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Phase-locked charge-density waves in NbSe,
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Using a simple Ginzbur;-Laixdau theory which incorporates the crystal symmetry of NbSe;, we show that the
approximate relation, 2(k,+k,)~(1,1,1), between the two charge-density-wave (CDW) wave vectors leads to a
fourth-order phase locking of the CDW’s. Some experimental consequences of this effect are discussed.

I. INTRODUCTION

Recently there has been considerable interest'™
in the properties of the transition-metal trichal-
cogenides, of which NbSe, is the most well-studied
example. This linear chain metal undergoes two
seemingly independent charge-density-wave (CDW)
transitions®™ at* T, =142 K and T,=58 K, respec-
tively. Below each of these temperatures, the
resistivity shows rather large increases, indicat-
ing that substantial fractions of the charge carriers
condense into the CDW states which accompany the
destruction* of portions of the Fermi surface.

In addition to the peculiar non-Ohmic behavior?®
associated with the resistivity anomalies (we re-
turn to this point later) anothér puzzling feature
of NbSe, is that the emergence of the second CDW
at 58 K seems to have very little effect on the first
CDW. This is evidenced by the fact that no obser-
vable change occurs at T, (or below) in either the
position or intensity of the diffraction spots’ asso-
ciated with the first CDW. The independence of
the two CDW'’s is further supported by the fact that
the Ohmic resistivity anomalies can be fitted in a
model* which employs independent CDW gap func-
tions. Thus NbSe, may appear to be the first li-
near chain material in which two CDW’s coexist
independently.

However, another experimental fact seems to
challenge this independence. Namely, the wave
vectors characterizing the two CDW’s given by’
kK, =(0,0. 243 £0. 005, 0) and &, =(0. 5, 0. 263
+0.005, 0, 5) [in units of the reciprocal unit-cell®
lengths (a*, b*, c*)] satisfy the approximate rela-
tion

2(k, +k,)~ (1,1,1), (1.1)

i.e., twice their sum is approximately a recipro-
cal-lattice vector. Can this velation be merely a
coincidence, or is theve in fact a connection
between the two CDW’s?

Several authors'®?’? have independently noted that
relation (1.1) suggests the existence of a phase
coupling between the two CDW’s below T,. Sim-
ple arguments based on a Ginzburg-Landau (GL)
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theory incorporate the additional invariant
which appears in the free-energy expansion as a
result of this wave-vector relation and this term
leads to a locking of the phases'®™? of the two
CDW’s below T,.

In this paper, we give the details of our previous
analysis'! which showed that because the phase-
coupling term is of fourth order in the CDW am-
plitudes, the phase locking of the CDW’s has only
a minor influence on the values of these ampli-
tudes, in the form of a small mutual enhancement
barely (if at all) observable at low temperatures.
The smallness of the phase-coupling energy allows
us to reconcile Eq. (1. 1) with the apparent inde-
pendence of the CDW’s suggested by the diffraction
and Ohmic transport measurements mentioned
above. In addition, we consider the implications
of the phase-locking effect for other properties
of NbSe, with emphasis on experimental conse-
quences.

In the absence of a detailed microscopic theory
of the CDW transitions in NbSe,, the discussion
below is of necessity qualitative in nature.. We
therefore rely on general arguments and make
use of experimental information at key points in
the discussion. In Sec. II, we consider the nature
of the CDW between T, and T, when the second CDW
is absent. This will help clarify the relative mag-
nitude of various competing energies involved in
the CDW formation and the interaction with the lat-
tice. The crystal symmetry of NbSe, is explicitly
incorporated in the construction of a GL free-en-
ergy functional. Minimization of the free energy

11,12

- leads to discommensurations!3:!* in the CDW

phase. However, the absence of a lattice lock-in
transition to a commensurate CDW suggests that
these discommensurations are very weak. In Sec.
III we construct a GL expansion which contains a
term due to the particular relation (1. 1) between
the CDW wave vectors. This term represents the
coupling between the phases of the CDW’s. The
immediate consequences of the phase coupling are
discussed, such as a small mutal gap enhance-
ment. In Sec. IV we turn our attention to less
obvious consequences of the phase-locking effect
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which may have implications for experiments
other than diffraction and dc Ohmic transport. In
Sec. V we summarize our results and conclusions.

II. GINZBURG-LANDAU THEORY OF THE FIRST CDW

In this section we construct a Ginzbﬁrg-Landau
(GL) expansion for the free energy of NbSe, near
the first CDW transition at T, =142 K and analyze
its consequences for the nature of the CDW phase.
In our use of GL theory near T, (and also below
T,) we neglect critical fluctuations; they appear®
to contribute to the resistivity only very near to
T, and T, and the diffraction experiments do not
exhibit diffuse sheets [as in'® tetrathiafulvalene-
tetracyanoquinodimethane (TTF-TCNQ)]. This
neglect is consistent with the reasonable fit* of the
mean-field theory to the Ohmic resistivity data,
and suggests further that interchain coupling in
NbSe, is substantial.'® In addition, we note that
there is no drastic difference between the six
chains within the unit cell. »” All six chains are
thus regarded as equivalent except for their rela-
tive positions in the cell. The amplitudes of the
CDW'’s are therefore taken to be the same on each
chain, although the relative phases ave allowed to
adjust to minimize the Coulomb interaction energy
between neighboring chains.

We define as our order parameter the modula-
tion, Gp(f‘), of the carrier charge density. The
free energy is required to be invariant under the
symmetry operations in the space group, P,1m,
of the crystal. The order parameter must trans-
form under the group operations according to a
linear combination of basis functions of one of the
irreducible representations of the space group.
The free energy is then constructed from invariant
functions of 6p up through fourth order.

The nonsymmorphic space group contains, in ad-
dition to crystal translations, f, the identity E,
the inversion I, a glide-plane reflection o*
={0|4 5} (in the ac plane), and a screw-axis ro-
tation C}={C,|4 b} about the chain axis (5). We
use oblique coordinate axes coincident with the
primitive translation vectors,® 3, b, ¢, and denote
the reciprocal-lattice vectors by 3*,b*, &*. The
wave vector El of the first CDW is along the chain
axis with length 2, =0.24b*.

The basis functions of the relevant irreducible
representations’® have the form of Bloch func-
tions,

Y(T)=errTy(F), (2.1)

where u(£+1)=u(T). The little group of K, is
{E, C}} (the star of K, is {k,, -K,}) which has two
one-dimensional irreducible ray representations,
T*and T'":

T*E)=1, THCH=e" ",
I(E)=1, T(CH=-e"'"™,

(2. 2a)
(2. 2b)

The corresponding basis functions of Bloch form
are given by

o= eFr i (F) +u*(CFT)] (2. 3a)

and

o= e w (F) - u (CFT)]. (2. 3b)

The partner functions to ¢3 necessary for two-di-
mensional (the star of &, has two points) irreduci-
ble representations of the space group are con-
structed by operating on ¢} and ¢; with the inver-
sion It

¢§:e'i1'-[u*(—i?):tu*(—C;-IF)]. (2:4)

There are éonsequently only two possible forms
for the order parameter 8p( T ):

op*(F)=cii+c5o5, (2.5)
where ¢} , are constants. We have exhausted the
symmetry properties in arriving at Eq. (2. 5);
from the group-theoretic point of view, dp* and
0p~ are equally valid forms for the order parame-
ter. We choose between dp* and dp~ by selecting
the form which appears to minimize the interchain
Coulomb energy, namely, 6p~ with 4~ chosen as
the simplest possible periodic function:

u™(T)=cos(27 z/c) sin(27x/a) . (2.6)

The relative phase ordering between chains is
shown schematically in Fig. 1(a). The assumed
form for the charge modulation associated with
the first CDW is thus

- 2 > >
op,(¥)=A,sin 2—Zﬁfcos %z sin[k,- T+ 6,(y)],

(2.7

where the subscript 1 denotes the quantities ap-
propriate to the first CDW. The amplitude 4, is
taken to be independent of position'® and the phase
6,(y) depends only on position (y) along the chain
direction.

The free energy per unit length is then written
in GL form as'®

D A4 L
F1:A1A21+BlA‘i+—i—1-£ dy cos[4(6, + 5k, v)]

%A1 f - (i‘h) ?

+ T ) dy @) (2.8)
where L is the length of the sample and 6k, =%,
-1b*~ —0.015*. The first two terms in (2. 8) are
the usual GL terms with B, >0 and A, =0 (T=T,).
The third term represents the commensurability
(or “lock-in”) energy and by itself would be mini-
mized if 6,(y)=47 - 3k, y, i.e., if the effective
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FIG. 1. Relative signs (in the ac plane) of the CDW’s
on the niobium chains for (a) épf and k) 6p;. The origin
is an inversion center above T3;. The filled circles rep-
resent chains which are shifted by 34 from the chains
represented by open circles. Note the doubling of the
unit cell in case (b) appropriate to the second CDW wave
vector ky = (0.5, 0:26, 0.5).

CDW wave vector would be K, - 6k, y=d, =(0, $5*,0).
However, the fourth term, representing the
“strain” energy associated with deformation of

6,, competes with the commensurability energy.
Minimization of F, with respect to 6, (for fixed A))
leads to the static sine-Gordon equation®®:2! for
¢,=6,+0k,y. The relevant solution is

21{)
e+k )’

where k=D,A%/y,, sn is a Jacobi elliptic function,?
and € is an integration constant which is deter-
mined by minimizing F,, yielding a transcendental -
equation for e: E(m)=(m/2V2)| 6k, |Vm/k, where
m=2k/(e+ k) and E is the complete elliptic inte-
gral of the second kind.?* For Q=(n/2V2)|dk,|Vk
>1, the solution for 6, representsa “lattice” of discom-
mensurations'-* with spacing \ = (m/2k)*/2K(m),
where K is the complete elliptical integral of the
first kind. ?®> However, if <1, then ¢, =%m, cor-
responding to a commensurate phase with 6, =7

— 6k, v and no discommensurations. This lattice
lock-in would occur at a temperature such that
Q=1. However, it appears that for NbSe,, @>1,
so that there is no lock-in transition and as a
consequence, A (and hence the effective CDW

wave vector) is essentially temperature indepen-
dent down to the lowest temperatures obtained in

(2.9)

sin2¢, = —sn(z(e + k) 2y

2
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FIG. 2. Plot of the dimensionless quantity §(Q) vs £
which enters the discommensuration free-energy density
[Eq. (2.10)]. If Q= (n/2v2)(|6ky/|VK)] becomes less than
unity, a lock-in transition occurs where the discommen-
surations disappear. For NbSe;, however, Q appears to
be much larger than unity so that §(Q) is always very
small and no lattice lock-in occurs.

the diffraction experiments. ®” This situation is
quite consistent with the expectation that D, < B,
due?® to the high order (fourth) of the commensura-
bility term, i.e., the tendency toward lock-in is
very weak. The dependence of F', on 4, is given
explicitly as

_ 2 4 4 10k, | 1
FI_AIAI+B1A1+D1Alg<2(2D1/71)172 Ial)’
(2.10)

where &(R) is shown in Fig. 2. Note that as long
as D, < B, (and 2>1), &(8) is only weakly depen-
dent on A, and hence the free energy (2. 10) is
minimized by the Landau result A=(|A,|/B,)!/?
just below T,. In this situation « is small and the
discommensurations provide only slight deviations
of 6, from zero. The spacing A is approximately
equal to 25b and (¢ + k)'/2~ 7/2) so that ¢, —Li7,
y/A=~06k,y, and 6,~0. The discommensurations
should, in principle, give rise to closely spaced
satellite spots in a diffraction experiment at scat-
tering vectors cT,,:ElJr (2nm/\) (n integer). How-
ever, since vk is likely less than ~1™!, we esti-
mate that the intensity of the satellite spots is
<107%-107* of the intensity of the main spot (z=0),
and hence the satellites would be unobservable in
present-day experiments®’; in fact, no satellites
are seen.

The Landau result, A,=(|A,|/B,)'/% cannot, of
course, be used well below T,, since quasiparti-
cle fluctuations give the actual A, a more BCS-
type shape* (see Sec. III below). As the tempera-
ture is reduced below T,, experiment*’ shows that
A, has essentially saturated before T, is reached.
Thus, in the next section we replace F, by an ef-
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fective free energy FI(AI) which is only weakly de-
pendent on A, below T,. ’

‘III. GINZBURG-LANDAU THEORY OF THE SECOND

CDW AND ITS PHASE COUPLING TO THE FIRST CDW

In constructing a GL free-energy functional ap-
propriate to the second CDW transition at T,=58 .
K, we use an analysis similar to that employed
above for the first CDW. The appropriate order
parameter is 6p(T)=0p,(T)+0p,(F), where dp,
refers to the modulation associated with the second
CDW. Ifwe ignore the slight symmetry breaking due
to 6p,# 0, then the possible basis functions for &p,
have the form

SUF) = it (F) £ e E D Fur(C )],

ox( )= e'iiz.;[ut(_F) + ei(i*+5*).x‘-u*(_cg<-1i7)] .
(3.1b)

I}

(3. 1a)

- D.AY L y, A L 2
F,=F,(A,)+A,A2 +B2A§+—%if dy cos[4(6, + 5k,y)] + 22 f dy(—a)
. 0 0

As before, we have two choices (+ or -) for 4p,
and we make the choice which appears to minimize
the interchain Coulomb energy, namely, the u~
function given by Eq. (2.6). Since the two CDW’s
have different periods along the chain direction
(b), we can ignore their Coulomb interaction with
each other to lowest order. Thus we take 5p, to
have the form

- 27x 212 x Z
= in == == = +=
dp,(r)=A4,sin 7 Cos cos[n(a c)]

Xsin[Ez- F- n(£ + 5)+ Oz(y)] . (3.2)
a ¢
The GL free energy per unit length is now

do

L dy

A2A2 L
+f'£ dy (B, cos{2[6, + 6, + (6k, + 5k,)y]} + B cos{2[6, - 6, + (5%, — 6k, )91}) , (3.3)

where 8k, =Fk,,—1b*~ 0.016*~ —5k,. The last
term (involving B, and B.) in this GL expansion
represents the coupling between the two CDW’s.
From the discussion above, we know that 6, is
essentially constant except for the weak discom-
mensurations. Similar considerations show that
6, will also be essentially constant since k, is also
independent of temperature.” The terms involving
D,, v,, and B_ in Eq. (3. 3) then give negligible
contribution to F,, which can now be approximated
by

F,~F (A)+A,A02+B,AL+ B A2A2 cos2(6, +6,),
(3.4)

wheve the B, term suvvives the integration over y
only because 5k, ~-8k,. Clearly, this term is
minimized by 6,=-6,+ 4w (if B,>0) or 6,=-6,

(if B, <0) so that

F,~F (A)+(A,-|B,|a%)A2+B,A%. (3.5)

The weak discommensurations associated with the
spatial variation of 6, will be accompanied by
sympathetic discommensurations in 6,, giving
rise to a composite “soliton” lattice. 1142 How-
ever, the intensity of satellite spots due to these
is, of course, also expected to be very small.

We note from Eq. (3.5) that the presence of the
phase-locking term (B,) in Eq. (3.4) has the con-
sequence that the occurrence of the second CDW
is aided by the presence of the first CDW, i.e.,

r

if A, changes sign at T} then the actual second
transition occurs at a slightly higher (observed)
temperature T, >Ty. One possible consequence
of this enhancement is the tendency for k,, to be
shifted to the observed value from a slightly dif-
ferent value kz*y that might have been preferred in
the absence of the first CDW. This is not likely
to be a large effect, however, since B, is most
certainly small.

Another consequence of the phase-locking effect
is that A (T) undergoes a small change in slope
at T, and reaches a T =0 value which is slightly
larger than what would occur in the absence of B,.
While a small change in slope would be very diffi-
cult to measure, we do note that if the diffraction
data’ for A (T) are fitted by a BCS curve (for ex-

- ample) between T, and T,, and this curve is extra-

polated below T,, then the data points for A,(T')
below T, seem to lie systematically above the ex-
trapolated curve, indicating a small enhancement
of A, (see Fig. 3). Unfortunately, the error bars
are too large for the enhancement to be estimated
accurately (and of course there is no reason to as-
sume that a BCS curve for A, would be exact in the
absence of B)). v

The smallness of these enhancement effects is
the reason for the apparent independence of the
two CDW’s in the diffraction” and Ohmic transport*
measurements. In order to determine experimen-
tally whether the phase locking actually occurs, it
is necessary to consider other consequences of
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FIG. 3. Possible enhancement of the first CDW am-
plitude (A1) due to phase-locking to the second CDW.
The solid curve is a BCS fit (between Ty and T) to the
diffraction intensity data of Ref. 7. The dashed line is
an aid to the eye. The size of the possible error pre-
cludes a definite estimate of the enhancement. (In per-
forming the fit, we noticed that the arrow indicating T,
in Fig. 2 of Ref. 7 was incorrectly placed according to
the temperature scale of the resistivity plot, rather than
the reduced temperature scale T/Ty. This has been
corrected in the present figure.)

this effect. We consider some of these in the next
section. :

IV. OTHER CONSEQUENCES OF PHASE LOCKING

It should be clear from the above discussion that
the phase locking of the two CDW’s in NbSe, has
only a minor effect on the equilibrium properties
such as free energy, etc., and on the steady-state
properties near equilibrium, such as dc conduc-
tivity in small fields (Ohmic behavior). In order
to observe the effects of phase locking it is there-
fore necessary as a practical matter to try to
move one CDW with respect to the other. If the
phase locking exists, it will inhibit such attempts
since the CDW’s are “commensurability-pinned”
to each other. If the degree of inhibition can be
measured, one would have a handle on the effect.

The only known way to induce motion of essen-
tially rigid CDW’s is by application of an electri-
cal field. If NbSe, samples were free of impuri-
ties and other defects, . the electric field would not
cause 7elative motion of the CDW’s (unless the
“damping” constants were different for the two).
Fortunately, the presence of impurities leads to
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pinning of the CDW’s in real samples.?®2* It is
found experimentally® that below T, the pinning of
the first CDW is quite effective relative to that of
the second CDW (although both pinning strengths
are quite weak® on an absolute scale). Recently,
Fleming and Grimes®® have observed a non-Ohmic
conductivity below T, of the form o ~exp[E,/(E, —E)]
for applied fields E above a very small “threshold”
field E; =10 mV/cm. Their measurements were
performed at a temperature below T, where the
Ohmic resistivity is peaked and A, has essentially
saturated. The characteristic field E, has pre-
viously been associated® with impurity pinning be-
cause of its dependence®*:'° on impurity concen-
tration. If E, is interpreted as a breakaway
field,'® then it should be due to a barrier formed
by both impurity pinning and phase locking, ]
whereas above T, the barrier is due to impurities
only. A test of the existence of phase locking
could thus be made by detailed measurements of
the impurity dependence of E; below T,. If E,
approaches a constant in the pure limit, this would
be indicative of intrinsic pinning of the second
CDW to the first.

Another observation by Fleming and Grimes?®
deserves comment in connection with the phase-
locking effect. They found that when the threshold
field is exceeded, a dramatic change takes place
in the frequency spectrum of the noise voltage,
namely, a well-defined peak appears (along with
several harmonics) at very low frequency. The
fundamental frequency increases with increasing
field and eventually another frequency appears
with its harmonics. While the origin of this
fascinating effect is unclear at present, Fleming
and Grimes pointed out the analogy of this be-
havior to that encountered in the transition to tur-
bulence in a variety of fluid systems where inter-
mediate quasiperiodic regimes exist. Indeed,
Huberman and Crutchfield®® have noted that a
periodic driving force on the first (pinned) CDW
as the second CDW slides past (for E >E;) might
induce a quasiperiodic response of the first CDW.
Clearly, the phase coupling discussed above could
provide the source for such an oscillating driving
force. More work, both theoretical and experi-
mental, is needed to test this intriguing hypothesis.
In particular, the dependence of the fundamental
noise frequency on impurity concentration would
be quite valuable information since this frequency
presumably depends on the relative strength of
impurity pinning of the first CDW and its coupling
(B,) to the second CDW. A corresponding calcula-
tion of the type performed by Huberman and
Crutchfield®® would be most desirable. This, in
turn, requires a reasonable model for the dyna-
mics of the second CDW for E >E,.
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Finally, we note that if an oscillating (micro-
wave) field is applied at or near the pinning fre-
quency of the first CDW, the simultaneous mea-
surement of E, below T, may show a reduction of
E, due to the “averaging out” of the phase-coupling
term. On the other hand, if the CDW’s are truly
independent, little or no affect on E, should be
observed.

V. SUMMARY AND CONCLUSIONS

In this paper we have presented a detailed dis-
cussion of our previously reported'! Ginzburg-
Landau theory of the change-density-wave transi-
tions in NbSe,. We explicitly incorporated the
crystal symmetry in constructing free-energy
functionals for the two transitions and found that
the intimate connection [Eq. (1.1)] between the
CDW wave vectors leads to an additional fourth-
order invariant responsible for phase locking of
the CDW’s below T,. We argued that the indepen-
dence of the wave vectors upon temperature sug-
gests only a weak tendency toward lock-in of
either CDW to the lattice; rather the CDW’s be-
come locked to each other.

The importance of the phase-locking effect for
equilibrium and near-equilibrium properties was
argued to be minimal; for example, the mutual
gap enhancement below T, is small and barely ob-
servable, if at all, thus reconciling the apparent

independence of the CDW’s suggested by diffrac-
tion” and Ohmic transport* measurements with the
connection implied by the wave-vector relation.
Nevertheless, in Sec. IV we explored some other
more interesting consequences for the properties
of NbSe,, noting that the phase-locking effect
should be more evident in the non-Ohmic conduc-
tivity. We urge the performance of detailed mea-
surements of the impurity-concentration depen-
dence of (i) the threshold field E, below T, and (ii)
the low-frequency peaks in the noise voltage above
E;, both of which have been observed by Fleming
and Grimes. ?®

Further progress in theoretical understanding of
the phase behavior of the CDW’s in NbSe, is most
desirable. In particular, a microscopic theory of
the CDW transitions themselves would be bene-
ficial in developing even a phenomenological theory
of the non-Ohmic transport properties; simple
pictures'® involving CDW “dislocation” generation
and motion could then be developed further.
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