
PHYSICAL REVIEW B VOLUME 22, NUMBER 10 15 NOVEMBER 1980

Exact kink-gas phenomenology at low temperatures
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We show that the low-temperature ideal kink-gas phenomenology developed by Currie et al. for the classical

statistical mechanics of one-dimensional kink-bearing systems is exact for all potentials in the nonlinear Klein-

Gordon family (e.g., sine-Gordon, P ', double-sine-Gordon, etc.). A general kink-density formula is presented
which does not require explicit knowledge of the kink wave form or its small oscillations. '

Much of the recent interest in kink (soliton) ex-
citations in condensed matter' has focused on their
role in the low-temperature statistical mechanics
of quasi-one-dimensional systems. Krumhansl and
Schrieffer' found that for the "Q"' chain the clas-
sical free energy obtained by the transfer-operator
method could be nearly reproduced at low tempera-
tures by calculating the free energy of an ideal gas
of noninteracting particlelike kinks and phonons.
Although this near agreement was quite remark-
able, the quantitative disagreement between the
ideal-gas phenomenology and the transfer-operator
results occurred in both the temperature depen-
dence and numerical factors, and left open the
fundamental question of whether the phenomenology
could really be trusted and the practical question
of how to accurately calculate the density of ther-
mally excited kinks. Recently, Currie, Krum-
hansl, Bishop, and Trullinger' (CKBT) have ans-
wered these questions for the Q' and sine-Gordon
(SG) models by correcting the Krumhansl-Schrief-
fer theory in several respects. In particular,
CKBT found that by taking into account the influence
of kinks on the phonon density of states, ' the ideal-
gas phenomenology gives low-temperature results
in precise agreement with improved transfer-op-
erator results. " Subsequent extensions of the
CKBT theory have been made in several directions
to include (i) sine-Gordon systems with a "wind-
ing-number" density' (net imbalance of kink and
antikink numbers) where agreement is found with

transfer-operator results, ' (ii) the double-quad-
ratic (DQ) chain' whose kinks are nontransparent
to phonons, in contrast to the sine-Gordon and/'
kinks which are transparent (reflectionless), and
(iii) systems such as double-sine-Gordon""
(DSG) which are capable of supporting more than
one type of kink excitation.

The exactness of the low-temperature CKBT
phenomenology has up to now been demonstrated
only for those special cases [SG (Refs. 3 and 'I),
&f&' (Ref. 3), DQ (Ref. 9)] where explicit, closed-
form expressions for the kink contribution to the

free energy could be found and hence compared to
transfer-operator results. ""The derivation of
explicit expressions was thought to depend crucial-
ly on having explicit knowledge of the "phase shift4'
of extended small oscillations in the presence of
kinks as well as the frequencies of any localized
oscillations (internal modes) of the kinks. Lack of
this knowledge prohibited the validation of the
phenomenology for more general models (such as
DSG) and as a consequence explicit expressions for
kink densities could not be found.

In this paper, we report the results of detailed
analysis' which shows that explicit knowledge of
phase shifts and internal-mode frequencies is not
needed in order to demonstrate the exactness of the
kink-gas phenomenology at low temperatures, and
indeed, we shall present an explicit formula for
low-temperature kink densities for the entire
class' of nonlinear Klein-Gordon kink-bearing sys-
tems. All of the quantities entering this formula
can be obtainied directly from the particular local
potential function, ' V(P). This has the practical
consequence thatlosv-temperature kink densities
can be obtained tvithout detailed knoieledge of the
kink tvaveform (Profile) or the small oscillations
about the kink. Thus, we not only place the CKBT
phenomenology on a rigorous foundation but also
give its simplest and most general expression.

The general class of one-dimensional kink-bear-
ing Hamiltonians considered by CKBT have the
form'

II =A. dx —,
' ', +-,'c,'„'+w'pV

where Q(s, t) is a dimensionless field, the constants
cp and up are characteristic velocity and frequency,
respectively, whose ratio d=—c,/tu, determines the
fundamental length scale (kink width) for variations
in P, and the constant A sets the energy scale.
The dimensionless, local, nonlinear "potential"
function, V(&f&), is assumed to have at least two
degenerate, absolute minima (V=0), say, at Q =Q,
and &f& =Q, (f&, &Ps), separated by a barrier which
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is symmetric about the midpoint Q = ((j),+ p,)/2.
Examples of potentials having only two such mini-
ma are the "((b"' (Refs. 2 and 3) [V(Q) = (')((j)'-1)']
and double quadratic' (DQ) [V(Q) = —,'(~ Q ~

—1)'] dou-
ble-weQ potentials. A popular example having an
infinite number of degenerate minima is the perio-
dic sine-Gordon (SG) potential [V(Q) =1 —cosQ] .
The related doubly periodic double-sine-
Gordon"'o (DSG) potential (V(Q) = 2(1 —n') '
x [cos(-,'P) —o] ', 0 ~ c( & 1) has two types of bar-
riers, giving rise to two types of kinks. In order
to treat the entire variety of such potentials simul-
taneously, we shall use (j), and (QI), to denote any two
adjacent absolute minima in V(Q). We shall as-
sume, as in the above examples, that V((j)) has been
scaled so that it has unit curvature at Q, and Q, .

Single-kink solutions of the equation of motion

[Q« -cop„+(()oV'(P) = 0] may be obtained by two in-
tegrations' with appr opriate boundary conditions.
However, we shall only need to make use of certain
general relations involving the static kink wave-
forms, P»(x), andnot the full explicit spatial de-
pendence of Q». For example, the spatial deriva-
tive of the static kink (monotonically increasing
from (j), to Q,) profile is related to the local poten-
tial by* (z =- x/d)

low-temperature limit for general V((j)) using an
improved WEB method" based on the approach
employed by Goldstein. " As T-0 (m*-~) we
have, for potentials having a single type of barrier
(e.g., SG, y', Dq),

f =-A&u' ' ' e"m* ''exp(-(m*' ')o &o-&.
WvB (6)

where the temperature-independent quantity g is
defined by

~2V((j)) 4' —0 /
'

For potentials with more than one type of barrier
(e.g., DSG), there is a contribution to f, of the
form (6) for each type. '" The factor B depends
only on thetopology of the potential: 8 =1 for
singly periodic potentials (such as SG), B = 2 for
double-well potentials (such as Q' and DQ) and
doubly periodic potentials (such as DSG). We emp-
hasize that Eq. (6) contains no reference whatso-
ever to kink solutions to the equation of motion.
Nevertheless, this contribution is reproduced
exactly by the kink-gas phenomenology. To facil-
itate comparison of the phenomenological result
below to the exact result (6), we first make use of
Eq. (2) to reexpress q as

~ =[2V(e )]'"
dg

(2)
g = -ln[((j)o —Q~)/2] +lim (z+ln[(j)o —Q»(z)]) . (8)

The rest energy of the kink is given by

1 dQ
Z» =Aoooco dz

2 ~ + V(&f&»(z))
~OQ L

-A(coco dQ [2V(P)]'/'=- Ao)oco&, (3)

where the second equality follows from (2) and
shows that the kink rest energy can be obtained
directly from an integral over the local potential
(which we denote by ().

The classical free-energy density f can be evalu-
ated exactly using a transfer operator technique"
as described by CKBT.' In the continuum limit (d
large compared to the lattice constant l), f can be
written at low temperatures as'

fo A(()o&o) (4)

where f, (=heT[l 'In(PR&uod/l)+(2d) '], P= (heT) ')
is the free-energy density of classical phonons
(Pk(do«1) in the absence of kinks, and to is the
"tunnel-splitting" contribution to the lowest eigen-
value 6p of the pseudo-Schrodinger equation'"

„z .+)'(())( (() ~.(.((), . =1 d'

with m*-=(PA(()oco)'. The "tunneling" free-energy
density f, = A(do to can be ev-aluated exactly' in the

f=f, —h, Tn», (10)

where n&" is the total density of kinks plus antikinks
[given by Eq. (3.30) of Ref. 3]:

2E» / 2. &
/»

i i

B(8+2)
Bhco(,PE»j

(11)
Here Z» is the self- (free) energy' of a static kink,
which arises from the influence of the kink on the
free energy of extended small oscillations as well
as from the free energy of any small oscillations
localized about the kink center. In order to show
that the phenomenology is exact at low tempera-
tures, we must show that n»= p)f, ~, or equivalently

As z -~, Q»(z) approaches P, as (j), —(())»(z)
-(j)oe ', where Po is a constant. Thus q=ln[2$o/
((()), —Q,)] . In addition, we can make use of Eq. (8)
and the definition of m* to rewrite Eq. (6) as

f h T o ~-x/o(ll& )x/o -8&»2d)
B ~Bd» e ~

From a phenomenological point of view CKBT
showed' that the low-temperature free-energy
density of an ideal gas of slowly moving kinks (and
antikinks) plus their associated small oscillations
(kink-phonons) has the form
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d X—„,". +U(z)X=k'X, (13)

where U(z) -=V"(Q»(z)) —1 and k is a dimensionless
wave vector related to the frequency of oscillation
by k'= (&u/&u, )' —l. Owing to the localized nature of

the kink waveform, Q»(z), the function U(z) has
appreciable value only near the kink center (taken
to be z =0) and approaches zero as ~z~-~ since
V" (Q, ,) = 1. Moreover, the function V"(P»(z)) has

a minimum at z =0 such that U(0) & -1. Thus,
there exists a close analogy between Eq. (13) and

the Schrodinger equation for a particle moving in
a one-dimensional potential well U(z). As dis-
cussed by many authors, the spectrum of small
oscillations about a single kink must contain a
zero-frequency (&u = 0) "translation mode. " Thus
Eq. (13) always possesses a bound-state solution
with +,'~,

= 0 (k' = -1), and the corresponding eigen-
function x„,(z) is proportional to the spatial deriv-
ative of the kink waveform. Normalizing X~,(z)
to unity thus gives

x ()=$"' d&

dz
(14)

In addition to the translation mode, there may

exist additional bound states with frequencies co& „
(n ~ 2) between 0 and &uo, corresponding to "intern-
al" (localized) oscillations of the kink waveform.
The k values for the N, bound states are pure im-
aginary: k„=+i»„with»„= (1 —&u,

' „/v,')' '
(n = 1, . . . ,N,). The spatially extended modes have
&u'= a&&= 1+k' (k real).

Owing to the symmetry of U(z) [U(—z) = U(z)] we

can take the eigenfunctions x(z) to have definite
parity [even (+) or odd (-)]:

upon using Eqs. (9) and (11), we must show that

Z = -k T In(v 2 Pkur Q,g 'i ) . (12)

If more than one type of kink exists (as in DSG)

each type contributes a free-energy density
-k~7'n~';, where n~"; is the total density of kinks

(plus anti-kinks) of type i Correspondingly, there
is a contribution to f, of the form (6) from each

type of barrier in V(Q). If Eq. (12) can be proved
for the kink &f&, Q-„ it holds true for kinks span-
ning any other barrier in V(Q) as well, and thus

the phenomenology would be proven exact at low

temperatures. We now calculate 5& and show that
indeed it satisfies Eq. (12).

The spatial and temporal dependence of small
oscillations, 5$(z, t) = X(z) cosset, about a static
kink P»(z) are governed by the eigenvalue equa-
tion'

x (k, z)=,„[f(-k)g(k, z) -f (k)g( k,-z)],

f,(k) =
~ f,(k) ~ exp[ (i/2)6, (k)] .

The kink self- (free) energy has the form'
Eg I

Z»=~F+kzTQ In(PR(u~ „),
fl= 2

(16)

(17)

where AI'" is the change in the free energy of spat-
ially extended small oscillations due to the pres-
ence of the kink and the second term is the classi-
cal free energy of small oscillations (if any) local-
ized about the center of the kink.

The change in the densities of states, hp, (k), for
the extended oscillations can be expressed' in
terms of the phase-shift functions, &,(k), with the
result' that

6F = -kzTNI, ln(I8N+, )

k~T '" dk
4 . [a, (k) + z (k)] . (18)

Using the fact' that the Jost functions, f,(k), have

simple zeros at the k values -iv„, corresponding
to the bound states of even or odd parity, respec-
tively, we have managed to perform the integration
in (18) without the need for explicit knowledge of

a,(k). We find that the internal mode frequencies
e, „drop out of (17), leaving

Z» = k T ~ -In2P km

-2i, k)+-,' 1nf t a)+lim 1n-
k+i

The value of f (-i) can be obtained by comparing
the asymptotic (z-~) dependence of x,(k=-i, z)
with that of the normalized translation mode

x~, (z) [using (14) and discussion after (8)]:

X~, ,(z) lot '" e '. (20)

(19)

This yields

f (-i) =X, ,(z = 0)g' '/$0. (21)

The last term in (19) can be evaluated, following
Newton, "as

(22)

(15b)

where f, (k) are Jost functions. " The function

g(k, z) contains the spatial dependence of the small
oscillations and has the asymptotic form g(k, z)- exp(-ikz) as z -+~ (Imk ~ 0). The Jost functions
can be used to define "phase-shift" functions b„(k)
for real k via

X,(k, z) = —.
' [f,(-k)g (k, z) +f,(k)g(-k, z)], (I») Substituting (21) and (22) into (19), X~,(z = 0) drops
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out and we obtain Eg'. (12). Thus the phenomeno-

logy is proven exact at low temperatures.
Substitution of (12) into (11) and elimination of Q,

in favor of q [see (7)] yields a general formula for
the low-temperature density of kinks (plus anti-
kinks) of a given type:

Since q is given by (7) and Ex by (3), we see that
n&" can be obtained directly from simple integrals
over the potential V(P). Explicit knowledge of the
kink waveform or its small oscillations is not
needed.

tot 2 41 'g(gg )1/2 -6gr
&vied

' (23)
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