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Model calculation of NMR satellite data for iron-group atoms in copper
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We report model calculations of NMR satellite data for iron-group impurity atoms in Cu

which provide a tractable method for relating the experimentally observed Knight shifts to the

structure of the magnetic atoms. This model is based on a three-parameter one-electron
screened potential with exchange. For Fe, Mn, and Cr impurities we obtain the positions and

widths of Anderson-like scattering resonances and find that the numbers of c/ electrons are nearly

integral and indicate 3d7, 385, and 3d4 configurational assignments, respectively. The model

gives good agreement with near-neighbor Knight shifts, is consistent with bulk susceptibility ind

high-temperature resistivity, and in most cases agrees with the axial component of the measured

anisotropic Knight shifts. We also relate our results to NMR line-broadening data and ne tr-

neighbor quadrupole data. The model is formulated to include the case of impurities without a

zero-field magnetic moment and is easily extended to account for trends observed as one moves

across the entire iron group.

I. INTRODUCTION

Details of the electronic structure of 3d impurities
in nonmagnetic host metals remain largely un-
resolved in spite of the great interest these systems
have received in over a decade of active research.
Experimental techniques such as ESR (electron spin
resonance), ENDOR (electron nuclear double reso-
nance), or optical-absorption measurements which
have been so important in understanding properties
of electronic structure of magnetic impurities in insu-
lators have severe limitations or are very difficult to
interpret when the host is a metal. However, NMR
studies of the impurity atom" and of the spin densi-
ty at the host near neighbors to these impurities' in

measurements of the so-called "satellite" spectra have
proven very powerful in studying details of impurity
moment formation and of the moment-conduction
electron coupling. At present, satellite measurements,
have been reported for all the iron-group atoms in

copper. ' Of particular importance are the recent
studies of Mn, Cr, Fe, and Co impurities in single-
crystal copper samples' ' which, through unambigu-
ous assignment of satellite lines to specific neighbor
shells, have provided an actual map of the spin densi-
ty as a function of distance near these impurities.

Although it has been generally accepted that such
measurements reflect details of the electronic struc-
ture of the impurities themselves, previous attempts
to make this relationship quantitative have had only
limited success. One way of formulating this relation
is via scattering phase shifts such as in the Friedel-
Anderson approach. ' However, the well-known
Ruderman-Kittel-Kasuya- Yosida (RKKY) form of

the spin density, based on a point interaction between
the conduction electrons and the impurity, is not ade-
quate for describing the spin density at the near
neighbors and consistently produces the wrong sign
Knight shifts near the impurity, Jena and Geldart"
have pointed out that the near-neighbor spin density
is especially sensitive to scattering by conduction
electrons significantly below the Fermi surface. For
this reason calculations that are restricted to behavior
at the Fermi energy, though adequate for interpreting
many experimental properties of these systems (such
as spin-relaxation rates, NMR line broadening, resi-
dual resistivity, de Haas-van Alphen damping, etc.),
are unsuitable for describing the near-neighbor
Knight shifts.

In order to be able to extract meaningful conclu-
sions from a more detailed description of the interac-
tion, any model must be sufficiently simple that it

can be parametrized easily from the experimental
data. This is the most serious drawback to the ap-
proach used by Jena and Geldart based on the
Anderson model. While they offer an interpolation
formula to circumvent this difficulty, this formula is

valid over a very restricted range of its parameters
and has not proved useful in practice. "

Our approach has been to develop a one-electron
model, based on a screened atomiclike potential with

exchange to represent the magnetic impurity, which
we solve numerically for electrons throughout a
spherical "host-metal" conduction band. " Although
many properties of the magnetic atom require a more
complete treatment in terms of a many-body theory,
such a one-electron potential, assumed to represent
an average of the many-body configurations of the

22 45



J. DAVID COHEN AND CHARLES P, SLICHTER 22

magnetic atom, is easily solved and, as we demon-
strate, offers a reasonably complete description of the
experimental data.

The one-electron potential is constructed to reflect
the folllowing facts: (i) Inside the core region of the
impurity the electric field is very similar to that of the
free atom apart from a small screening correction.
(ii) Outside this region, screening leads to an essen-
tially flat potential. (iii) Since the atom is magnetic
we must employ a different potential for up and
down spin. The transition between the regions
described in (i) and (ii) is made simply by means of a

step. In (iii) we have implicitly assumed we are deal-

ing with a magnetic atom which is "spin-split" and so
treat the two spin levels independently. This has
been the approach taken in the early work of Friedel
as well as by Jena and Geldart, " and others. '

Such an assumption is probably valid for the strongly
magnetic systems of Cu Cr, Cu Mn, and Cu Fe. We
develop an alternate formulation for systems, such as
Cu Co, for which there may not be a well-formed
moment.

Two problems which do require a multielectron
description are the Kondo effect and the correct
treatment of configurational degrees of freedom
within the 3d impurity atom. The former has been
shown experimentally to enter only as a factor of the
impurity susceptibility and does not affect the spatial
dependence of the magnetization at the near neigh-

bors even at temperatures far below the Kondo tem-
perature. '' The configurational character of the im-
purity represents a more serious difficulty within the
present model. It is discussed in Secs. IV C and VI.

We omit other known features of these systems,
A crystal field seems to play a significant role experi-
mentally in certain cases. We comment briefly on in-
cluding a crystal potential in the model in Sec. V but
generally omit such considerations. There are
discrepancies which we attribute to the presence of
the copper d bands. We nonetheless omit any details
of the host band structure or Fermi surface. We
have also ignored any role of spin-orbit coupling in
our description of the magnetic atom, contrary to
some recent experimental results. We shall return to
a discussion of some of these points in the final sec-
tion of this paper.

II. COMPUTATION OF SATELLITE SHIFTS

A general discussion of the origin and interpreta-
tion of the different "satellite" lines in copper contain-
ing 3d transition-metal impurities can be found in the
single-crystal studies of Stakelon and Slichter and
Aton et al. ' We will be mainly concerned with those
shifts originating from the hyperfine coupling
between. the copper nuclear moment p, & and the spin
of nearby electrons SJ,

3Chr= $—,ny, ff p, g Sjg(rg —R„)+gy, f f7'
J J

where R„and rJ denote the position vectors of the
copper nucleus and electrons, respectively. The first
term in Eq. (1) is the usual Fermi contact term which
gives rise to the Knight shift in pure copper and is
the dominant mechanism for producing the satellite
shifts in most of the copper-3d alloys. It produces
the same shift for all copper nuclei in a given neigh-
bor shell (independent of the orientation of applied
field with respect to the crystal axes). The second
term represents the dipolar interaction between nu-
clear and electron moments and gives rise to aniso-
tropic shifts. Both forms of coupling have been ob-
served in single-crystal copper samples containing Cr,
Mn, Fe, and Co impurities. The anisotropic coupling
will be treated in detail in Sec. V. In that section we
will also comment on the electric quadrupole coupling
observed in many of these alloys.

The interaction given in Eq. (1) can also be ex-
pressed as an effective field

~hf PN 5H ff(R

caused by the polarization by an applied field Ho of
the electron spins in a metal or, as is often more cus-

I

tomary, in terms of a second rank tensor K (called
the Knight-shift tensor)

3Chf Pff K(Rpg) ' Ho

We display the dependence on R„explicitly since the
field will. vary with the -relative position of the copper
nucleus to the magnetic impurity.

We shall postpone treatment of the dipole coupling
until Sec. V and outline in our present discussion the
method for calculating the isotropic satellite splittings
from the one-electron impurity potential to be
described in Sec. III. Let us denote the electronic
wave functions in the metal by qf ( r ) where we ex-
plicitly recognize that the spatial form of these wave
functions may depend on the spin o. (u denotes the
remaining quantum numbers). Then the contact
term in Eq. (1) will contribute an effective field at
the nth nucleus given by

gH(R„) = —,'
fr x lq"..(R. ) I'y,~fff,p.. . (4)

where P denotes the occupation of the state 4
Since the observed satellite shifts are due to the extra
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field caused by the presence of a nearby impurity we
should. subtract from 5H (R„) the Knight shift of the
pure metal. This gives us

5H, (R„)= —,&ry,t~(R„)
where

&r(R„) = —X [Iq&..( R„)I' —Iq&p..(R.) I')»&

(, E (, E

EF

denotes the extra spin density surrounding the im-

purity. Thus the problem now becomes one of deter-
mining the wave functions q& (R„). (q&p denotes
the wave functions for the pure metal. .)

Let us consider that the effect of the impurity on
the host-metal bands is to give rise to a spherically
symmetric one-electron potential. We shall further
simplify the problem by ignoring the host band struc-
ture and assume free-electron bands. We can then
express the solution outside the impurity region in

the customary manner in terms of spherical functions
and scattering phase shifts

—[cos5& j, (kr) —sin5&»&(kr)) Y& (0, &t&)

(6)
q&k&. —j&(kr) V, (O, &t&)

In general we must still properly orthogonalize these
functions to the copper core states. This is absolutely
essential for the calculation of the anisotropic shifts
in Sec. V. For the Fermi contact term, however,
orthogonalization results primarily in a constant
enhancement factor which can be determined experi-
mentally from the pure-metal Knight shift. In partic-
ular, expressing the satellite shifts as ratios to the
Knight shift in the pure metal allows us to perform
the calculation of the isotropic shifts using free-
electron wave functions.

We now consider the application of a static magnet-
ic field. It is necessary to distinguish between impur-
ities with or without a permanent moment. For the
latter case we simply set P in Eq. (S) equal to the
Fermi function f'(E, T). For the spin-split case we

must further label the impurity spin degrees of free-
dom since the scattering of a conduction electron

(E) = e+~E )

STATE a STATE b

FIG. 1. Density of states in the Anderson model. This
shows the densities for up- and down-spin electrons vs ener-

gy E contribution by the magnetic impurity. The parabolic
curves of a free electron are also shown. State a corre-
sponds to an impurity with a net spin down, hence net spin

magnetic moment up. State b has a net down spin and up
moment.

from an impurity with spin will depend on the orien-
tation of its spin with respect to the applied field.
Thus P becomes P' =P,f(E,T) where P, gives
the relative occupations of the different impurity mo-
ment orientations. We similarly label the electron
wave functions. In our discussion below we shall
simplify the problem by considering only two mo-
ment orientations, a and b, as in the original formu-
lation of the Anderson Hamiltonian (see Fig. l).
The nonspin-split case may be treated within the
same notation with a single value for c,

Application of a field Ho will cause a net spin po-
larization even when there is no permanent moment
due to (i) a difference of the Fermi function
f(E,T) for differ, ent o and (ii) a perturbation of
the scattering levels of the impurity. In the spin-split
case, it also determines the population of the dif-
ferent moment orientations P, . Incorporating the
free-electron wave functions of Eq. (6) we explicitly
display this field dependence of the hyperfine fields

5H&(R„) = , my, j& $——8 (2/ + l)
»&~& p&(Wk)dW&, ([»& (kr) j& (kr)) sin 5f—,(Hp) —2»&(kr)j&(kr)2 . . 2 . . ' 2 c

cl o.

&& sin5f (Hp) cos5f (Hp))P, j (Wk~, T)' (7)

where we have averaged over the angular functions
and where p&( Wk) is the density of states of one spin
for volume O. Since the spin dependence of the
scattering is due to the unfilled d levels of the impur-
ity, it is the d-wave scattering that will essentially
determine 5HI. In the following discussion it suffices
to keep only the d-wave contribution. We will now
consider the two basic kinds of impurities in turn.

A. Spin-split case

The strongly magnetic systems of Cr, M n, and Fe
in copper are expected to belong to this class and are
characterized by a Curie-Weiss temperature-
dependent susceptibility. In this case the effect of
the applied field on the levels is small (see Appendix
A) and we setf(Ek~, T) =,f'(Ek, T), 5, f~(Hp) = 5f»
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The dominant effect of the field will be the r'epopula-
tion of the impurity spin orientations through the fac-
tor P, .

In an obvious notation we write

or

x'H
SH, (K„)= —,'m

" o'(K„)
eff

(9)

SHI(R„)=
3 my, h XP, o'(R„) (8)

C

%e can restate this in terms of the state c = a which
has its moment completely parallel to Ho by incor-
porating the susceptibility per atom of the impurity X~

SH, (R„)= —,~y,a ' (R„)8 (p. &

P sat

where o'(R„) is the spin density for the fully sat-
urated moment and S,ff is the apparent spin of the
impurity: y,hS,ff= p,„,. %e express the final result
in terms of the change in the Knight shift
6K = SHI/Ho, which is obtained by the measured po-
sitions of the satellite, divided by the pure-metal
Knight shift E

hK (R„) X&(T) 5
Xm „p~(W„)dW„[[n2 (kr) —j, (kr)l sin 52 —2n2(kr)j2(kr) sin52 cos52 }f(Wk, T)2 2 ' 2

Seff
(io)

where X,' is the free-electron susceptibility per atom.
Since the Fermi function serves essentially only as

a cutoff for the integral, the entire temperature
dependence of the satellite shifts is primarily con-
tained in the prefactor of the impurity susceptibility.
This point has been discussed in detail by Boyce and
Slichter' and is justified on the basis of experimental
observations. A second point is that x~ refers prop-
erly to the spin part of the total impurity susceptibili-
ty as discussed by Abbas, Aton, and Slichter. " This
distinction is important for impurities that may con-

I

tain both orbital and spin degrees of freedom (see
Sec. IV C).

8. No permanent moment

The details of analysis for this case is presented in
Appendix A using the Anderson model picture of
moment formation. The result is expressed in terms
of a Coulomb repulsion parameter U and the impuri-
ty d-level density of states pq(Er) at the Fermi ener-
gy. From Appendix A we have

AK (K„)/K = 5 [[n2 (krr ) —j2 (krr ) ] sin'52(Er) —2n2(krr )j 2(krr ) sin52(EF) cos52(Er) }

pu(Er) U t pi( Wk)dWk—5 Jl [n2 (kr) —j2 (kr) ] sin 52

B—2n2(kr)j ~(kr) — ( sin52 cos52 ),f( Wk, T)
BE

where [p~/(1 —pgU) ] [1/pi(Er) ] = x~/x,' and E
denotes the energy of the d-wave resonance peak.

The second term dominates the first for those
atoms which are nearly magnetic; that is, for p&U= 1. We shall consider the application of Eq. (11) to
such impurity systems as Cu Co and Cu V which exhi-
bit a nearly temperature-independent susceptibility.

III. MODEL POTENTIAL

The one-electron formulation given by Eqs. (10) or
(11) allows us to compute the copper neighbor
Knight shifts once the impurity potential is given.
This potential is assumed screened to a constant
(zero) for distance r outside a Wigner-Seitz radius,
r, =2.67 bohrs, corresponding to the bottom of the
conduction band. For r ( r, the potential is taken to

V(r) = [ Vz (r) + C + C„,]e (12)

where V„(r) is the atomic potential for the free atom
given by Herman and Skillman. ' ' C gives the dis-
placement of this potential relative to the bottom of
the band. Since V„(r) includes an average spin-
independent Slater exchange potential, C„, explicitly
denotes the spin-dependent d-wave interaction due to
the partially filled d levels of the impurity (+ for up
and down spin, respectively). The parameter n indi-
cates screening within the core region itself.

The physical content of the model is most easily
visualized by examining the net potential for d-wave
electrons shown in Fig. 2. The slightly modified free
atomic core potential gives rise to a wave function in
the impurity region resembling that of the free atom.
The I =2 centrifugal barrier, modified by the screen-
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FIG. 2. Model potential for 3d electrons vs radial distance
from impurity atom. This resultant potential includes the
d-wave centrifugal term and gives rise to an effective barrier
whose transmission characteristics are determined by the
screening parameters in the model.

ing charge, determines the coupling to the host ex-
tended states. C and n allow enough freedom in the
details of screening that both the position and width

of the resulting d-wave scattering "resonances" may
be varied. n is t:xpected to be consistent with
Fermi-Thomas screening contributed by one electron,
lying in the range 0—0.1.

We assume only d-wave scattering is significant in

determining the spin-density behavior. A similar po-
tential may be used to examine s- and p-wave scatter-
ing although there is no a priori reason to expect
identical values of C and o. to apply to all partial
waves.

Once the potential has been parametrized, phase
shifts are calculated throughout the conduction band

by numerically integrating the radial Schrodinger
e uation. The Knight shifts at the neighboring
copper nuclei are computed with Eqs. (10) or ( ).
In addition to providing the near-neighbor spin densi-

ty, an especially important feature of the model is

that it enables an identification of the number of d
electrons on the magnetic atom that is distinct from
that given by the total d-wave screening. Since we

know the I = 2 wave functions 4„2 (r) in the core
region for each 'k, we can compute the d-wave charge
density as a function of I by integrating over the
band

p&3d(&) = $5e pi( +k) d&kllk2+(~ ) I',f ( +'k, T)

(13)

We find that the shape of pq3d(r) for the impurity
within the core region-is the same as that of the free
atom. This results because the core potential is near-

ly the same. Thus, there is I~zeanir~g to the concept of
a number of 3d electrons determined from the scale
factor of p, 3d(I') compared to that of the free atom.
This procedure is demonstrated in the next section.

The three parameters of the model are determined
by the measured isotropic Knight shifts and, in the
case of the strongly magnetic systems Cu Cr, Cu Mn,
and CuFe, by the experimental value of the impurity
spin determined by fitting the observed temperature
dependence of the susceptibility to a Curie-Weiss law

(with a g factor of 2). The susceptibility measured
spin determined this way includes the exchange-
coupled polarization of the extended conduction-
electron wave functions. It is this total S that should
be identified with the difference between the up- and
down-spin scattering phase shifts.

The impurity spin is used to impose one constraint
on the choice of the model parameters. The two
remaining constraints, roughly speaking, are the am-
plitude and phase of the spin-density oscillations
although, as previously mentioned, the spin-density
oscillations in the near-neighbor region are not
RKKY-like. They exhibit instead a more complicated
r dependence (see Sec. VC). Having determined the
parameters, impurity resistivities at high temperatures
for the alloys with low-Kondo-temperature alloys can
be checked via the Friedel formula using the scatter-
ing phase shifts at FF determined by the model. Be-
cause Knight shift data are available on the entire
series of 3d impurities in copper, the comparison of
behavior across the periodic table further discrim-
inates against alternative parametrization. A large
measure of the success of the model is that it pro-
duces solutions that are indeed consistent with all of
these considerations. These points will be elaborated
in the following section as we apply the model to the
experimental data.

IV. COMPARISON WITH ALLOY SYSTEMS

We shall examine several impurity systems in turn.
The strongly magnetic alloys (CuMn, Cu Fe, and
CuCr) will be treated first since in these cases the
most complete data are available, both in terms of
the number of satellites observed and the identifica-
tion of satellites to specific neighbor shells. In these
cases one also has a reasonable basis for the assign-
ment of an impurity spin from susceptibility data.
We then discuss Cu Co and the remaining copper-3d
alloys.

A. Cu Mn

Manganese in copper provides the best illustration
of the model and is also perhaps the least controver-
sial 3d system. The temperature dependence of the
susceptibility is nearly a pure Curie law (the Kondo
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temperature being well below 1 K) and a majority of
measurements agree on an effective moment near
4.9p, a(S,rr= 2.0).' Seven magnetic satellites are ob-
served in this system, four of which are unambigu-
ously identified. '

The parameters of the model are chosen to give a
best (least squares) fit to the data subject to the con-
straint that the phase shifts at FF produce the ob-
served impurity spin. This gives an assignment of
parameters: C =0.9664 Ry, C„,=0.1788 Ry,
o. =+0.05. A comparison of the data with the model
is shown in Fig. 3. The corresponding d-wave density
of states is determined from the energy dependence
of the phase shifts and is sho~n in Fig. 4. Scattering
resonances resembling those of the Hartree-Fock
solution of the Anderson model are clearly displayed.
Note that the positions and widths are determined
entirely from integration of the Schrodinger equation.
Thus in this model the levels for up and down
scattering will have different widths.

The I = 2 phase shifts at EF are 0.15m and 0.95m

for up and down spin, respectively. Neglecting s- and
p-wave scattering gives an impurity resistivity of 2.14
p, 0 cm/at. %.2' The experimental value is 2.76
p, 0 cm/at. % at room temperature. "

Computing the integral of the d-wave charge densi-

ty in the impurity region according to Eq. (13) shows
that it corresponds to an assignment of 4.9 d elec-
trons when compared to atomic Mn (see Fig. 5).
Since the I =2 phase shifts indicate a total d-wave

screening of 5.5 d electrons, this implies a charge of
0.6 electrons in the screening cloud outside the im-

purity atom.
The uncertainties in these results arise from a
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number of different considerations. By using dif-
ferent restricted sets of satellites to compute model
parameters we found a surprisingly small variation in
the results as long as at least four satellites were in-
cluded. The major uncertainties arose from two oth-
er sources —the experimental uncertainty in the im-

purity spin and the magnitude of the hyperfine-
coupling constant.

Estimating a +0.2 uncertainty in p, ,ff and a 10% er-
ror in the hyperfine coupling yields about a +0.2 de-
viation in the stated number of d electrons. Uncer-

FlG. 4. Cu Mn density of d states vs energy above the
bottom of the conduction band for up and down spins. Po-
sitions, shapes, and widths of resonances are determined en-
tirely from integration of the Schrodinger equation. Thus in

this model the resonances for up and down spins have dif-
ferent widths.
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FIG. 3. Cu Mn Knight shifts AIr'/K vs distance from im-

purity: experiment and theory. Positions of the first twelve
nearest-neighbor shells are indicated. Satellites of the fifth
and seventh neighbors are assigned on the basis of intensity
and those shown at the ninth and twelfth are not identified
experimentally. The table giving number of nuclei for each
shell may explain why certain neighbor shells are not observed.
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FIG, 5. Total (angular-averaged) d-wave charge density in

core region of magnetic atom vs radial distance as given by
model for Cu Mn (solid line) compared to five Mn 3d elec-
trons obtained from Hartree-Fock wave functions of the
free atom given in Ref. 45 (dotted line).
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tainties in the hyperfine-coupling parameters obvi-
ously also effect the overall magnitude of the spin-
density oscillations (SDO) determined by the mea-
sured Knight shifts. This can lead to a change in the
assignment of model parameters that effectively
alters the splitting and widths of the scattering reso-
nance displayed in Fig, 3 but by the same factor. The
phase shifts of EF are not appreciably changed. A

rather detailed discussion of the hyperfine coupling
including intraband enhancement effects has been
given by Walstedt and Walker" (see also Sec. VC).

0The 25% smaller coupling that is suggested if K con-
tains a significant orbital component would I»crease24

the width and splitting of the d levels by roughly that
amount but otherwise leave our conclusions the
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same.
The precise position of the down-spin scattering

resonance is also somewhat uncertain. Although sig-
nificant, the contribution to the SDO from the
down-spin scattering is small compared to the contri-
bution from the up-spin scattering nearer the Fermi
energy. This makes its exact location less crucial to
the fit. The presence of the copper d band 2—3 eV
below FF also is more likely to alter our simple pic-
ture significantly in this part of the band;

B. Cu Fe

Iron in copper has been a particularly important
system because of its conveniently accessible Kondo
temperature. The total susceptibility of this system
as well as the spin susceptibility determined by the
temperature variation of the Knight-shift splittings
both show a well-characterized Curie-Weiss behavior
with a Weiss temperature, 0&, near 28 K. Abbas
et al. "have pointed out that such agreement in the
temperature dependence of these two kinds of mea-
surements argues against any significant orbital de-
grees orees of freedom for this system. The effective mo-
ment is near 3.4p, &.

" Five magnetic satellites have
been observed in the Cu Fe systems, three of which
have been identified. 6

Boyce and Slichter' attempted an analysis of these
data using the interpolation formula of Jena and Gel-
dart. That analysis unfortunately contained a sign er-
ror [in their Eq. (27)] which invalidates that analysis.
With the correct sign no reasonable fit could be ob-
tained. The interpolation formula is in any case valid

only for nearly empty or nearly full scattering lev-
els 12

Alloul et al. ' have also performed a calculation of
the Cu Fe Knight-shift data using the Hartree-Fock
magnetic limit of the Anderson model. However,
their analysis was based on a postulated shell assign-
ment which was later shown to be incorrect by the
single-crystal rotation studies. This example demon-
strates the importance of unambiguous satellite iden-
tification to extract conclusions from these data.

FIG. 6. C«Fe Knight shifts Ak'/k vs distance from im-

purity: experiment and theory. Positions of the first twelve
nearest-neighbor shells are indicated. The satellite at the
fourth-neighbor shell is assigned on the b ~sis of intensity
~nd that shown at the fifth-neighbor shell is Irot identified

experimentally.

Assuming a spin only susceptibility (g =2) gives
S = 1.25. We obtain the fit to the data shown in Fig.
6. The d-wave density of states is shown in Fig. 7.
The absence of a down-spin resonance merely indi-
cates that no apparent contribution to the SDO comes
from the down-spin scattering. This may indicate a
resonance deep in the band obscured by the host d
bands. Note that the width of the scattering reso-
nance at EF agrees closely with the results of Cu Mn.
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FIG. 7. CuFe density of d states vs energy above the bot-
tom of the conduction band. The absence of a scattering
resonance for down spin in this figure indicates that only a

negligible component to the total SDO from down-spin

scattering is indicated from the model ~
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The corresponding model parameters are also similar:
o, = 0.05, C + C„,= 1.0784 Ry. The l = 2 phase shifts
at Fq are near 0.5m and m for up and down spin,
respectively, and indicate a high-temperature resis-
tivity of 9.2 p, A cm/at. % versus an 8.7 p, A cm/at. %
measured value at room temperature"

Computing the integral of the charge density as for
Cu Mn gives a distribution corresponding to 7.0d elec-
trons on the iron impurity. Uncertainties arise as in

the case of CuMn, they lead to a +0.2 uncertainty in

this number.
The nearly integral number of d electrons deter-

mined in this way for Cu Mn and Cu Fe strongly sug-

gest an assignment of 3d' and 3d' for these two im-

purities in copper. By applying a configurational pic-
ture to analyze the temperature dependence of the
satellite splittings, Abbas et al. have presented de-
tailed arguments for the same assignments including
the jump of two electrons between Fe and Mn.

C. Cu Cr

There is presently some disagreement on the
correct characterization of this system. Bulk suscepti-
bility measurements of Monod and Schultz' indicat-
ed a Curie-Weiss-like behavior with an impurity mo-
ment near 3.9p, q and a Weiss temperature O~ of
about 1 K. More recent measurements by Vochten
et al. " indicate a temperature-independent com-
ponent to the bulk susceptibility as well as a marked
change in behavior below 12 K. They found the
temperature-dependent component could be fit above
12 K by a Curie-Weiss law with p,,elf= 3.99@,~ and

0& =3.4 K. Abbas et al. " have measured the tem-
perature dependence of the Cu Cr satellites and found
it to exhibit a temperature dependence which fits nei-
ther a pure Curie-Weiss law nor is identical to that of
the bulk susceptibility. This led them to postulate a
configurational model for the Cr impurity along the
lines suggested by Hirst' ' that includes orbital de-
grees of freedom.

Atons has studied the satellite spectrum of Cu Cr at
room temperature and has observed six satellites of
which he positively identifies three. We shall attempt
to fit these data in a manner similar to Cu Mn and
Cu Fe. However, due to the likelihood of an orbital
moment and spin-orbit coupling, there is an ad hoc
character to treating this system within the context of
the present model.

One approach is to proceed as in the case of Cu Mn
and identify the entire susceptibility with the impurity
spin assuming, as had been the original interpretation
of this system, ' there are no orbital degrees of
freedom. This implies an effective spin near 1.5 and
gives a fit to the data shown in Fig. 8 with C
=1.0204 Ry, C„,=0.0521 Ry, o, =0, The corre-
sponding density of states is shown in Fig. 9. Note
the similarity of resonance widths to those of Cu Mn
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FIG. 8. CuCr Knight shifts AK/K vs distance from im-

purity: experiment and theory. Positions of the first twelve
nearest-neighbor shell are indicated. The satellites at the
seventh-neighbor shell is assigned on the basis of intensity;
that shown at the second neighbor is tentatively assigned on
the basis of its narrow linewidth. (Whether or not this
second-neighbor assignment is correct, the second-neighbor
shift is known to be small. ) The satellite shown at the
fifth-neighbor shell is i~o( identified experimentally.

and CuFe. The phase shifts at EF near 0.2n and
0.8n- for up and down spin, respectively, correspond
to an impurity resistivity of 6.4 p, fl cm/at. % versus
the measured value of 5.5 p, A cm/at. %."

If this system contains both orbital and spin de-
grees of freedom, the resulting levels will be split by
the magnetic field and by spin-orbit coupling. At
high temperatures the spin-orbit coupling can be
neglected and the spin and orbital susceptibility
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FIG. 9. CuCr density of d states vs energy above the bot-
tom of the conduction band for up and down spins.
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separated. If, as suggested by Abbas and co-workers,
we further assume that the spatial dependence of the
Knight shift depends only on the spin character of
the impurity, a one-electron picture could perhaps still
be applied. Their analysis then indicates that this ef-
fective impurity spin would have a value near 1.8
(this is the value of spin that includes the polariza-
tion cloud of the conduction electrons).

Such a larger value of spin actually slightly im-

proves the fit to the measured Knight shifts. Howev-
er, the large uncertainty regarding the impurity spin
together with the somewhat poorer quality of fit
shown in Fig. 8 makes the assignment of model
parameters somewhat less certain. In spite of this,
the number of d electrons determined by the model
is 4.2+ 0.3 and shows less variation. This is con-
sistent with a 3d4 configurational assignment for the
Cr impurity.

D. Discussion of other systems

Although different atomic potentials, V&(r), were
incorporated to generate the model wave functions
for each of the alloys discussed so far, a single poten-
tial characteristic of the 3d impurity, modified suit-

ably by the two screening parameters, is adequate to
describe the Knight-shift structure of all three sys-
tems. Indeed, the model can be used in this way to
generate a relation between the phase shifts at EF and
hK/Eo at the near-neighbor host atoms that ac-

counts reasonably well for all three impurities. Fig-
ure 10 displays this relation for the first four neigh-
bors. The vertical scale is the value of the integral in

Eq. (10) (with a minus sign) and these curves were
obtained by varying the parameter C in the model us-

ing a Mn potential for V& (r) and a fixed value of
n =0.05. Curves obtained in this way from other

X'
Xm F(B )

Xs eff o
(14)

for a magnetic impurity and [neglecting the first term
in Eq. (11)I by

(15)

transition-metal atomic potentials or other values of
n are nearly indistinguishable from those in Fig. 10
except for a multiplicative scale factor of order unity.
Thus one finds the observed trends in the Knight-
shift structure as one moves across the Periodic Table
mirrored in these curves as the scattering levels more
in congruence with the changing value of spin and
number of d electrons.

It is of interest to examine the behavior of some of
the remaining alloy systems in this context. Satellites
have been observed for all of the 3d impurities in

copper. CuCo has been studied both in powders and
single-crystal samples and exhibits three magnetic sa-
tellites, two of which have been identified. The
remaining alloys have been studied in powders only
yielding two satellites' for Cu V and one each for
CuSc, Cu Ti," and CuNi. " Impurity susceptibility
measurements are available for all of these systems
with the exception of CuSc. '

None of the susceptibility measurements shows a
marked temperature dependence. This may indicate
a very high Kondo temperature (of, say, greater than
1000 K) or the lack of a permanent moment. Alter-
natively, it may indicate an impurity ground-state
configuration that is nonmagnetic.

We shall examine the first two possibilities for the
CuCo system within the context of the model by ap-

plying Fig. 10 to fit the observed satellites using Eqs.
(10) and (11) in turn. That is, the Knight shifts will

be given by

-3
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FIG. 10. Contribution to 6K at first four-neighbor shells
vs d-wave scattering phase shift at FF for an up-spin elec-
tron. The vertical scale and application of these curves to
compute Knight shifts are explained in the text.

for an impurity with no permanent moment. Here
F„(5 ) denotes the curve for the nth neighbor shell
displayed in Fig. 10 and B is the phase shift 52 (E+).
From Appendix A we have

77 9
9E 5U 85

with 5+=5 . Furthermore, if one identifies the mea-
sured susceptibility with Xq, a value of pqU may also
be estimated for the spin-induced case by using Eq.
(A10) and the results of the model to calculate pq,
the value of the d-wave density of states at EF. We
take p~(EF) =0.146 eV '/atom.

Because of the uncertainty in the spin susceptibility
(due to the possibility of orbital magnetism) and a
+30% uncertainty in the overall scale factor depend-
ing on details of screening, we consider agreement to
within a constant factor of 2 to be satisfactory. An
analysis for CuCo using either the spin-split or spin-
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TABLE I. Comparison of Knight-shift data for Ti, V, and Co impurities in copper with induced-moment model calculations.

Special assumptions and explanation of parameters are explained in the text.

Impurity

Assumed levels
(phase shift at EF) pdU

Largest calculated
satellites (shell)

Observed
satellites (shell)

Co

Co

32

96

258

spin split

0.3m

0.4m

0.85m

0.69m, 0.97m

0.40

0.72

0.984

—0.11 (2)

-0.41 (i)
+O.is (3)

-5.1 (1)
+3.3 (2)
-0.8 (4)

—0.92 (1)
+0.50 (2)
—0.19 (3)

—0.23

—0.65
+0.22

—1.37 (1)
+0.74 (2)
—0.28

—1.37 (1)
+0.74 (2)
—0.28

induced description yields a fit consistent with its sa-
tellite structure and an assignment of parameters in-

dicating eight d electrons (see Table I). The magni-
tudes of the calculated satellites and apparent value
of pd U, however, suggest that Cu Co is best described
as a spin-split system with an effective spin near 0.7.
(This conclusion is only valid if the impurity suscepti-
bility does not contain a large orbital component. )

If we assume integral configurations for Cu Ti and
Cu V of 3d' and 3d, respectively, and a screening
cloud charge of roughly one electron outside the im-

purity (similar to Cu Cr) we may use Eq. (15) to try

to predict the satellites of the two systems. The
results, also displayed in Table I, indicate there are
no apparent inconsistencies in treating Cu Ti and
Cu V as spin-induced impurities with an integral
number of d electrons.

V. CALCULATION OF OTHER EXPERIMENTAL
QUANTITIES

A. Anisotropic hyperfine shifts

K(R„)lp = [It +Alt (RN)]5@ +EICD(RN) ~gk (16)

consisting of the pure copper Knight shift, K, the
isotropic shift b K due to the spin-density oscillations
(SDO) as described in Sec. II, and the anisotropic di-

Important additional experimental data on the mag-
netic structure surrounding the 3d impurity in copper
comes from the anisotropic components of the
Knight-shift tensor obtained in the single-crystal mea-
surements. Let us denote this part of the tensor
by hKD where we write the total Knight-shift tensor
in component notation as

polar component. From Eq. (I) we have

M(r)sK, A, =„ 3[M(r) r r d, (17)
f

M(r) 3[M(r) r]r
f r'

where the integral goes over the atomic cell contain-
ing the Cu nucleus, R„ is the vector from the center
of magnetic atom to that nucleus, and X~ is the mea-
sured susceptibility of the atom. The first term in
Eq. (18) is sometimes referred to as the (direct) di-

pqle term and the second as the pseudodipolar term,
although both terms arise from the dipolar part of the
hyperfine Hamiltonian in Eq. (1).

Since the impurity susceptibility Xq is known, an
experimental value for the cell contribution in Eq.
(18) is readily determined from the measured values
of IKD. These data are available for three neighbors
each of Cu Mn and Cu Cr, two neighbors of Cu Fe,
and one of CuCo. The results are tabulated in Table
II.

The cell contribution (or pseudodipolar term) can
be calculated directly from our model wave functions.

where the integral is over all space and M( r )
denotes the total electron-spin magnetization density
and r is a vector from the copper nucleus in question
to a point in the magnetization cloud.

There are two regions of space that give a large
contribution to the integral —the region at the mag-
netic impurity, where IV[ is large, and the region near
the Cu nucleus in question, where I/r' is large.
Thus we approximate Eq. (17) by

XgHp 3(XdHp' R„)R„
R3 RS
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TABLE II. Comparison of the experimental and calculated anisotropic Knight-shift components.
The experimental values are taken from Refs. 6—8 with the direct dipole contributions subtracted.
There is an ambiguity in the assignment of the measured principle axes to crystallographic direc-
tions which generally allow two possibilities for each site. In cases where there is clear agreement
between experiment and theory the z axis in the experimental assignment is either the radial direc-
tion or close to it.

Neighbor
Ce11 contribution (direct dipole subtracted)

Measured Calculated

Cr: 1st

3rd

4th

+1.76 —1.76 + 0.08
—0.82 or —0.82+ 0.08
—0.94 +2.58+ 0.08

—0.16 + 0.05
+0.08 + 0.05
+0.08 + 0.05

+0.155 —0.178 + 0.010
—0.082 or —0,082+ 0.010
—0.073 +0.260 + 0.010

+1.28
—0.64
—0.64

—0.20
+0.10
+0.10

+0.17
—0.08
—0.08

Mn: 2nd

3rd

4th

—0.303 + 0.025
+0,152+ 0.025
+0.152 + 0.025

—0.041 —0.265 + 0.010
+0.058 or +0.058+ 0.010
—0.018 +0.206+ 0.010

+0.180 —0.203 + 0.015
—0.137 or —0.137+0.015
—0.043 +0.340 + 0.015

—0.57
—0.28
—0.28

-0.05
—0.02
—0.02

+0.23
—0.12
—0.12

Fe: 2nd

3rd

—0.134 + 0,030
+0.067 + 0,030
+0.067 + 0.030

—0.35 + 0.05
+0.23 + 0.05
+0.14 + 0.05

—0.36
+0.18
+0.18

+0.23
—0.12
—0, 12

The factor 1/r3 makes the dipolar coupling sensitive
to the local details of those wave functions. Thus the
free-electron wave functions employed in Sec. II do
not suffice, and it is necessary to orthogonalize these
to the copper core states. Details of these calcula-
tions are given in Appendix 8 and follow along lines
similar to those given by Kohn and Vosko" for cal-
culation of the quadrupole coupling near nonmagnet-
ic impurities. These calculations are entirely straight-
forward and, as they contain no adjustable parame-
ters, form a valuable independent experimental check
on the results of the model. Our results are tabulat-
ed along with the experimental data in Table II.'4 In
most cases we account for the axial components of
the observed Knight-shift tensor rather well (the only
serious discrepancy occurs at the third neighbor of
Cu Fe).

The large nonaxial character of the Knight-shift
'tensor for CuMn and Cupe is direct evidence of the
nonuniform part of the lattice potential. Boyce and
Slichter have suggested it may arise from a crystal-
field splitting of the d-wave scattering resonances. "
%e have investigated this approach by incorporating
a small crystal-field parameter in V(r) [Eq. (12)] but
find that although this will give rise to a nonaxial
coupling, the asymmetries can be at most a few per-
cent, much smaller than actually observed (see Ap-
pendix 8).

An alternate explanation is that if significant
scattering due to the impurity occurs deep in the
band, multiple scattering may arise from the copper d
levels, an effect we have neglected. Thus, since the
impurity scattering is spin dependent, the Cu secon-
dary scattering will produce nonspherical spin-density
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oscillations. Along these lines we note that for CuCr
where neither "resonance" is expected to lie deep
within the band (see Fig. 8) the data show a Knight-
shift anisotropy that is, indeed, almost purely axial.

The discrepancy at the third neighbor of Cu Fe is
harder to reconcile. We, note a recent measurement
in the Cu Fe system at low temperature has suggested
a different origin for the satellite splittings in this sys-
tem than the dipolar hyperfine coupling alone. " On
the other hand, a large distortion from spherical SDO
is certainly apparent at the Cu Fe third neighbor from
the experimental data; perhaps the lack of agreement
with our simple calculation for this system is not
surprising.

8. Electric quadrupole couplini

Neighbor
Quadrupole moment v,, (MHz)
Measured Calculated

Cr: 3rd
4th

Mn: 2nd
3rd
4th

0.198+0.003
0.094+ 0.005

0.281+ 0.004
0.106 + 0.003
0.187 + 0.004

—0.99
—0.30

1.26
—0.43
—0.17

TABLE III. Quadrupole splittings for CuCr and CuMn
data from Refs. 7 and 8 compared to that calculated via Eq.
(17) from the cell. contribution to the anisotropic Knight-
shift tensor. The sign of the experimental value of v» is not
determined.

Electric quadrupole couplings have been deter-
mined for a variety of the copper-3d systems at
specific neighbor shells. In particular, Aton has
determined the complete quadrupole tensor for three
neighbors each of CuMn and CuCr. Quadrupole
couplings are, in general, quite difficult to calculate.
Stakelon and Slichter have pointed out that there ex-
ists a basic relationship between the d-wave electron
contribution to the quadrupole coupling and the
pseudodipolar hyperfine coupling

XdHp I v ( ) v (+)
S,ff 2 2.79x 10 '

where v„(+) and v„(—) refer to the separate contri-
butions to the quadrupole couplings from the up- and
down-spin d-wave conduction-electron scattering,
respectively. As written, their formula relates SHpp
in gauss directly to v„ in MHz.

Equation (19) ignores contributions to the electric
field gradient (EFG) from the s- and p-wave scatter-
ing as well as strain effects due to the mismatch of
the impurity size to the host lattice. Sagalyn and
Alexander have shown that, in addition, the region
outside the impurity "cell" contributes rather signifi-
cantly to the EFG, often as much as from the impur-

ity region itself for the near-neighbor shells, as a
result of antishielding enhancement. Thus order of
magnitude agreement is probably all that can reason-
ably be expected from Eq. (19) and this is verified by
calculation. Table III shows results for CuCr and
Cu Mn.

Although more detailed calculations are clearly
needed to obtain a quantitative comparison with the
data, this simple calculation indicates that the distor-
tion of the lattice around 3d impurities in copper is
not large. Indeed, estimates of this distortion for
nonmagnetic fourth-row impurities in copper from
x-ray data provides a correction to the nearest-
neighbor distance of only one or two percent and a
correction to the electronic component of the EFG at
the first neighbor of less than 10%.

C. Asymptotic behavior: NMR
linewidth studies

d, E(R„) Xd(T)
l sin Sly —Sl

K X,',ff 8m'

cos(2kFR„+ P)
R„3

(20)

where 52+ and 82 are the phase shifts for d-wave
scattering at Eq for up and down spins, respectively,
and where @= S2++ Sl . Thus, in the asymptotic
limit, the spin density is completely characterized by
the phase shifts at F~.

An important question is at what distance Eq. (20)
becomes valid. %'e can illustrate this using the
model determined spin density for CuMn (see Fig.
2) cast into the form

o(r) =A (r) cos[2kFr. + $(r) ]/r' (21)

where

lim A (r) =A = ', sin(S2++Sl )
(S, )

I' o off 87T

in the asymptotic limit.
In Fig. 11 we plot A (r)/A and P as a function of

r for Cu Mn. The variation of both parameters is
seen to be considerable for r & 50 bohrs or for the

We finally should comment briefly on the connec-
tion between our results which are based strictly on
the near-neighbor behavior of the spin density and
the asymptotic behavior discussed by other workers
based on studies of the host copper NMR linewidth
as a function of magnetic impurity concentration.
We shall restrict this discussion to the "spin-split" al-
loy systems.

In the asymptotic limit Eq. (10) assumes the famil-
iar RKKY form
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TABLE IV. Comparison of broadening coefficient data
from Ref. 26 with that calculated from the spin density
predicted from the model in the asymptotic limit. The
numbers in parentheses are for the smaller hyperfine cou-
pling suggested by some workers. Units for the broadening
coefficient & are given in kG (impurity concentration)

1.0—

0.9—
8

0.8—

07-
0.6—

0.5—
I 2 54 10 20 50 ~00

t 4 t i
10 100

Radial Distance From impurity (bohr)

1000

Alloy system

Cil Mn

Cu Cr
Cii Fe

expt.

178+ 20
136+ 15
240+ 50
450+ 60

C tlc.

217 (163)

467 (350)
590 (442)

Assumed p,,ff

49

3.9
3.4

FIG. 11. Amplitude and phase of the spin density for
Cu Mn vs radial distance from impurity showing the ap-

proach of the spin density to its asymptotic behavior. The
radial distances to specific neighbor shells are indicated.
Note the large distance over which the spin density demon-
strates "preasymptotic" behavior.

first 100 shells of neighbors.
In this region the SDO have a significantly smaller

amplitude than is predicted by the asymptotic formu-
la. At very large distances the amplitude will also be
decreased due to various sources of scattering of the
conduction electrons which lead to an exponential
damping of the RKKY oscillations. This effect has
been estimated in several cases for copper alloys and
indicates a damping length on the order of a few
hundred bohrs. "'

A detailed discussion of the interpretation of NMR
line shape data from RKKY and dipolar broadening
has been given by Walstedt and Walker'9 (WW), Al-

loul, Darville, and Bernier~6 (ADB), and others.
WW find a simple relationship between the measured
half-width at half-height, (hH), of the copper NMR
line and the amplitude of the hyperfine-field oscilla-
tion Ahf

with X,'=1.55 x 10 ' emu/atom, and where 0
denotes the atomic volume, agrees numerically with
that employed by WW except for the question of an
orbital component to It'0 (we have assumed no orbital
component),

We calculate the so-called broadening coefficient,
W = (H)/c (S,), as given by Eqs. (21) and (22) and
compare it in Table IV with measured values of ADB
for these systems. Since the broadening does not
depend on the phase of the SDO, it is completely
determined by the difference in scattering phase
shifts for up and down scattering, i.e., by the impuri-

ty spin.
These predicted values are in general somewhat

higher than those observed although generally in

agreement, particularly for the 25% smaller hyperfine
coupling indicated by Walstedt and Yafet. '4 The un-
certainties of the measured and predicted values are,
in any case, rather significant. A prediction of the
too large a broadening coefficient is consistent with

the damping of RKKY oscillations at large distances
and the smaller amplitude of the SDO in the
preasymptotic region.

(6H ) = 16m A „rc/3a' (22) VI. CONCLUSIONS AND DISCUSSION

where c is the impurity concentration and a is the fcc
lattice constant.

A hf is related to the amplitude A of the spin density
defined in Eq. (21) via the hyperfine-coupling con-
stants. There is some lack of agreement among dif-
ferent workers as to the precise value of this coupling
depending on the assumed values of the density of
states at FF for conduction electrons, the spin suscep-
tibility X,' and Knight shift K of the copper host, and
inclusion of host band exchange enhancement fac-
tors. The hyperfine coupling used to calculate satel-
lite positions in Sec. IV,

The model put forward in this paper has been
shown to be very successful toward describing the
near-neighbor Knight-shift data for the iron-group
impurities in copper. Although some of our results
do not differ in certain respects from other attempts
to describe specific systems such as Cu Mn, the
present model is particularly useful because it: (i) ac-
counts for the entire series of 3d impurities reason-
ably well within one simple theory, including cases
where the impurity does not possess a permanent
magnetic moment, (ii) accounts quantitatively for the
anisotropic Knight-shift data of these alloys, (iii) al-

lows for a unique identification of the number of 3d
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electrons which supports arguments for a configura-
tional picture of these impurity systems, and (iv) pro-
duces results that are reasonably consistent with a
wealth of existing experimental data including impur-
ity resistivities, quadrupole coupling, and NMR line-
broadening measurements. In this context we also
wish to mention one recent measurement which pro-
vides additional verification of the results for Cu Mn.
Through de Haas-van Alphen measurements of this
system, Hendel ' has been able to obtain directly the
scattering phase shifts at F~ for up- and down-spin
electrons. His analysis gives 5t(Eq) =0.187r and

51(EF ) = 0.88n to within 1 0% accuracy. The proxim-
ity of particularly the up-spin phase shift to our de-
duced value of 0.15m is a rather gratifying result.

In spite of such success, a couple of shortcomings
should be discussed. These concern the band struc-
ture of the host and the configurational character of
the impurity. The former, it is believed, is largely
responsible for the remaining discrepancies in the fit
of the SDO data to the theory and for the nonaxial
character of the anisotropic shifts. Both kinds of
discrepancies exist for even the presumably simple
impurity moment system Cu Mn. A more complete
calculation along the lines presented by the current
model which includes secondary scattering from the
copper d bands could presumably account for these
differences.

The latter problem, that of configurational degrees
of freedom, presents a more serious difficulty. The
simple approach presented for Cu Cr is not entirely
satisfactory. The complex behavior that may arise
when the mixing interaction is of the same order as
some of the configurational splittings are totally
beyond the scope of our model and have been dis-
cussed to some degree by Cogblin and Blandin, 4'

Hirst, ' ' Barnes, ' and others. Proper theoretical
treatment of such systems remains one of the out-
standing problems in understanding the 3d irripurity
in metals.

Evidence for the configurational nature of these
systems, is presently rather compelling. ""Our own
determination of nearly integral assignments of 3d
electrons supports this viewpoint. One immediate
question often arises, therefore, regarding how to
reconcile such configurational models, with energy
splittings often much less than 0.1 eV for the impuri-
ty atom, while also subscribing to a picture of 3d
scattering resonances which indicate, in our model as
well as those of previous ~orkers, an s-d exchange
interaction of 1 —3 eV. To address this question in
part we argue along the lines that have already been
put forward by Hirst but probably need to be re-
emphasized.

The widths of the scattering levels represent the
problem as viewed by the conduction electrons. We
may visualize that these hop on and off the impurity
atom and that this mostly takes place in the 4s and 4p

states. For an electron to hop onto a 3d state, in
fact, is an exceptional event and it corresponds to a
change in the 3d configuration. Thus it hops off very
rapidly which results in the large linewidth. In the
one-electron model, the ability of an electron to
penetrate and then depart is determined by the tun-
neling barrier in the d-wave potential.

From the viewpoint of the impurity, on the other
hand, the 3d configurational ground state is very long
lived. When an electron hops on, it causes a preces-
sion of the total angular momentum but, as these
events are rare, this perturbation of the 3d configura-
tional ground state is small. Indeed, the effect on the
3d ground-state levels is on the order of kT&, which
is quite small for Mn, Fe, or Cr in copper. It then
makes perfect sense to discuss configurational spin-
orbit splitting which may be on the order of only a
few tens of wave numbers.

To properly reconcile these points, a more com-
plete many-body treatment of these systems is clearly
needed. However, the general applicability. of the
present model to account for a wide range of experi-
mental properties of first-row transition-metal impuri-
ties in copper seems amply demonstrated.
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APPENDIX A: SATELLITE SHIFTS FOR IMPURITIES
POSSESSING NO PERMANENT MOMENT

(n ) = (5/n)5 (Ef). (A2)

where 5 (EF) denotes the d-wave phase shift at the

In this appendix we detail the calculation of satel-
lite shifts for impurities that are not spin split, but
which will have an induced moment in the presence
of the applied field Ho. We treat this problem within
the notation of the Hartree-Fock solution to the
Anderson model' and denote the positions of the
conduction-electron-scattering resonance peaks by

E =Eo+U(n )

where Eo is the unperturbed resonance position, U is
the Coulomb repulsion parameter, and (n ) is the
occupation of the level of spin o- given by
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Fermi energy. %'e let p denote the extra density of
d electrons for spin a at E~.

Application of Hp causes a net spin polarization
due to the difference in the Fermi function f of two

electrons in the same spatial state but of opposite
spin. For convenience in the calculation we adopt
the notion of a spin-dependent Fermi energy

Thus,

p (SEr —SEO)
5 n

1 —
p U

For the nonspin-split case 5E0= 0. Also

p+ = p
—= pd. Therefore,

f(W„,Er) = f'(Wk (EfyffH'om ))
=—.f(Wk, EF ),

where

EI: = EI.- y rfhHom (A3)

5(n ) = —y, rrtHpm pdU/(1 —pgU) (A4)

Since there is zero average moment for Ho = 0, the
average spin magnetic moment per impurity, (p,,),
when the field is applied is

That is, this approach leaves the electron energy in-

dependent of spin orientation and absorbs the spin-
dependent energy into E&.

We next compute the change in (n ) due to Ho
From Eq. (Al) we write

SE =SEp+ US(n )

(p,, ) = Xy,tm—5(n )

]=
2 y~yer pdHo/(1 paU)

which gives us the usual result for the impurity spin
susceptibility

and also have Xd =
p y.y.fr t pd( 1/(1 p, U)]—(AS)

5(n ) = p SEF pSE—
where SE~ = —y, ffhm Ho.

Since Ho should produce nearly no change in the
number of d electrons, we postulate

5(n+) +5(n ) =0 .

The enhancement factor, 1/(1 —
pd U), becomes in-

finite as pd U l, representing the occurrence of
spontaneous magnetization.

To compute SHI(R„) as in Eq. (7), we omit "c"

and the sum over "c," and replace the Fermi function
using Eq. (A3). This gives

SHI(K„) = , rry, t g——m~Jr p—~( Wk)dWk l[n2 (kr) j J (kr )] sin 52~(Hp)

—2n2(kr) j2(kr) sin52 (Ho) cos52&r(H0)]f ( Wk Era)

We next expand 52 (Ho) and f ( Wk, E& ) in the magnetic field using Fqs. (A3) and (B4), keeping only terms

linear in Ho

f ( Wk, EF ) =f ( Wk, Er ) + ( &f/r) Wk )y, rr tH
p,

m

To good approximation 8 f/8 W„=—5( Wk —Er) and hence we get

SHr(R, ) = —, m —'y, y,rrt Ho [(n2 —j2') sin'5—2(Er) —2n2 /2sinS, (Er) cos52(Er)p, (Er)]

pg U t'EF
p((Wk) (n2 —j2 ) sin 522 2 B ~ 2

] —p~U 0 BE

—2n 2,j2 ( sin52 cos52) d Wk
B

BE
(A7)

To get our final result given by Eq. (11) we note
that

jt'= —,'mly(R„) l,' x, ,

where

1

X:= y. , y. r t'p (EF)—(Ag)

I

and that for free electrons we have

nip(R„) lg, = 1 .

As discussed in Sec. II, by calculating both the satel-
lite and pure-metal shifts in the free-electron approxi-
mation and taking the ratio, we should arrive at a

reasonably accurate result.
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Evaluation of the derivatives in Eq. (A7) or Eq.
(11) is most easily carried out using

8 & 9 ~ 8
BE U B(n ) SU BB

(A9)

Furthermore, the prefactors can be cast into a more
recognizable form by noting that from Eqs. (AS) and
(A8) we have

~d Pd

x,' p((EF)(1 —p»U)

which contains cross terms between different atomic
states, I and I'. However, in the sum over p only
the atom p =n containing the nuclear moment p, &
will appear and we may drop the p summation. This
gives us

H, (l) = X (r ~H, ~r' )

a' r„af(E, , T)
A' a err n'

t

APPENDIX 8: CALCULATION OF
ANISOTROPIC SHIFTS

aa r„a „ f (Ea, T)
Np Wp

In this appendix we outline the method for calcu-
lating the effective dipole field, SHD, arising from the
cell region surrounding the copper nucleus itself, as
defined in Sec. V A, Denoting the second term in
Eq. (1) by Xo we proceed as in Sec. II and define the
apparent nuclear-spin Hamiltonian by

—p~ BHo (R„)= (Im, ~X»( I)
~
imp ) ',

where

X»(I) = X (ao iX'o(ao) f(E,T)

l~o) = e.. Xa..r—, l&p ~)1

N

where ~Fp o ) refers to the I'th atomic core function
on the pth atom, p represents the free-electron
plane-wave state, and the a coefficients are the over-
lap integrals. A' is the normalization

(B2)

&."~&.~=1 —Xaa~rpa'~rp .
rp

In combining Eqs. (Bl) and (B2) the terms that are
quadratic in the overlap coefficients will dominate in
the "cell" region (see Sec. V) and we obtain

(uo iXo i ocr )

X a' r, a „, (rpo ~X ~I"po),o(B3)
+~~~~ rp ip

For purposes of convenience with the notation we
have not included the superscript "c" as in Sec. II to
label the moment orientation but rather incorporate
the appropriate susceptibility factor in our final result.
Equation (Bl) therefore really describes the fully sat-
urated "a" configuration. ~lm&) denotes the
nuclear-spin wave function.

The wave functions ~oo-) and ~Po. ) will denote
orthogonalized plane-wave states in the presence of
the impurity and for the pure metal, respectively.
That is

(B4)

Note that (I'o. ~Xo ~

I"o ), which represents the matrix
element of the dipole Hamiltonian evaluated between
the copper core states I and I", is independent of the
particular site n.

The core functions are taken from Hartree-Fock
calculations for atomic copper ' where I' = (IVLM)
will denote the usual atomic quantum numbers.
n = (klm) labels the free-electron states. Of the non-
vanishing terms, those with I' =I"= (3pM) are found
to give the largest contribution to the dipole coupling.
The next largest comes from the I = 3p, I"' = 2p like
terms followed by the 2p-2p, 3d-3d, and 3d-A' s
terms. It is sufficient to keep only the 3p-3p and
3p-2p cross terms for a reasonable estimate of X»(l).

We further illustrate the method by evaluating 3p-
3p cross term. It is convenient to separate out the
spin dependence of the copper core functions and de-
fine

X»(I S) = $ (X») MMAMM(R, ),
a, M

where

(X») MM (3pM I X» I3pM ) (BS)

For p core functions, X»(I,S) is then easily expressed
in terms of the nuclear- and electron-spin operators,
e.g. ,

where 6 represents cyclic permutation terms and
(I/r') is the expectation value of I/r' for the 3p
atomic copper wave function and we take z as the
direction from the magnetic impurity to the copper
nucleus in question.

The term AMM(R„) represents the quadratic factor
in the a overlap coefficients [the term in brackets in
Eq. (B4)1 and can be expressed in terms of the

(X»)» = y, &„A (1/r ) &
(4I,S, —2I„S„—2l&S&) + 6

(B6)
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TABLE V. Relative contributions to anisotropic Knight-shift tensor component AKai,' a at
Cu Mn fourth neighbor from terms in Eq. (B4).

3p -3p 3p -2p

t

A~ =Ayy

( I/ 'i)

—2.50 x 10 4

+1.22x 10 4

0.19x 10 4

—0,03x10"
83.0ao 3

—12.6 x 10 6

7.0x 10 6

+1,3x10 6

—03x10 6

—224ao

Contribution
to 5/fai;,"

7.38x 10 4 (—1.04x10 4) x2

model wave functions given by Eq. (6) as

dip, ( IY„)('~([i (R„,k ) cos&2a(k) —!Vm™(R„,k) sin52 (k) ]' —[i™(R„,k ) ]']f'( I4'„, T) (B7)

where J and N are the overlap integrals of the ap-
propriately normalized spherical function j 2(kr) Yq

and n2(kr) Y2 with the copper 3p core function
i3pM o.) located at R„. These integral functions are
readily evaluated using the Lowdin alpha expansion.
The coefficients gM come from integrating the angu-
lar functions and are replaced by a simple Kronecker
delta when the same axis of quantization is chosen
for both m and M.

Components of the Knight-shift tensor are ob-
tained from Eq. (BS) by considering the application
of a static field and evaluating Hq(I, S) between the
appropriate spin functions. The z axis joining the im-
purity to the copper nucleus is a principle axis of the
tensor and it is axially symmetric about this axis. In-
corporating the moment polarization factor,
x,'/y, tS,ff we obtain the result

I

from each of the core terms in Eq. (B4). Results of
these calculations of the Cu Mn fourth neighbor (us-
ing the model potential parameters determined in
Sec. IV A) are tabulated in Table V to indicate the re-
lative contributions of the 3p-3p and 3p-2p cross
terms in Eq. (B4). Note that the tabulated values of
the anisotropic shifts in Sec. V have been divided by
the pure copper Knight shift, It:, since the experi-
mental data are given that form.

This formalism is easily adapted to incorporate a
crystal-field dependence of the model by letting the
phase shifts 52 depend on m in Eq. (7) (that is, on
the symmetry of the scattered wave with respect to
the cubic axes of the crystal). In that case A A A»
and one indeed obtains a nonaxial tensor. The asym-
metry parameter q~ is given by

1
( —,) 3p $m —,(4A„—2A —2A ) + e1

eff CT

(Bg)

For the final result, one must sum up the contribu-
tions to the components of the Knight-shift tensor

However, as is apparent from the relative magnitude
of 3 to 3„ in Table V, the maximum size crystal-
field splittings one might expect gives an asymmetry
for the fourth neighbor of roughly 5%. Thus this ap-
proach does not account for the 52% measured asym-
metry of the Cu Mn fourth neighbor.
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