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Comments are presented on the recent theories of two-dimensional melting which envisage
melting as proceeding via two second-order transitions comprising dislocation dipole dissociation
followed by disclination dipole dissociation. It is suggested that if the configurational entropy is

properly included, the model system may jump discontinuously from a volume below the dislo-

cation transition to a volume above the disclination transition so that both transitions are virtual

and are hidden in the first-order discontinuity. A reinterpretation of the recent molecular-

dynamics simulation of two-dimensional melting of Frenkel and McTague, reveals that such is

the case for a Lennard-Jones system. There may be no fundamental difference between two-

and three-dimensional melting.

Recently, Nelson, ' Halperin and Nelson, Nelson
and Halperin, ' and Young have investigated quite
extensively the consequences of a dislocation theory
of second-order two-dimensional (2D) melting,
modeling their approach on that of Kosterlitz and
Thouless, ' which proposes that the melting is mediat-
ed by dissociation of dislocation dipoles. This specific
mechanism was in fact observed earlier by Cotterill
and Pedersen in molecular dynamics simulated two-
dimensional melting of a Lennard-Jones system, and
the essential features of the Halperin-Nelson theory
are apparently confirmed by the recent molecular
dynamics calculations of Frenkel and McTague
(FM). Specifically, Halperin and Nelson (HN) have
suggested that if melting in 2D is not first order, then
it is a two-step process involving a transition to a
"hexatic" phase driven by dislocation dipole dissocia-
tion, followed by a transition to an isotropic phase at
higher temperature which is driven by disclination di-

pole dissociation. The purpose of the present article
is to draw attention to a number of inadequacies in
the current formulation of the dislocation theory, but
to do so within the context of a viewpoint which is
sympathetic towards the dislocation model. In partic-
ular, it is shown that, contrary to the conclusions of
Frenkel and McTague, melting in 2D is probably first
order as it is in three-dimensions (3D) and that the

two-step melting process postulated by Halperin and
Nelson occurs in the virtual region between the melt-
ing line and the freezing line.

Firstly, some comments on the historical back-
ground would appear to be in order. The notion of
dislocation mediated phase transitions has rather dif-
fuse origins, and even before explicit dislocation
theories of melting were discussed, Frank and van
der Merwe studied the role of dislocations in the
structure of a monolayer'on a substrate. Detailed
dislocation theories of melting have been presented
by Rothstein, Mizushima, ' Ookawa, " and many
others, and the notion of dislocation dipole dissocia-
tion was probably first introduced by Kuhlmann-
%ilsdorf. ' Although each was moderately successful
in characterizing melting parameters, the dislocation
model was often regarded with skepticism. '3'4 The
credibility of the dislocation model was greatly
enhanced, however, by Cotterill and Pedersen's ob-
servation of dipole dissociation during melting. 6 This
work advances the status of the dislocation from be-
ing a hypothetical paradigm for the disorder associat-
ed with the liquid state, to being an established partic-
ipant in the melting process, if not necessarily in the
final liquid state. Moreover, the role of dislocations
in melting is not confined to systems of two dimen-
sions only, but has also been established for three-
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dimensional systems. " There appears from this work
to be no fundamental difference between the melting
of 2D and 3D systems. It is interesting also to note
that the essential difference between a 2D lattice and
a 3D lattice is that, in the former, the long-
wavelength phonons destroy the conventional long-
range order. In the computer simulation of FM these
long-wavelength phonons are absent and yet the two
second-order transitions predicted by HN to consti-
tute 2D melting, are confirmed. It is likely, then,
that these transitions are not directly related to this
special characteristic of 2D lattices and may, in fact,
be common to both 2D and 3D lattices.

The central inadequacy of the HN theory is that it
fails to consider explicitly the entropy of the system.
This is offset in part by the fact that the strain energy
of a dislocation dipole is not an internal energy as
stated by Kosterlitz and Thoulesss but it is a
Helmholtz function. ' The vibrational entropy is
therefore implicitly contained in the strain energy
which happens to be used by HN in a manner con-
sistent with a Helmholtz function. There are, howev-
er, important configurational contributions to the sys-
tem entropy which are omitted. For a large number
of materials there is a volume-independent entropy
change on melting of R ln2, " ' and for some ma-
terials all or part of the communal entropy, R appears
on melting. ' In the two-dimensional model system,
the advent of the latter entropy is probably unlikely,
but in actual monolayer systems in which one could
expect greatly enhanced diffusivities (akin to the high
surface mobilities for solids" ) the communal entropy
could be significant.

One is thus presented with a situation analagous to
that which occurs in the modified Born instability cri-
terion for melting. ' The original Born criterion '
for melting leads to a second-order melting transi-
tion, but when considerations of the configurational,
volume-independent entropy are incorporated into
the criterion the transition becomes first order. In
the present context, we may say that the appearance
of the configurational entropy at the disclination un-
binding transition allows the system to transform
discontinuously from a lower volume which may
even be lower than the volume at which the disloca-
tion unbinding occurs. It is therefore possible that
melting, whether in 2D or 3D, is a discontinuous
transition from below a virtual dislocation unbinding
transition to above a virtual disclination unbinding,
and under normal experimental conditions neither of
these hidden transitions would be seen.

There are at least two ways of realizing the hidden
transitions. One is to clamp the area or volume so as
to prevent the discontinuity and essentially superheat
the lattice. The other is rather less artificial. When it
is said that melting is first order, this only refers to
the relative properties of the ideally infinite bulk
phases and locally, on the finite atomic level, the
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FIG. 1. Temperatures and densities along the melting and
freezing lines reported by Toxvaerd for a 2D Lennard-Jones
condensed system. Data points are denoted by open circles.
The solid points are the transition points located by Frenkel
and McTague, and both lie entirely within the first-order
melting domain.

transition is not abrupt. In particular, one might ex-
pect to find these two transitions separately realized
in the solid-liquid (s-I) interface (which in a
three-dimensional Lennard-Jones system is as wide
as eight atom diameters26 ~7). On the ordered side of
the interface, it seems certain that dislocation dipole
generation will be evident, and the structure there
will be anisotropic, while at the disordered side of the
interface, one may find the proposed disclination dis-
sociation effectively completing the transition to iso-
tropy. Computer simulations of the s-1 interface
have been reported, but the analysis of these was
confined to average structures and not specific in-
stantaneous structures.

The other method of realizing the hidden transi-
tions, namely, that of superheating by fixing the area
or volume, has in fact been used by FM. They car-
ried out isochoric heating and cooling runs on a
Lennard-Jones system at a reduced density of
p'=0.8. Two transitions, qualitatively akin to those
predicted by HN, were located, one at a reduced tem-
perature of T'= 0.36 and reduced pressure of
P'= —0.2, and the other at T'=0.57 and P'=1.4.
These two sets of points are just two separate points
on the first-order melting line located by Toxvaerd.
The conclusion of FM that their melting transition is
higher than first order is therefore untenable. Their
results are, rather, consistent with superheating and
supercooling along a continuous path between solid
and liquid. In fact the two (P", p', T') points lie
within the melting domain. Figure 1 shows the
( p', T') melting and freezing curves found by Tox-
vaerd and these bracket the transition points of FM.
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The absence of hysteresis on heating and cooling
would appear to confirm that the melting domain is
not a heterophase region.

These two results of FM and Toxvaerd, when
taken together, give strong support to the view ex-
pressed above, that melting in 2D and 3D is a first-
order transition around separate virtual dislocation
and disclination unbinding transitions. The principal
difference between 2D. and 3D first-order melting
would probably lie in the relative widths and separa-
tion of the hidden transitions, each of these being
larger in 2D due to the geometrical constraint. Fur-
ther support for the first-order character of 2D melt-
ing may be found in at least two other computer
simulations and in the fact that successive surface
layers of a 3D solid melt abruptly at progressively
higher temperatures, bounded by the bulk melting
point. 3' The outermost layer is, of course, a corn-
mensurate monolayer.

A proper formulation of such a transition around
two hidden transitions presents a formidable task.
Computer simulations of 2D and 3D liquids suggest
that if the structure were to be resolved into distribu-
tions of dislocation dipoles the dipole separation

would never be large compared to a Burgers vector.
The effect of bringing two dislocations together
within a few Burgers vectors of each other is that the
core structure alters" and in the case of a dipole, the
cores will dilate with decreasing width. Thus, in the
regime of interest, the core energy is by no means
constant and the simple logarithmic energy function
upon which the HN formulation is based is unten-
able. It is evident, however, that there are certain
systems for which the HN formulation is valid.
Moreover, there may be some systems for which the
discontinuous volume jurnp occurs near or above the
dislocation unbinding transition. In this respect it
may be recalled that certain lattices display premelting
effects. 3'
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