been discussed by
Abrahams et al. A self-consistent treatment in the weak-coupling limit yields a finite static polarizability a, a
dynamical conductivity Reo (co) ~ cu for co—+0, and a finite localization length in d (2 for arbitrarily weak disorder.
In d = 1 our results agree remarkably well with the exact solutions by Berezinsky and also Abrikosov and Ryshkin.
Kysh kin.

I. INTRODUCTION

Initiated by the pioneering paper of Anderson, '
the problem of localization of a quantum-mechan-
ical particle subject to a random potential has
attracted great attention ever since. It is well
known that in dimension d = 3 particles moving in
a random potential (e.g. , generated by impurities)
will, in general, not be able to move in the sys-
tem, i.e. , will be localized if either the potential
fluctuations exceed a certain threshold value' or if
(at given disorder) the particle energy is low

enough. ' In these cases such a system undergoes
an Anderson transition. On the other hand, for a
one-dimensional system the general consensus'
has long since been that it will always be local-
ized irrespective of how small the disorder may
be.

Recently, the field has gained new impetus by
two developments: the application of renormal-
ization-group ideas'~ and the formulation of a
self-consistent mode-coupling theory for the An-
derson transition. ' In particular, Abrahams et
al. ' proposed a one-parameter scaling theory for
the conductance of a finite sample as a function of
L, the sample dimension. By determining the
scaling function in the two limits of small and
large conductance by perturbation theory they
were able to show that the particles in a random
potential are always localized for d & 2 dimensions
irrespective of the strength of disorder. 'The re-
sult for d= 2 has been questioned by Lee,' who

claims to have evidence for an Anderson transi-
tion in d=2 from numerical studies of the real-
space renormalization transformation. On the
other hand, 0'otze'has calculated the detailed
behavior of the density response function in the
localized and the extended regimes including the
Anderson transition for d= 3. His results are con-
sistent with exact scaling laws in the vicinity of the
Anderson transition but cover a much broader
range of parameters.

In this context it has been our intention to ap-
proach the problem of Anderson localization by
means of a standard diagrammatic theory. Ra-
ther than studying the one-particle properties of the
system under consideration, our aim has been to
derive a two-particle formalism which allows us
to calculate response functions of such a system
(e.g. , the density response function) in terms of a
current relaxation kernel M(tl, ~). We believe
that in doing so, the present paper presents a
unification of the concepts of a mode-coupling
theory with those of a standard diagrammatic an-
alysis. Such a framework allows us to obtain quan-
titative results for the transport properties of
disordered systems, e.g. , for the dynamical con-
ductivity or the static polarizability. Our theory
is based on an extended state formalism within
an Edwards model, ' which is particularly suited
for a diagrammatic treatment. The present an-
alysis deals with the weak-coupling regime, where
perturbation theory in the disorder parameter is
a useful starting point. In order to obtain local-
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ization in this limit the perturbation expansion
must contain divergent terms. We systematically
investigate the possibilities to have infrared di-
vergent contributions to the current relaxation
kernel, which are easily seen to exist only for
d & 2. By renormalizing the density propagator
in the leading divergent contributions we are led
to a self-consistent equation which may easily be
solved to yield explicit expressions for the density
response functions at small q, .

The paper is structured as follows. In Sec. II,
the basis for the density response theory is given;
then, in Sec. III, the infrared divergent contri-
butions to the current relaxation kernel M(q, ~)
are determined. Finally, in Secs. IV and 7 the
results are presented and discussed.

where (t),& is the ground sta.te of the interacting
system. The Fourier transform of G(r, r') can
be written as

G(i ) "~)= Z (.(i)~:(i')(, ,",, +
I n

where y„(p) are the eigenstates of H correspond-
ing to the energy e„; the f„[=f(e„)]are the usual
Fermi functions. 'The retarded and advanced
Green's functions are defined as

Ga, )((-,. ~) Vn(P)%'~*(p')
—e„+iO (4)

so that the Green's function for the noninteracting
fermion system is given by

II. DENSITY RESPONSE THEORY

Our analysis employs the model of independent
electrons moving in a potential provided by ran-
domly distributed static impurity scattering cen-
ters with density n,- at T = O. 'The interaction of
the electrons with the impurities is described by
the following Hamiltonian:

2

II= dr r ——+ Vr —r; r .
2m 1

Here V(r —r;} is the potential of an impurity at
the' random position r; as felt by an electron a,t
position r (the following analysis may also be
generalized to other types of disorder). The for-
mulation of the one-particle problem at T= 0 via
Green's functions can easily be carried out by
me'ans of the standard methods of field theory. "
Accordingly, we introduce the one-particle
Green's function as

G(r, r') = -i&(t) 0[ T[)~(r)g(r')]
[ (t)o&,

Go - -, . „) 6(P -P )
&-p'/2m+i5sgn()p~ -pz) '

We will now turn to the formulation of the two-
particle problem. For this we introduce the den-
sity response function X(r, r', ~):

p„~ r p„, r p„~ r' y„r'
non n n'

(6)

where the density operator p(r) is defined by

p(r) = P (r)g(r) =g p„~(r)y„,(r)a~a„, .

As the impurities are supposed to be distributed
randomly in the system we can average over the
impurity positions" and therefore obtain for the
Fourier transform of &X(r, r', ~)&=X(r —r', u&)

x(~, ~)= Z E v. (p.)~„"(p,')v„(p')v„"(r ) „,";
n n'

=Z g„J &~((f(~+ ~) f(&)((~"(0 I -&+ ~)G'(p' i z))

+f«) &G"(P. P.'E+ ")G"(P' P;E)& f(E+-~) &G'(p-p'E+ (u)G'(p' p;E)&). (8b)

» (8b} we have expressed (8a) by means of pairs of advanced and retarded single-particie Green's func-
tions, &) imp»es impurity averaging and p, =p +j/2. Before we evaluate (8b) further let us discuss some
of its analytic properties. For abbreviation let us write

x(4, ~) = - «Gf(E+ ~) -f(E)]4""(E,~;4)+f(E)4"'(E,~;q) -f(E+ ~)4'"(E,~;~)), (8)
OQ

where we have introduced

0""(E,&;i)= — „.2 &G"(p. , p.',E+ &)G"(p', p;E)&,
Pet

I

etc. For small q and we can readily see that
(t)

" and Q"" are finite and nonzero. In the limit
q-0, ~-0 one has G"(p, p', E)= [6"(p',p;E)]*
and therefore Q "(E,O; 0) = [Q""(E,O; 0)]-*. Using
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y"'(E 0. 0) = Z S(G")/SE
1

271

and

QE E Im -2mi E, O;0 =wN E~

where N(E~) is the density of states at the Fermi
energy Ez, and furthermore f(E+ &) -f(E)
= -&5(E) for &- 0 and T= 0, Eq. (9) can be writ-
ten as"

X(q, &) = &P(q, &)+ X + 0(&,q )

Here we have introduced

and Xr =N(E~) is the isothermal compressibility.
For q = 0 (limit of infinite wavelength) the density
response function X(q, &) vanishes (particle con-
servation) and therefore we have"

(12)

i.e. , Q(0, &)[=—P ~(0, ~)] diverges for tu- 0. It is
interesting to note that the function Q = (X -Xr)/~
is identical to the relaxation function as intro-
duced in mode-coupling theories. '

In the next step we want to introduce the inter-
action between the electrons and the random im-
purities. For this a perturbation theory for
(G"G ) has to be formulated. We will here employ
a renormalized perturbation theory by means
of skeleton diagrams, i.e. , diagrams for the self-
energy and the vertex function without any self-
energy insertions. 'Typical diagrams contributing
to (G G ) are shown in Fig. 1, where dashed lines
correspond to electron-impurity interactions,
every line being associated with a factor

U, (P -P') =&
~

V(P —P )
~

where n; is the density of the impurities and V(p)

is the Fourier transform of the scattering poten-
tial. Furthermore, a solid line represents the av-
eraged single-particle Qreen's functions G-", '"
given by

C; = [E~+ & —P'/2m —Z; (Ep + &u)]

G;"= [E~ -'P /2m —Z- (E~)]

where Z-", '" is the self-energy. 7o lowest order
in n; and V(q) one obtains (Born approximation)

(14)
Assuming the scattering centers to be pointlike,
we have U, (p —p')=U, . As the impurity concen-
tration n, is s. upposed to be small (weak-coupling
limit') z is much smaller than the particle energy
(y/E « I). In this case single-particle quantities
are smoothly varying functions of disorder and
one expects only small changes, e.g. , in the den-
sity of states. 'This is the reason why the low-or-
der perturbation expressions for G~ and C'" as
given by (13) and (14) are sufficient for our pur-
pose of calculating the singular behavior in of
two-particle properties like the density correla-
tion function.

All the diagrams in Fig. 1 can be classified into
reducible and. irreducible ones, depending on
whether or not a diagram can be broken into two
separate parts by simply cutting an electron and

a hole line. It is convenient to introduce a vertex
function I';;.(q, ~) defined by

Q;;,(q, &) = — . G~ G~ [5;5,+ I',.;,(q, ~)G~,G~,],
(15)

which contains irreducible as well as reducible
diagrams as shown in Fig. 2. One subclass of
(reducible) diagrams to I';;, are pure ladder dia.-
grams which can be summed up immediately to
yield the partial sum I';,(q, &) (see Fig. 3) where

G; (E+u)j
R

I

I

GA (Ej

j x /'o p
/

FIG. 1. Typical diagrams of the perturbation theory
for the impurity average (Gg Gg ) are shown.R A

UoI
1 U ZGsG

Q+
p

2
Ill to o ~ +Do@

Hence I' has a diffusion pole for q —0, ~- 0 which
is due to the cancellation of the ~,q independent
term in the denominator of I' (a consequence of
particle conservation). Therefore I' is called the
(bare) diffusion propagator. The diffusion constant
D, is given by D, =Ez/(md@), where d is the di-
mension of the system.

It is very instructive to observe that in the case
of time-reversal invariance the full vertex func-
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I:-,(q, (o)

l l

l I

Given I';", (using for example the approximation
I'" '=U, ) (19) can in principle be solved for I'"'.
Consequently I'+. will then possess the exact
time-reversal symmetry as expressed in (17).

Turning back to the calculation of the response
function $55, we are now able to set up a Bethe-
Salpeter equation. This equation is given by

45- (q, &) = Gi G-
I

— . ~(p —p')
2n'i

(a) (b) (c) + Uyy» q, y.eye q,+ N )
(20)

Inserting

GA GR

(G)()-( (GA)-(

hG
(() —p ~ q/m —Za+Z" '

FIG. 2. Typical diagrams (reducible and irreducible)
contributing to the complete vertex function p & are
shown.

tion I'+, has the general property

where &G = G" - G", into (20) and multiplying the
denominator of (21) to the left-hand side of the
equation we rewrite the Bethe-Salpeter equation
as a kinetic equation:

[(d —p. q/m —Z,"(E,+ &u)+ Z"„(E),)]&t 5,-, (q, ~)

(18)
~V. =Us& + Uss- Gg-G-""~y" y"

& II

Therefore, using the definition of U;-, and (17) we
can construct a (nonlinear) integral equation for
r("' and r&') ~

)8' + [ (5-i"+5)/2, &i" -i+5)/2(p p ) ""] ' 5+ tl9

x [F5"5'+ F &5"-5'+5&/2~ &5'-5~+ 5)/2(p + p

(19)

which can be derived by time reversing, e.g. , the
hole line of I';;,. Let us now write I';;, as I';&,
= 1"»,'",+U;;, , where 1 &', contains all reducible
while U;&, contains all irreducible contributions
to I';&,, i.e. , UN, is the completely irreducible
vertex function. In the case of time-reversal in-
variance, U»,;, can itself be viewed to consist of
two parts: U~;.=1 &'+ I' &', . Here I"-,',"', is the set
of all diagrams which are obtained when the bot-
tom (i.e. , hole) line of all I'"' diagrams is re-
versed (naturally I'"' is then irreducible), while
I' "' contains the rest of the diagrams. For ex-
ample, the diagram in Fig. 2(b) belongs to I'"'
(all diagrams to I', the diffusion propagator,
except the first one [Fig. 2(a)], contribute to
I'"'), the one in Fig. 2(d) belongs to I'"' and
those in Figs. 2(a), 2(c), and 2(e) belong to I'"'.
Clearly, I'N. obeys the equation

Summing (22) on p and p' yields

(oy(q, (u)-q Q (p ~ rj/m)&55, (q, (u) = N(E~), -

(23)

which is equivalent to the continuity equation; in
the limit q =0 we recover (12). In the derivation
of (23) we have made use of an important com-
pensation mechanism between Z; and U;&, terms,
i.e., award identity, valid for all co, q:

z5~(z~+&d) —z,."(F~)= Q U;;.(q, (d)&G5. (24)
5

A proof of this Nard identity is given in Appendix
A; in fact, its validity can be shown for any di-
agram. In (23) a new function appears, namely,

4/(q, (d)= Q (p q/m)y, —,, (q, (u),
9~ 9

which has the character of a current relaxation
function while &I&(q, ~) is a density relaxation func-
tion.

In order to derive an equation for Q/ (i.e., a
current relaxation equation) we will first expand

$55, in angular variables. Observing that ImG; is
a strongly peaked function at $ ~

=)I));, the width
being y «E~ and the height y ', the dependence of
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g-;, on p is dominated by this peak structure
through &G;. We can therefore expand P;;, as

Q Q;;, = —[2viN(E1, )] &G-

o(~) = —i(un ((e) = e' lim (- i(u/q')y(q, (u),

that is,

o((u) = —i(un(&e) =e'
m ~+M 0, 1e

(32)

where we have retained the l = 0 and / = i. terms
only. Multiplication of (22) by p q/m and sum-
mation on p, p' then leads to the following current
relaxation equation:

In the weak-coupling limit [see (14)] U-,-, is given
by U, (p —p'), and one recovers the familiar result
of weak-coupling transport theory, namely,

M(0, 0) =i/7'

[~+M(q, ~)1 g (p ~/m)~,-,-. (q, ~)

—q Q-„-, (q, ~) =0. (26)
2EF
Al Cf

Equation (26) contains the "current relaxation
kernel" M(q, ~):

=id
M(q, ur} =2iy+ =,

x p ~ q QG tJ--, +G„, p .q
P~P

which explicitly depends on the irreducible vertex
function U;;.. Equations (23) and (26) form a
closed set of equations that can be written as

(34a)

s, j(r, t)+ vI'(r, t)
m

After having derived an expression for y(q, v)
from a microscopic theory [i.e. , (29)] it is worth-
while to note that an identical result can be ob-
tained within a phenomenologic theory from a
simple hydrodynamic model. " If the system is
regarded as a fluid in which the random scatter-
ers introduce effective macroscopic forces, the
equation for the local density n(r, t) and the cur-
rent density j(r, t) are given by

s, n(r, t)+ & ~ j(r, t) = 0,

&uP(q, (u)-qQ, .(q, (u) = —N(E ),

[(u+M(q, (u)]g,.(q, (u) —q &f&(q, (e) =0.2EF
(26}

1 t
ext= ——j(r, t) —~,' dt'j(r, t')+ —& p,
'* .

T 0 m

(34b)

-q'(n/rn)
(g'+ MM —g'(n/Wlg }

(29)

where n and m are the number density and the
mass of the electron, respectively [n/N(E~)
= 2E/d] .

Neglecting the &' term in the denominator of
Eq. (29) we can write

iD(q, ru)1I'
x(q, ~) = x'(q, o)

Equation (28) can easily be solved for Q and Q, .
X(q, &e), the density response function [see (11)],
is thus found to be

In (34b) the first term on the right-hand side ls
due to the relaxation of the current with a rate
1/7 (the scattering centers introduce a frictional
force acting on the fluid), the second term rep-
resents a restoring force in the localized limit
(with e, as oscillator frequency), and the third
term describes an external chemical potential.
The pressure gradient can be expressed by a den-
sity gradient via &I'=(n/X )&n. Equation (34)
can now be solved for n(q, u&) and j(q, ~). For

X(q, ~) = 5n(q, ~)/5 p.'"'( q, (u)

one gets exactly the same expression as given in
(29), where

where we have introduced a generalized, q- and
&u-dependent diffusion coefficient D(q, &d):

D(q, ~) =i/[(m/n)x'M(q, ~)1, (31)

conduc to r
tM (0, &u+ i0) =

2
(d0

insulator.
7 {'d

(36)

i.e., the diffusion coefficient is essentially given
by the inverse of the current relaxation kernel
M(q, ~). The dynamical conductivity o(~) and the
electrical polarizability n(ur) are obtained fr'om

y(q, ~) by taking the limit

So for the conducting case we again recover the
weak-coupling result M(0, 0) =i/T, hut for an
insulator M(0, v) is seen to diverge ~ —I/1d for
u- 0. Accordingly the conductivity is given by
(co& /Mf)
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Res((o) =
Tm &u, +v'/r2 ' (36)

For the insulator (&u, c0) we have Reo'(u)
=e n(emu&0) 'v —v so that the dc conductivity
is zero, while for the conductor (v, =0) it is fi-
nite [Reo(0) =e'rn/m], whereas the static po-
larizability n(0) is finite for the insulator case
and infinite for the conductor.

By means of the static susceptibility y(q, 0} we

can now derive an expression for the localization
length r, of the system in the localized regime'

X(q, 0)=X'(0, 0) I » . (3'I)

From (29) together with (35) we find x,
= (~~,xr/n) '~', i.e, the localization length is
inversely proportional to the root of the restoring
force It sho. uld be reiterated that the I/~ diver-
gence of M(0, &u) for small ur [rather than the dis-
appearance of the conductivity o'(&u}] is the very
signature of localization.

III. INFRARED DIVERGENCIES
OF THE RELAXATION KERNEL%(q, u)

In the preceding section we have shown how
both microscopic theory and a simple hydrodynamic
model lead to identical expressions for the den-
sity response function X(q, &o) for the system under
consideration. Furthermore, we have pointed
out how the physics of the problem is essentially
contained in a current relaxation kernel M(q, ~)
for which the hydrodynamic model finds that it
stays finite for v, q = 0 for a conducting system
while it diverges ~- I/&u in this limit (infrared
divergence) in the insulating regime. In this sec-
tion we will show that such divergencies of
M(q, ~) naturally exist for a system of noninter-
acting electrons in a random impurity potential
for d & 2 dimensions even for arbitrarily weak
disorder. For this we will proceed in two steps:

(i) It will be shown that the perturbation series
for M(q, &u) contains terms diverging like I/M~ or
ln for small & in d=1 or d=2, respectively.

(ii) Then we will show how a self-consistent
generalization for M(q, &u) indeed leads to the
overall M ~ —I/&u behavior for d ~2 and arbi-
trarily weak disorder.

The relaxation kernel M(q, ~) as given by (27)
is mainly determined by the irreducible vertex
function U;;, . A divergence of M and hence lo-
calization is only possible when the diagrammatic
perturbation theory breaks down. 'Therefore we
have to search for contributions to U;;, which in
turn lead to the divergence in M. In the preceding
section II we have already seen how particle con-
servation is responsible for the cancellation of

the (&u, q)-independent terms inthe sum of particle-
hole ladder diagrams, giving rise to a typical
diffusion pole for the (bare) diffusion propagator
I'(q, &u). It is clear that the q integral over any
such diffusion denominator (i.e., v+iDq } will
diverge in the limit (d —0 for dimensions d & 2:

1
])~ md=1

co+aD, q'
Inc@, d =2,

(38)

2

a& 0 2
——E&((d), d=1, 2 (39)

where E&(~~) =(2/v)(i/co~)~ ~2 andE2(&o) = 2' T) ln(1/
&ur). Here the momentum dependence of U, has
been neglected and the superscript D at M indi-
cates that M is the lowest-order diffusion con-
tribution to M. Note that for q =0 M is finite for
~-0, i.e., there is only a divergence inM for

t:-, {q,u)j =

I

0
I

I

I I

h

I I

I

I

+
I

I

I I

FIG. 3. Diffusion propagator p-i, which is the sum of
all particle-hole ladder diagrams, is shown.

where for d = 2 an appropriate cutoff momentum for
large q has to be introduced. It is this very in-
frared singularity in the density propagator that
introduces divergencies into perturbation theory.
Let us therefore first discuss and analyze dia-
grams to M(q, &o) containing a diffusion prop-
agator I' arising from summation of particle-
hole ladder diagrams (Fig. 3). The simplest dia-
grams contributing to U;;, to lowest order in y/
E (i.e., the simplest irreducible diagrams with
I"') are shown in Fig. 4. Note that the second-
order crossed diagram to U~ appears twice. 'This

is, however, of no consequence because the over-
counted diagram (which is finite) only yields a
higher-order correction to an otherwise divergent
expression as can be seen below. 'The contribution
to M from these diagrams is

+(kg)
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0
U--, (q, u)) =

p
I

+

P'

P.
'

=P

/
I

/i
/

—I

FIG. 4. The four lowest-order diagrams of the irre-
ducible vertex U-, with respect to the divergence of I
for cu- 0 are shown.

q40. This is due to the fact that for q=0 Upp,

separates into two. parts, one depending only on

p, the other one only on p'. As the Green's func-
tions are even in the momentum, the (odd) vertex
parts (p ~ q) and (p' ~ q) in (27) consequently make
the integral vanish. Note that if one replaces the
diffusion propagator in (39) in terms of the den-
sity relaxation functions P by means of (11) and

(30) one obtains an expression for M which is
identical to the one derived by Gotze in the mode-
coupling theory.

A natural question is then whether there exist
divergencies in M(0, &u) due to a diffusion pole
at all. We have found a mathematically exact
answer to this question which is formulated in
the following theorem.

Theorem. Any diagram for the q-independent
current relaxation kernel M(0, w) or the diffusion
coefficient D(0, ~) (Refs. 6 and 13) containing a
(bare) diffusion propagator I"belongs to a uniquely
defined class of diagrams, which cansystematically
be generated and whose sum of divergent contri-
butions is zero.

The proof is given in Appendix B. This implies
that the usual diffusion mechanism described by
a diffusion propagator I"' cannot lead to divergent
contributions in M(0, &u) and, hence, that local-
ization cannot be due to particle-hole diffusional
scattering in d ~2.

There is, however, still another scattering mech-
ansim which can lead to infrared divergencies ofI even for q =0. Abrahams et a/. ' were the first
to note that in the case of time-reversal invariance
the diffusion pole of I' can be transferred to the
particle-particle channel by means of a 2k~ scat-
tering mechanism. They found that the sum
A.,';.(q, ~a) of all maximally crossed diagrams
(Fig. 5) is given by

pro. 5. A-. , which is the sum of all maximally

crossed diagrams, is shown.

2iyU0A.'., (q, &u) = . ', )-, for p = —p'.
~+ iDO(p+p

(40)

These diagrams can be viewed as obtained from
those for I"' when the hole line of every diagram
of I' is reversed (such a reversal is only per-
mitted in the presence of ti~e-reversal invarianee).
Using the notation previously introduced this im-

plies A,,, (q, &u) =I",-;, (q, v). The diagrams for
A'. , are already particle-hole irreducible and

pp

therefore belong to t;";;,. A' yields an infrared
divergent contribution to M even at q =0:

M ~+(0, &) = —2tt g, y' (~)(d+ iD, k'
(41)

where E,(&u) has been defined below (39). It should
be noted that time-reversal invariance will be
invalidated by any magnetic field (either an ex-
ternal field or one generated by magnetic im-
purities leading to spin-flip scattering). '4 There-
fore such fields will remove the infrared diver-
gence (see below), because a time-reversal in-
variance-breaking term i/r, (where 7', is the spin-
flip scattering time) enters the theory via the
replacement &u- &a+i/r, removing the singularity
at +-0.

We have now completed our first task, namely,
to show that there exist infrared divergent con-
tributions to M(q, ur) at all. This is not enough,
however. It should be remembered that the dif-
fusion coefficient D(q, &u) is related to M by
D(q, e) =D, t(i/r)/M(q, a)]. Therefore the
(dressed) diffusion coefficient can onlybe represented
by the diffusion constant D, as long as (i/r)/
M(q, &u) does not change too much. As we have
found that M(q, ~) diverges for ~-0, this con-
dition is certainly not fulfilled any longer and
therefore we have to replace D, by the full dif-
fusion coefficient D(q, &u) in the diffusion deno-
minator of (39) and (41). This replacement in the
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two equations [which is permitted because the
pole structures of I" and A' are related via (1&)J
then leads to a self-consistent equation for M(0, &u):

M(0, u)) = ——2UO
(d +l/&z —k Dp& /M(0, 9))

pq

«0»

p'q

(42)

Here we have introduced an upper cutoff for d =2
of the order of P~ and the time-reversal invar-
iance-breaking term i/~, has explicitly been in-
cluded.

Before we further discuss (42), describing 2k~
scattering, and other possible divergent contri-
butions due to multiple A poles, it is instruct-
ive to discuss the consequences of the self-con-
sistent generalization for the diffusion propagator

In Ref. 15 M(q, ur) has been calculated within
a mode-coupling approximation in a memory func-
tion approach. The divergence found within this
theory is identical to the one we found in (39)
corresponding to the four diagrams with I' in
Fig. 4. Although {39)only diverges for q O 0 a
self-consistent generalization of (10) [which yields
the M(q, &o) of Ref. 8] within the mode-coupling
theory will transfer the q 40 divergence even to
M(0, &u). This would have implied that indeed in
the weak-coupling 11mit both the usual diffusion-
al scattering and the 2k~ scattering lead to a div-
ergence of M and thus to localization. However,
our diagrammatic analysis permits us to iden-
tify the diagrams corresponding to the self-con-
sistent generalization of Ref. 15. In Fig. 6(b) we

show a typical diagram generated from the initial
one in Fig. 6(a) by means of the self-consistency.
The class of diagrams thus constructed leads to
the q =0 divergence of Ref. 15. Employing the
rules for cancellation of diagrams which we have
worked out (see Appendix B), we can immediately
construct the diagram [Fig. 6(c)] which cancels the
one in Fig. 6(b) but which is not generated by the
self-consistent generalization (in the case of two

interaction lines crossing t" we simply have to
exchange the endpoints of those lines on the right
of I'). In this way we can cancel all diagrams of
the self-consistent generalization of Ref. 15, i.e. ,
a divergence due to 1' does not exist.

%e now return to the 2k~ scattering mechanism
and Eq. (42). In contrast to the diagrammatic
approaches of Gorkov et al. ' and Khmelnitskii"
who investigated the conductivity [i.e., the dif-
fusion coefficient D(q, ar) itself] and who employed
the complete vertex function I'-,&, the important
quantity for us is the irreducible vertex function
UI„which determines M(q, v). In Refs. 6 and

13 contributions to D(q, &u) for d=2 of the order
[{1/Ev') In(l/cur)]" for n ~ 2 have been discussed

(b) (c)

FIG. 6. (a) One of the four lowest-order divergent
diagrams for M(q, cu) containing a diffusion propagator
p is shown; (b) a typical diagram for ~(q, v) as is
generated from the lowest-order diagrams by the self-
consistent generalization; (c) diagram which cancels the

one in (b) but is not generated by the self-consistent

generalization.

[the following discussion is also valid for d = 1;
in this case In(1/u&r) has to be replaced by 1/
v'~r]. For n=2 cancellation of all diagrams has
explicitly been shown, ' while the disappearance
for n&2 was made plausible by means of a re-
normalization-group equation. '" Bearing in mind

that U;, , only makes up a subset of those dia-
grams of I';;, which contribute to this order,
we are in a different position altogether. In our
case, contributions of [(1/ET) In(1/tuT)]" will cer-
tainly not vanish —in fact, they must necessarily
exist because (42) can be viewed as a resum-
mation of diagrams of any order in n (for d
&2) and the coupling constant. This can be
shown as follows: In general, a diagram with

n A' poles not only contributes to order [ln(1/
~~)]" but also to [In(1/u&r)]" ', etc. (with possibly
a higher power of the coupling constant as pre-
factor) when one expands the Green's functions
in the (small) momenta of each pole. To investi-
gate this we have considered the complete (reduci-
ble and irreducible) classes of diagrams, as
classified by n, the number of & poles in the
diagrams. Now we have made two assumptions:

(i) To lowest order in 1/ET all contributions to
the complete vertex function of order [ln(1/
~r)]", n ~ 2, vanish as argued in Refs. 6 and 13.

(ii) The contributions of order [In(1/vr)]
m &n, from a diagram with n ~ poles can be
neglected compared to those from diagrams with
exactly m A' poles because they are of higher
order in the coupling constant.
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With these assumptions we have been able to
show that the ~hole class of irreducible diagrams
of order n is equal to (-1)""times the reducible
diagram where n &' poles are arranged in par-
allel, like rungs of a ladder. The latter diagrams
can easily be summed up, but the result is dif-
ferent from what we get from (40) in that it does
not diverge like -I/&u as it should. Therefore we
expect assumption (ii) to be wrong. However,
this immediately leads to the conclusion that non-
leading divergent terms (in regard to their cou-
pling-constant dependence) as generated by the
self-consistent equation are equally important.

Besides diagrams which contribute [In(1/vv)]"
terms and which necessarily must exist in our
theory, we have discovered one special class of
"superdivergi. ng" diagrams which have the gen-
eral structure displayed in Fig. 7(a). In these
diagraIns two ~' propagators cross each other,
ending nearest to the left and right vertices. In
order for these diagrams to be permitted at all,
there has to be some diagrammatic insertion in
the middle of the diagram. Owing to this structure
both A' poles have the same momentum depen-
dence, i.e., the integrand of M(q, ~) contains a
denominator (~+iD, k')', which diverges like u&

' '
in d = I and + ' in d =2. We are able to show, how-

ever, that these superdiverging diagrams cancel
exactly due to particle number conservation (see
Appendix C).

Even if there are no infrared divergencies in
individual terms of the perturbation expansion
(e.g. , as in d~ 3) there will in any case exist a
critical value of the coupling constant for which
the total sum of the perturbation expansion div-
erges, so that even in this case M~ —1/~. In
other words, the density relaxation function P
behaves like P(q, ur) ~f(q)/~ for small ~, where

f is some function of q. The simplest diagrams
contributing to this divergence are again those

depicted in Fig. 4, which have been shown to give
rise to a contribution M, (39), to the relaxation
kernel. Indeed a self-consistent generalization
of (39) for M(0, ~) as derived by G'otze' in a mode-
coupling theory yields an Anderson transition in
d = 3. We believe that the application of these
ideas to the Anderson transition itself is not in-
validated by our finding that divergent contri-
butions to M(0, v) generated by diffusion poles
cancel.

I'7t
Ez X~, d=l

(
(2

2(E~x,)' exp(-1/A), d =2
(43)

where & =nn, . [V(q =0)/E„]' is a dimensionless coup-
ling parameter [Z =(2vE~v) ' «Ez] and xo is a di-
mensionless cutoff parameter. From (32) we find
that the static electrical polarizability n(0) and the
dynamical conductivity Reo(&u) are given by n(0)
=(e n/m)/w, and

IV. RESULTS

The results of the theory as presented here are
contained in (42), an implicit equation for the re-
laxation kernel M(0, cu). For d&2 there are no in-
frared divergences contributing to M and (42) gives
the same result for both D(0, &u) and D„ the dif-
fusion constant [in fact, although in this case the
arguments leading to the self-consistent general-
ization are still valid they are also unnecessary
because M(0, e) is always finite: The self-consis-
tency therefore does not change the final result].
So for d&2 the solution is given by M(0, 0) =i/v
for small impurity concentration, i.e. , the system
is conducting and according to (36) the conductivity
is given by Reer(0) =e'vn/m =const. For d & 2,
however, (42) will lead to a diverging M(0, w) if
i/v, =0, implying time-reversal invariance. The
self-consistent solut'ion indeed yields M(0, &u) =i/v
—&20/e, which corresponds to an insulator (i.e. ,
localized solution) with

Ib)

i' e' n
II ———E ~ — d =1

m 2 ~
A.

Rev(cu) = 0

—(E x,) 'u)' exp(2/X), d = 2

(44)

(c)

0

FIG. 7. (a) General structure of the "superdiverging"
diagraxns for M(0, ~). In (b)-(d) a typical group of
diagrams which cancel each other are shown (see text).

respectively. Note, that for d =1, o.(0) leads
to a dielectric constant eo ——4vo. (0), i.e. , eo

=32e'(p~/m)v, which agrees with the exact re-
sults"'" apart from a factor" of g(3) =1.20. The
conductivity in (44) for d =1 can be rewritten as

Reg(+) = (8/'v)e'(p~/m)v'~',
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which again agrees with the exact result of Ref. 1V

apart from the additional (In&a)' term due to level
repulsion, which cannot be obtained within the
present theory.

For d =2, Res(&v) and o.(0) are dominated by the
exponential dependence on the inverse of the coup-
ling parameter X, i.e. , n(0) becomes exponentially
large for small disorder. It should be pointed out
that in calculating M(0, &u) the central quantity we
have determined is &so=(2E~/dm)'~ ro', i.e. , the
inverse localization length. As far as the localiza-
tion length ~, itself is concerned we therefore find

ro-1/z for d =1 and ro-exp(l/2y) for d =2, i.e. ,
for d = 2 the localization length also becomes ex-
ponentially large.

In the case of spin-flip scattering (i/7, e0) the .

present theory yields localization neither for d =2
nor for d =1 in the weak-coupling limit. To our
knowledge, proofs for localization in d =1 have so
far never considered the effect of spin-flip scatter-
ing.

In Ref. 12 we had already mentioned that inelastic
scattering effects at finite temperatures can be in-
troduced into the present theory by the replacement
&u- &a+i/7. ,„„,where 7'„„is the inelastic scatter-
ing time. In the weak-coupling limit the l.owest-
order corrections to M =i/7 are then (r„„)"'and

ln7„„ for d =1andd =2, respectively. At lowtem-
peratures this implies a temperature dependence
T ~ ford =1assuming 1/v, „„~T andlnT ford =2,
for the resistance of metal wires and films containing
impurities. Experimental studies of such systems
have been performed"" and seem to have found
the above temperature dependence, which has been
associated with the 2k~ scattering mechanism by
Anderson et al."

V. CONCLUSION

A diagrammatic theory for the density response
function of a system of independent particles mov-
ing in a random potential at T =0 has been presen-
ted for dimensions d & 2. For this the Bethe-Sal-
peter equation for the irreducible vertex function
has been rewritten as a kinetic equation containing
the current relaxation kernel M(q, e) which is es-
sentiQly the inverse diffusion coefficient. We have
investigated the infrared divergent contributions to
M(0, ~) and have found that such divergencies are
never due to simple diffusional scattering (i.e.,
particle-hole ladder diagrams) because of a new
cancellation mechanism. Therefore only the 2k~
scattering mechanism' can generate divergent con-
tributions to M(0, ~) provided time-reversal in-
variance is valid. Furthermore, we have shown
how a self-consistent generalization of M(0, e)
leads to a singular behavior of M(0, &u) ~-I/&u for

e-0 in d ~ 2 in the weak-coupl. ing limit. Just as
for a simple hydrodynamic model for the system
under consideration, this result implies a dynam-
ical conductivity Reo(v) ~ &u and a finite static po-
larizability for arbitrarily weak disorder. Cor-
respondingly the l.ocalization lengths for d =1,2

are found to be finite, although for d =2 it becomes
exponentially large. Hence for d =1 we essentially
recover the (exact) results of Abrikosov and Ry-
shkin" by means of a comparatively short deriva-
tion which offers a transparent physical interpreta-
tion. On the other hand, the explicit results for
d =2 for the frequency-dependent conductivity had
not been derived before. Finally, it should be
pointed out that in our view the main result of this
paper is the theoretical unification of mode-coup-
ling concepts with a standard diagrammatic anal-
ysis as discussed in Sec. III rather than the mere
calculation of the cr(&u), etc. , which is just one re-
sult of an application of this theory. Indeed, the
kinetic equation (22) together with the self-consis-
tent generalization of M (q, v) provide a novel
framework for the calculation of transport proper-
ties of disordered systems.

ACKNOWLEDGMENT

We would like to thank Professor W Qotze for
stimulating and useful discussions.

APPENDIX A: THE WARD IDENTITY

In the derivation of (23) and (26) we made use of
a Ward identity given in (24), valid for all &u, q,
which we will prove now. The retarded self-ener-
gy is given by

Z; (E~+m)= g g U, U~ U„
Diaa1

(A1)

where the U,. are the (momentum-independent)
bare vertices describing the ith interaction line.
Here the first sum on the right-hand side (rhs)
goes over all cl.asses of skeleton diagrams clas-
sified by n, the number of interaction lines and the
second one sums up all n intermediate momenta of
a diagram with n interaction lines (such a skeleton
diagram consists of N = 2n —1 Green's functions
depending on different combinations of those n mo-
menta). The advanced self-energy is defined anal-
ogously with index A, etc. The difference between
both self-energies hence is
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g U, U, "U„
Diagr. {n} g; }

(GAG+. . . GR GAQA, , GA}

(A2)

where hZ;=Z; (E~+~) —Z,"-(E~) and where the mo-
mentum indices of the Green's function have been
abbreviated for convenience. The difference in
curly brackets on the rhs of (A2) can be rewritten
by means of the mathematical identity

1 2 E-1 N 1 2 N-1 & X1X2 ++-1+XN++1X2
+' ' '+X,hX ' ' F~,Y'y+ aX,P ~ ~ ~ Jg, P„, (A3)

where hX,. =—X,. —7, We now identify the X,. and F,. with G",. and G,". , respectively, and perform a transfor-
mation of momenta so that all 6G =G- —G"- depend on the same momentum. Then (A2) becomes

Q~

aZ-= U U U G G~ G„~G+GG ~ ~ sG G"
Diagr. {nj (q }

+. . . +G&~G ~ ~ . GA, GA+ gG GA ~ ~ GA, GA}

U--, q g DG;. (A4)

It is not difficult to see that the second equal sign in (A4) holds true, because the procedure as described
just constructs all diagrams of the irreducible vertex part U;;, . One can visualize this by applying the fol-
lowing "rec ipe":

(i) Take any skeleton diagram of the self-energy (we assume the Green's functions to be retarded).
(ii) Start from the right to remove exactly one Green's-function line of the diagram and "flip" the rest of

the diagram on the right down to the hole line.
(iii) Proceed through the whole diagram from right to left.

For an example we start with the self-energy diagram in Fig. 8(a) (the only proper diagram with two in-
teraction lines):

Q1 &82

Up, Up —p'G-;G;&,-+Up, Up —p' —p, G~ -G;",.;
PeP'

U(p —p')U(p, )G,";;G;; ]SG;,

U~@-', q, ~s AG-, .

Comparing the expressions in the next to last
equation of (A5) with those for the diagrams in
Figs. 8(b)-8(d) we can verify that we have con-
structed all possible contributions to U;;, with two
interaction lines. Conversely one can see that
every diagram for U;;, is generated from a self-
energy diagram —for this one just has to reverse
the sequence of steps of the recipe. In this way
(24) can be proven diagram by diagram.

APPENDIX 8: PROOF OF THE CANCELI. ATION
THEOREM FOR DIAGRAMS CONTAINING 1

We are now going to prove the theorem formu-
lated in Sec. III about the cancellation of all diver-
gent contributions of diagrams to M(0, &u) or
D(0, cu) (Refs. 6 and 13) containing a (bare) diffusion
propagator T' . To do this we should first point out
the following:
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FIG. 9. rhs of several diagrams for M(0 u) containing
0 are shown. The crosses and numbers represent

different endpoints of interaction lines coming from the
lhs and which are crossing p (see text).

(c) (d)
FIG. 8. (a) The only skeleton self-energy diagram

with two interaction lines is shown; (b)-(d) all possible
contributions to the irreducible vertex function Upp are
shown as generated from the self-energy diagram (see
text).

(i} As we are only interested in divergent con-
tributions to M(0, &u) due to the integral over I'
(i.e., over the denominator &u+iDk') we set
e =O, k =0 everywhere else in the integrand of
M(0, cd).

(ii) In this case the sum of all momenta of inter-
action lines going from one side of the diagram to
the other (i.e., crossing I') is zero.

If there are n such interaction lines it is conven-
ient to choose the corresponding momenta as
-q. q. -q2 q2 q3 ' q.-, -q. q., inparticular
for n =1 the momentum of the (single) line is zero
and for n =2 the momenta are ~,. The diffusion
propagator divides every diagram into two parts
and in everything that follows we only need to con-
sider one side of a diagram (which we choose to be
the rhs) containing a single p ~ j vertex [see Fig.
9(a)]. The other side of the diagram [in our case
the left-hand side (lhs)] can be arbitrarily com-
plicated (if it contains further I 0 and A poles the
cancellation mechanism removes at least the high-
est order divergent contribution} because this does
not change the fact that the sum of the momenta of the
lines crossing I"' is zero. Also observe that the
inversion of one side of a diagram ("turning it up-
side down" ) corresponds to interchange of particle-
hole lines. This is equivalent to introducing a min-
us sign into the (p ~ q) vertex and exchanging G; by
G& and vice versa. For example, the half-diagram

(a)

~N ~N-1 ~N-2
2

XX 2

N-1 N

(d) (e)

(g) (h)

N

z& N-1~2
2 1

(i) ())

(rn) (p)
FIG. 10. Illustration of the explicit generation of the

class of diagrams for M(0, ~) containing I' which cancel
each other. Only rhs of diagrams are shown; the I ~

propagators have not been drawn (see text}.

in Fig. 9(b) is equal to the negative complex con-
jugate of that in Fig 9(a). Hence, one side of ahalf-
diagram plus the inverted one gives 2i times the
imaginary part of that side. It is also easy to see
that if all interaction lines end on either the par-
ticle ox the hole line of one side, as in Fig. 9(c),
the half-diagram where the sequence of the end-
points of the lines is interchanged [Fig. 9(d)] gives

. exactly the negative of the first one. This is so
because inversion of this sequence is equivalent



4678 D. VOLLHARDT AND P. %0LF LE

to the change p--p leading to an identical momen-
tum dependence of the Green's functions as before
but with an over all minus sign due to the (p q)
vertex. Therefore these types of diagrams cancel
each other.

We are now going to show that any diagram with
n interaction lines crossing I' and arbitrary ver-
tex corrections is part of a class of diagrams
which can systematically be generated and whose
sum is exactly zero. Imagine a diagram with
n such lines and, in addition, m vertex corrections
on the rhs. Altogether there will be N=n+2m
starting and end points, respectively, of interac-
tion lines on the rhs of the diagram. The class
is generated as follows (Fig. 10).

(i) First, all N points are supposed to lie on the
particle line of the rhs [Fig. 10(a)].

(ii) Now the points are brought down to the hole
line one by one in a cyclic way [Fig. 10(b)-10(d)]

until they a,re all on the bottom line [Fig. 10(e)]
'

(starting and end points of vertex corrections al-
ways stay connected by their interaction line).

(iii) Now the sequence of points in Fig. 10(a) is
reversed and the same procedure is done again
[Figs. 10(f)—10(j)].

The last step can also be viewed as the inversion
of the first N+1 half-diagrams [e.g. , Fig. 10(i) is
the inverted form of Fig. 10(b), etc.]. We know

already that the half-diagrams that have been con-
structed in that last step are just the negative
complex conjugates of the ones generated in the
first two steps. Furthermore, we know that the
diagrams in Figs. 10(a) and 10(f) and 10(e) and 10(j)
just have their sequence of points inverted, so
they are opposite in sign and cancel each other.
Therefore we do not have to consider them any
further. The sum S of the remaining 2(N- 1) di-
agrams is

S=2i pq Img;Im G, 'G, ~ ~ G +Q, G, ' ~ ~ ~ (;
[R;l

Observing that AG;= G; —G)=2i Im(G;) and therefore

~G; = 2ir
I
G;I'-

and Im(iz) =Res for any z, we can substitute the
I G,. I' in (BI) by (i/2y)AG, Therefore

S = (i/z) g (p ~ q) Im(G;) Re(nG, G, G„+G,"bG, G~+ +G,"G," nG„,G~+G,*G," &G~) .

(S2)

(Bs)

I)sing the identity in (As) we obtain

S = (i/y) g (p q) Im (G;) Re(G,*G,* G*„—G,G, ' ' ' G z) = 0 . (84)
P

The expression in parentheses is purely imaginary and therefore S=0. It is easy to see that any configu-
ration of such starting and end points can uniquely be attributed to a definite class of which every diagram
can be understood as an element of a cyclic permutation group, as is evident from the generation method
of the class as described above. This group is again a subgroup of the full permutation group consisting of
all permutations of points 1 to ¹ Therefore we have shown that all such diagrams containing a I' propa-
gator vanish, irrespective of vertex corrections. As an example in Figs. 10(d)-10(n) we show one-half of
a class of half-diagrams with three lines crossing F' and one additional vertex correction, the other half
of the class is obtained by inverting every half diagram. Note that the two diagrams in which all points
either lie on the particle or the hole line, respectively, have not been drawn because they always cancel
as has been shown above.

APPENDIX C: CANCELLATION, OF SUPERDIVERGING DIAGRAMS

We will here discuss how the superdiverging diagrams cancel, the general structure of which is shown
in Fig. 7(a). A general proof for the cancellation of diagrams with arbitrary insertion has not been con-
structed, but we have investigated diagrams with up to four additional A' propagators as insertion without
vertex corrections and all have been found to cancel. The mechanism is always the same; take, for exam-
ple, the diagram in Fig. 7(b), which is the simplest possible superdiverging diagram with A propagators
only. Its leading contribution to M(0, &u) is

~'"(0 ~) =- Z (p'q)'[lm(G;)]'I G; I' + [A'(~ ~)]'=-&(p e)'[1m(G;)]'&;&IG;I'&;&[A'(~
PtQ R

(C1)
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where (); implies integration over p, etc. The diagrams which cancel the one in Fig. V(b) are shown in

Figs. V(c) and V(d); they are identical to the former one but contain one additional vertex correction over
the insertion. Their contribution to M is, in similar notation

(c3)

M"'(0 cu) = [M"'(0, cu)]* =- U ((p ~ g)'[fm(G;)]'&pl 6; l'G;&;(l G; l'Gg;&[A'(q, cu) j'),-. (C2)

To lowest order in y/E we have & G; lt"G;&,» = —iy&
l
G;

l

"' );.Therefore the sum of all three contributions

toN &s

~"'"(o,~) =-&(p 0)'[m(G;)]'&;&lG;l'&;[1-»'U.&lG;l'&;]&[~'(~, ~)]'&;.

Now, observe that the condition for particle num-
ber conservation in (12) can also be written as 1
—Uo( G; lt&; =0. Bearing in mind that UD

——ny
(where n is some constant) and

I

vation relation can also be written as

1 —2y'Uo&
I
Gal'&. =0-. (c5)

9& lG; l'&;l Sy= —
. 2y( lG; l'&.

we obtain from this by differentiation

, ' (lG,-l'&,--2U, y&lG,-l'&,-=0. (C4)

But 9U,/sy = (y( l G; l' &;)
' and so the particle conser-

Hence the rhs of (CS) is zero and the diverging
contributions have been shown to cancel. An iden-
tical mechanism of cancellation has been observed
in all cases that have been investigated; it always
takes a group of three diagrams with .similar but
not identical vertex corrections as in Figs. V(c)
and V(d) to cancel each other.
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