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1
We examine a model of spin-

2
vectors randomly distributed and interacting via a+ r law

with random signs. Here r is the interspin distance. A mean-field theory is derived from the
variational principle. Strongly coupled pairs, trios, and aggregates of more spins appear as more
complicated single spins. The concept of local fields, including anisotropy fields emerges natural-

ly. Statistics of local fields and metastable states are estimated. The magnetic susceptibility and
the remanent magnetization at low temperatures are studied. Their time dependence and

dependence on the applied field are calculated approximately.

I. INTRODUCTION

Spin-glasses which have been studied most exten-
sively in the laboratories are magnetic ions randomly
distributed in a host metal. The classic example is a
system of Mn ions in Cu. Recent experiments have
accumulated a vast amount of data on the low-

temperature properties of spin-glasses. ' ' Among the
many interesting phenomena observed are the
remanent magnetization (which remains after the
external field is turned off) and their extremely slow

decay, the slowly varying susceptibility, hysteresis,
etc.

Theoretical investigations of these time-dependent
phenomena in spin-glasses have been lagging behind
the experimental work. Because of the complexity of
the system, studies which are most relevant to obser-
vations often have been numerical or partially nu-
merical in nature. Monte Carlo simulations with Is-
ing spin-glass by Kinzel and others4 demonstrated
qualitatively remanent magnetizations and other
phenomena resembling those observed empirically.
More recently Dasgupta, Ma, and Hu' showed that,
again for an Ising spin-glass model, the low-

temperature phenomena observed in Monte Carlo
simulations can be adequately explained by the
dynamics of small spin clusters in a frozen back-
ground. Each cluster by definition has a metastable
state and a stable state. The statistics of the barrier
heights and energies of the metastable states were
obtained numerically and also by analytic approxima-
tions. From the statistics, remanents, susceptibility,
and other quantities were calculated.

The Ising spin-glass model used in Refs. 4 and 5 is
very different from the real spin-glasses in which the
spins are quantum-mechanical vectors. Furthermore,
the spin-spin interaction in real spin-glasses such as

MnCu is the long-range Ruderman-Kittel-Kasuya-
Yosida (RKKY) interaction, 6 which is not well
represented by the Gaussian-distribute'd nearest-
neighbor interaction of most Ising spin-glass models.
Walker and Walstedt' have studied a more realistic
model with RKKY interaction by numerical simula-
tion. They have determined the ground-state spin
configuration and the spin-wave spectrum. They
have obtained all major results except dynamic
phenomena involving metastable states. Very good
agreement with experiments was found.

It is our purpose here to extend the simple physical
picture of small clusters of Ref. 5 so as to include the
long-range force, and the quantum and vector nature
of the spins. This work is exploratory and qualita-
tive. No numerical and quantitative calculations like
those in Ref. 5 are attempted here. We study the
low-temperature time-dependent properties of a
model of randomly distributed spin —, 's. The spin-

spin interaction is —J„"s; s, with

JJ ~ + 1/I r; —rJI'

where the sign is randomly assigned. This is not
quite the RKKY interaction which has an extra cos
2kF ~ r; —r, ~

factor with kF being the Fermi momen-
tum of the host metal electrons.

It turns out that this model is far more involved
than the Ising spin-glass model although some of the
basic features remain. The analysis of Ref. 5 cannot
be generalized easily to study this model. What will
be presented in the following sections is a crude
analysis based on a generalized mean-field theory, to-
gether with plausible arguments and assumptions. A
simple qualitative physical picture does emerge and
orders of magnitude of various quantities of interests
are obtained. We now outline our approach and
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summarize our results.
The spin-glass at very low temperature is character-

ized by a frozen random spin configuration. This
physical picture is well described by a mean-field ap-

proximation. Each spin points along the local field
produced by all the other spins. This approximation
follows from a simple variational trial wave function
for the ground state. The problem of energy minimi-
zation is the problem of finding the local fields and
spin orientations self-consistently. %e do not at-

tempt to solve this self-consistent field problem. In-
stead we estimate the distribution of the local fields

by first assuming the spin orientations of neighbors
are random. Then we estimate the correction due to
the energy-minimum condition. The correction has
the effect of creating a "cavity" centered around
h =0. Figure 1(a) shows schematically the effect of
the cavity. At zero temperature the distribution at
h =0 must vanish. This effect has been observed in

many numerical calculations. "
Next; we modify the variational trial wave function

to give a more careful treatment of strongly coupled
pairs. Owing to the very wide distribution of cou-
pling strength J& in this model, there are many pairs

hx-

{a)

with very large J&. %e study the energy of a strongly
coupled pair in the mean fields provided by neigh-
bors. There are two mean fields: h couples to the
total spin of the pair and an "anisotropy field" h,
which enters the energy quadratically and has the ef-
fect of an anisotropy. The analysis is then extended
to strongly coupled trios and in general "nuclei" of
any number of strongly coupled spins. The mean
fields for a nucleus include two or more anisotropy
fields. The energy levels for a nucleus in a given set
of mean fields are described by an effective Hamil-
tonian

0eff K~&sos& —h ~ s (1.2)

where s is the total spin of the nucleus. The sym-
metric tensor K'& is a quadratic function of all the
anisotropy fields. It can be called the "anisotropy en-
ergy tensor" for the nucleus. The properties of me-
tastable states can be calculated in principle from
K'&, h together with information concerning the
neighbors. The neighbors always readjust as the spin
of the nucleus is rotated. A nucleus, together with
its surrounding neighbors, plays the role of a "clus-
ter." Metastable states must be described in terms of
such clusters, not just the nuclei.

The distributions of the mean fields for nuclei are
then estimated by assuming random spin orientations
first and then looking for corrections. Figure 1(b)
shows the distribution of h for a given K'. Again
we see a cavity on a bell shaped curve. This cavity is

not as deep as that in Fig. 1(a). As long as K" is not
zero, it is possible to have pairs with h =0. Meta-
stable states tend to have small h. The cavity grows
deeper as more metastable states decay. The change
of the cavity under the influence of an external ap-
plied field h& tells us about the magnetic susceptibili-
ty and the remanent magnetization.

At very low temperatures, ( T much less than the
spin-glass transition temperature), the susceptibility
has a constant part, coming from the fast response to
the external field, and a slowly varying part x" wltich
comes from the metastable states. Figure 2 shows

hx -0.0l—

(b)

FIG. 1. (a) Schematic plot of the probability distribution
of local fields for spins along one axis. The dash curve is es-
timated from random orientations of neighbors. The solid
curve includes the correction due to minimizing the energy.
The suppression near h =0 creates a "cavity" in the distri-
bution. (b) The local-field distribution of nuclei. The cavity
is not as deep as the case for single spins shown in (a) be-
cause of the stabilizing effect of anisotropy fields.

—0.02—

—0.05-
5

T In (t/T)

FIG. 2, Time varying part of the magnetic susceptibility
per nucleus as a function of T ln(t/v ) for small T. (Details
in Sec. V.)
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II. MEAN-FIELD APPROXIMATION

A. The model

m/I hg
+

0.2

We shall consider the spins (quantum spin- —,

operators) s;, i = I, . . . , N. The spins are randomly
distributed in a volume V, Their Hamiltonian is

H =Ho+H, i (2.1)

2

~A/&M

where Ho is the spin-spin interaction term

Ho= —
—, XJ„"s,sj —h„gs;

i% I (2.2)

FIG. 3, Remanent magnetizations as functions of the ap-

plied field h&, upper curve TRM, lower curve IRM. (De-
tails in Sec. VI.)

and h& is the applied field. Here ~;, =+1 is a ran-

domly chosen sign and r; is the position of the ith
spin. A is a constant. Equation (2.2) is to simulate
the RKKY interaction, which is more complicated

J&""""= A cos(2krr, , )/r, ,' (2.3)

the susceptibility as a function of T in(t/r). Here r
measures the microscopic transition time due to
spin-lattice interaction. The time scale for ~ in a real
system is about 10 'o sec. For r —I sec, In(t/r)
—23. Figure 3 shows the remanent magnetization
as a function of the applied field h& which was

present, TRM stands for thermal remanent magneti-
zation. The sample was cooled from high tempera-
tures in the field h&. Then h& is turned off. IRM
stands for isothermal remanent magnetization. The
sample was cooled from high temperatures without

h&. Then h& was turned on and then off. The
remanent magnetization peaks at h~ = h~. The ef-
fect of turning h& on or off is partly to stir up the
spins. h~ is the field strength below which the
memory of spins survives the stirring. Our crude ap-
proximations do not say anything about the "satura-
tion remanent" at large h& except that it should be
smaller than the peak TRM value by a factor
—I/Jn, where n —10 is the effective number of
neighbors of a nucleus which acts as the center of a
cluster.

The mean-field approximation for the spins and

nuclei is formulated in Sec. II. Estimates of various
distributions are done in Sec. III. We devote Sec. IV
to some mathematics involved in calculating the slow

time variations due to metastable states. The mag-

netic susceptibility is calculated in Sec. V, and the
remanent magnetization is studied in Sec. VI. Fur-
ther discussions of the results are included in Sec.
VII. The Appendix collects some algebraic details
which may be of interest to some readers. It includes
the calculation of the local-field distributions from
random spins and the derivation of the effective
Hamiltonian for a strongly coupled trio.

H)=Xs; L; (2.4)

where L; are some operators involving the dynamic
variables of the lattice. In short, we assume that the
allowed transitions under H, ~

are single-spin-flip tran-
sitions. We shall not be interested in more details
about H, ~.

Let us now concentrate on Ho with h„=0.The
scales of length and energy are, respec'tively, fixed by

F —= (V/N)' J=—s A/r =NB/4V (2.5)

We shall choose I. and J as units of length and ener-

gy, respectively. As a reference, we note that for
I at. '/o Mn in Cu, s2A /r 3 —20 K (s = —for Mn),
which is roughly the observed spin-glass transition
temperature. Although we shall not calculate the
transition temperature T, for our model here, we ex-
pect J to be of the same order of magnitude of T, .
Thus, in our units, r =1, J=1, and T, is about one
or two.

This describes the interaction between impurity spins
in a metal host. kF is the Fermi momentum of the
conduction electrons. For a derivation and discussion
of this formula, see Ref. 6. In Eq. (2.2), we use the
random sign v „"to simulate the cos2kF I in J"

The term H, I is the "spin-lattice" interaction which
describes the effect of the background lattice on the
spins. It is assumed to be a weak term. It causes
transitions among the energy levels of Ho. %e as-
sume the form
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8. Variatianal principle C. Excited states and metastability

We shall formulate the basic concepts in terms of
the variational principle. We shall not use the varia-
tional principle for quantitative calculations, but only
use it as a basis for constructing a simple physical pic-

ture.
Suppose that we want to find the ground state of

the Hamiltonian Ho. We start with the trial wave
function

(2.6)

where n; are unit vectors which are the variational
parameters. g; is the wave function for the single
spin i, and is such that

(2.7)

The average energy over this trail wave function is

simply

~(j A A

n; ~ nj
(j I(1

(2.8)

in the units r =1 and J =1 [see Eq. (2.5)]. The vari-
ational principle says that Eo must be stationary
under an infinitesimal rotation 8; of any n;, i.e.,

—g, x;i,. = g.l x n; ~ h; = 0
Qn(

(2.9)

.(2.10)

We thus conclude that

(2.11)

for all i. Here h; is the unit vector along h;. We call

h; the local field at the i th spin. Thus, this varia-

tional procedure is equivalent to treating the spins as

classical vectors —,n;. Each vector n; must point

along its local field h;. This is a "mean-field"
theory. The solution to the problem of determining
such n s is highly nontrivial. Walker and Walstedt
have performed numerical simulations and obtained
the distribution of h; for the ground state There is

no guarantee that the numerical simulation can reach
the truly lowest-energy spin configuration. However,
at least a very low-energy metastable configuration
can be obtained. This situation does reflect what is

expected to happen in the laboratory. When the
sample is cooled down to near-zero temperature, a

low-energy metastable spin configuration is reached.
This can be regarded as the ground state, for all prac-

tical purposes.

If some of the spins are reversed, i.e., n; = —h; for
some i, we get an excited state. The excitation ener-
gy is h; if the spin i is reversed.

This picture of localized excitation is not appropri-
ate for the low-energy excited states, which instead
involve the rotations of many spins through small an-
gles. These extended excited states are the "spin
waves. " In quantum mechanics a spin-wave state is
just a linear combination of single localized excita-
tions over an extended region. Walker and Walstedt
have in essence obtained the single-spin excited
states numerically. One of their conclusions was
that the lower-energy states are more extended and
the higher-energy ones are more localized.

We are more interested in the metastable states.
In this model, transitions among energy levels are ac-
complished by H„[ese Eq. (2.4)l which flips one
spin at a time. A single-spin excitation thus cannot
be metastable. We need to study states involving the
reversal of at least two spins. A reasonable physical
picture of a metastable state is as follows. Start with
the ground state. A small nucleus of spins is re-
versed. Then the spins and the surrounding of these
spins are readjusted to lower the energy. If a new
configuration which is a new energy minimum is
reached, we have a metastable state.

The height of the energy barrier is the most impor-
tant characteristic of a metastable state. It deter-
mines the decay rate of the metastable state. In an
Ising model such as that of Ref. 5, the barrier height
is straightforward to calculate. But for the present
model it is far more difficult. To illustrate this point,
consider two spins s1 and s2. The part of energy in-
volving them is

—h1 ~ s1 —h2 s2 J12sl s2

where h1 and h2 summarize the effect of all other
spins on s1 and s2. We expect a metastable state to
appear if J» is large compared to h1 and h2. when
one of the spins s 1 is flipped, the energy increases
by about h1+ J12. When both are flipped, the net
change of energy is h1+h2. The barrier height is
then h1+ J» or —h2+ J12 whichever is smaller. We
have assumed J» & 0 for simplicity and have not
kept track of angular dependence of energies. Clear-
ly, if h2 & J12, there would be no metastable state.
The same argument also shows that h1 must be less
than J12 in order to have a metastable state. These
arguments were those used for the Ising model of
Ref. 5. However, they are not quite applicable here
because of the vector and quantum nature of the
spins. For instance, if J12 is very large, one would
conclude that the barrier height is very large, i.e.,—J12. This conclusion is incorrect. Very large J12
would make s1 and s2 stick together like a single
spin 1. The total spin can be turned as a vector. The
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barrier height cannot be as high as JI2. The vector
nature of the spins and the long-range nature of the
interaction also imply that the turning of the total
spin s ~+ s2 would necessarily cause some readjust-
ment of the surrounding spins. This situation does
not occur for the Ising case of Ref. 5. Clearly, to
make a precise determination of the barrier height
and other properties of the metastable states, one
must analyze many spins at the same time. To avoid
this difficult task, we shall settle for a crude approxi-
mation for treating a strongly coupled pair as the
"nucleus" of a cluster. The couplings of the neigh-
boring spins to the pair are weaker, and provide a
variable environment for the pair. This approach,
which we present below, is reasonable because of the
very wide distribution of JJ peculiar to the 1/r' law,
as we shall discuss in more detail in Sec. III.

We begin by modifying the trial wave function
(2.6) and write

pressed as functions of J, h, h", and $, where $ is
the angle between h and h . For strong coupling,
i.e., J large compared to h and h', the energies of the
triplet states measured from ——J are zeros of
detIE+ —,

' J —H ]2l:

(E+h"'cos $/J)(E —h') +E h" sin @/J =0

(2.15)

Since there is a large energy gap between the singlet
and the triplet, no interesting effect is expected at
low temperatures if J & 0. Thus we shall simply drop
all strongly coupled pairs with. J & 0, and consider
only the triplet states for the case of J & 0. Figure 4
depicts the energy levels in the triplet as a function of
h as given by Eq. (2.15). For h » h"/J, and for
h (( Ir"/J the three levels are, respectively,

Eo = —h —h" sin'P/2J. —h "2/J —Jh' sin'$/h"'

(2.12)

Here p; is the same as was defined in Eq. (2.6), i.e.,
the single-spin wave function with (f, ~ s;~P;) = —,~;.
The wave function Pk~ is for the pair of spins Ir and I.

It has to be parametrized by more parameters. We
choose strongly interacting pairs only, i.e., those with
small rkl, or large (Jkl(. The spins which are not
paired are included in the second product in Eq.
(2.12). Minimizing the energy (O~Hp~ P), we obtain
a more elaborated mean-field approximation. We
have each pair behaving as one unit at the presence
of local fields provided by its neighbors. Each un-
paired spin will line up along its local field as we dis-
cussed before.

We shall use this pair picture as a basis for estimat-
ing properties of the metastable excited states. A

strongly coupled pair will behave as a spin 1 if it is in

a triplet state or no spin if in a singlet state. We shall
be concerned with only the triplet case.

We now proceed to study the energy levels of a
two-spin system in a fixed environment as a part of
the variational procedure.

Consider the Hamiltonian for the pair of spins s ~

and s2 with large J:

E~ = —h" cos'P/J,

E2 = h —h" sin'$/2J,

-Ir cos@,

h cos$

(2.16)

The three levels can also be derived from an effective
Hamiltonian, with s = s ~

+ s2, operating in the triplet
states,

H ff
—h"'/J + ( h» ~s)'/J —h s (2.17)

QEp()—= ( +
8h

( )—= (s — )=-
Bh

(2.18)

The lowest level, labeled by 0, is to be chosen for the
ground state or for the metastable state. Note that
h produces an anisotropy. Hence we call h "aniso-
tropy 1'ield" and h "/J "anisotropy energy.

"
The state of the pair is characterized by the average

values

H~2= —Js~ s2 —h (s~+ s, ) —h (s~ —s2)

(2.13)

where h and h are parameters, which can be related
to the local fields at sites 1 and 2, contributed by all
spins other than the pair

1
h =

~ ( h) + hp) , h =
2 ( h( —h2) (2.14)

The pair has four energy levels. They can be ex-
FIG. 4. Energy levels of the triplet, states of a strongly

coupled pair. [See Eqs. (2.15) and (2.16).]
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For large h, i.e., h » h'2/J, we have

(s) =/i

(s ) = [h —h(h h )1/J
(2.19)

The total spin s is frozen along h. For small h, i.e.,
h « h'2/J, we have

(s) =2J[h —h (h h )]/h ~

(s )=2h/J .
(2.20)

Here we keep only one pair, i.e., 12, in Eq. (2.12) for
the simplicity of discussion. To minimize
(q le(&lq ), we must satisfy Eq. (2.11). The local
field h; given by Eq. (2.10) must now include
J;~ ( s ~) +J;2( s2) which depends on h and h . In
addition, we must satisfy Eq. (2.14) with

In this case, ( s ) is small and l ( s ) l assumes its
maximum value. We may say that (s ) is frozen
along h .

The total energy of the system is

(p IHOI@) = ——,
'

XJ&n; n, + Eo(h, h', p)
(2.21)

however, A should be called metastable instead. As
Fig. 4 shows, a state of larger h has a lower energy.
We therefore expect metastable states to have smaller
h, and the stable states to have larger h. For very
large h, it becomes unlikely to obtain a metastable
configuration without reversing a large number of
spins.

The important quantity is the barrier height A for a
metastable state. From the above discussion, the
only conclusion we can draw is that it is comparable
to h'2/J. The precise value of A depends on the
behavior of the neighbors. Note that the difference
in energy between the stable state and the metastable
state may be large if E' of Eq. (2.23) involves many
spins. However, the barrier height, which is the
minimum energy required to initiate the decay of the
metastable state, should not differ much from h "/J,
the anisotropy energy for the pair.

It is important to note that the neighboring spins
not only have energy, but also have a net spin, which

.changes as the state changes from the stable to the
metastable.

D. Generalization to strongly coupled trios
and larger nuclei, the energy tensor

h=
2

X'( J);+J2;)n;, h =
2

X'(J(1 J2()n—;

(2.22)

E' = Eo(h', h", $') + hE„' (2.23)

where LIE„'is the change of interaction energy among
the neighboring spins. It may be positive or negative.
The new state is shown in Fig. 4 as A'.

If E' ) E& then A' is a metastable. If E' ( E&

Suppose that we have carried out this program and
determined the configuration (n;, h. h ) for the
ground state. How do we find a metastable state?
Following the physical picture discussed above [Eq.
(2.12)[, the program would be as follows. Given the
state A in Fig. 4, let us start with the state B, which is
orthogonal to A but in general not satisfying the
energy-minimum conditions. The next step is to
make changes of n; for the neighboring spins until
Eqs. (2.11) and (2.22) are satisfied and the new con-
figuration is a metastable state. The new environ-
ment of the pair will be described by new fields
(h, h ) which would be very different from
( h, h ). Suppose that h is very small for the state A

as indicated by Fig. 4. Thus (s)„is small. The
average ( s ) a however has a magnitude unity and
points along h (or —h ). The existence of a large
( s ) will strongly affect the neighboring spins, which
then rearrange to produce a field along ( s ) to lower
the energy. The final energy is

A=II' II4 III ~ (2.24)
i kl ntnp

The Hamiltonian involved in analyzing the energy in-

volving a trio can be written in the following form.
Consider spins s1, s2, and s3. We write

H123 J12S1' S2 123 S2' S3 131S3 S1

—h (s(+ s2+ s3) —h( (s) —s 3)

—hp ( s2 —s3) (2.25)

This is a generalization of the H~2 of Eq. (2.13). The
parameters h, h1, and h2 are related to the local
fields h1, h2, and h3 via the relations h1= h + h1,
etc. Here h1, h2, h3 are local fields contributed by
sources other than the spins in the trio. Now we as-
sume that the J's are large compared to h and the
h 's, and proceed with perturbation theory. We keep
h to the first order and h 's to the second order.
The J's are assumed to be positive. Thus, in the
zeroth-order approximation the ground states of H123

The above analysis can be extended to include
strongly and ferromagnetically coupled spin trios, and
further to larger numbers of spins. If the couplings
within the trio spins are very strong compared to cou-
plings to other neighboring spins, then we shall get
an "anisotropy energy tensor" to describe the total
spin of the trio.

The variational trial wave function (2.12) can be.
further improved to include trios
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are the four states of the quartet. The total spin is

There are two doublets with energies higher than

the ground state by amounts of the order of the J's.
These doublets, like the singlet in the case of the pair
discussed above, only play a role of the intermediate
states in the second-order calculation of the energy.

Instead of calculating the energies directly, which
involves much complicated algebra, we introduce,
similar to Eq. (2.17), an effective Hamiltonian for
the four states of the quartet. Define the operator
s s [ + s 2 + s 3 operating in the space of the quartet
only. One obtains

+B[(h~ s)(h2 s)+(h2 s ~)( h~ s)]
—h s (2.26)

The effective Hamiltonian is to reproduce the four
energy levels in the quartet. The constants Ep, A,
and 8 are functions of the J's. We give the detailed
calculation in the Appendix, since we are only in-
terested in the basic ideas. [See Eqs. (A16)—(A23).]
The physical meaning of H, ff is clear. It sums up the
dynamics of the trio, acting as a single spin —,, with

the effect of the environment approximately taken
into account. Without looking at the energy levels in

detail, we can already get a qualitative picture of the
energies involved from H, rf directly. The effect of
the field h is quite clear. No discussion is needed.
The effect of h~ and h2 is to introduce anisotropy.
We can write H, ff as

Heff = Ep+ K&'„$&s„h' s (2.27)

where K„'„is a symmetric tensor and h a vector
which follow directly from Eq. (2.26), and

p„v=x,y, z, summed if repeated. The symmetric ten-
sor K„'„hasthree principal axes and is best represent-
ed by an ellipsoid with these principal axes and radii
equal to the three eigenvalues of K~„.If s were a
classical vector of fixed length, then, in the ground
state and if h =0, s would be parallel or antiparallel
to the principal axis with the lowest eigenvalue.
There are two energy minima on the ellipsoid, i.e.,
where this principal axis intersects the ellipsoid sur-
face. The barrier height is the difference between the
two low eigenvalues. If h A 0 but fairly small, then
these two minima would move away a bit. One of
the energy minima would have a higher energy than
the other, and would be a metastable state. Clearly,
if h is larger than some critical value, then there will

be only one energy minimum.
The fact that s is a quantum-mechanical operator

complicates the picture. We have to essentially calcu-
late the wave functions of s on the ellipsoid by di-
agonalizing H, qq. The simple arguments given above
will be modified but the qualitative picture remains.

Clearly, we can generalize the above analysis to

study a larger number of spins coupled by large and
positive J's. The form of the effective Hamiltonian
(2.26) will remain. K„'„willbe quadratic in many
h 's and are complicated functions of the J's. No
matter how complicated these functions are, the qual-
itative picture of the ellipsoid and energy minima
remain. This picture is not too different from that
given by the "anisotropy" hypothesis often used in
the phenomenological analysis of experimental data
in micromagnetic domains.

Note that for the case of a pair, there is only one
h and K„"„=h„'h„'/J.The ellipsoid is a "needle. "
Two principal radii are zero. For the trio, it is an el-
liptic "pancake. " One principal radius is zero [see
Eqs. (A25) and (A26)]. For a nucleus of more than
three spins, all radii are in general nonzero.

The readjustment of neighbors due to a change of
the total spin s for the trio and larger nuclei would
be quite similar to that in the case of the pair dis-
cussed earlier. The energy of the rnetastable state
and the barrier height must include the contributions
from the neighbors.

E. Summary of the mean-field approximation

We started with a variational approximation with a
trial wave function which is a product of single-spin
wave functions. This allows us to define the local
fields for single spins. Then we generalize the ap-
proximation to include strongly coupled pairs, each of
which has an additional local field h . This anisotro-

py field allows us to describe metastability. The pair
acts as a nucleus for a cluster. The pair approach is
naturally extended to trio and larger nuclei. The total
spin of the nucleus is now described by the tensor
K„'„,which is a quadratic function of two or more lo-
cal fields analogous to the h for the pair, and a vec-
tor h which couples to the total spin. The tensor K„'„
follows the second-order perturbation calculation in
the local fields, and describes the "anisotropy ener-
gy" for the nucleus.

Note that a pair does not have a metastable state
for a rigid environment. Readjustment of neighbors
is necessary. For trios and larger nuclei, metastable
states are possible even with rigid neighboring spins.
It should be emphasized that the neighboring spins
are far from being rigid. The variational calculation
must include the neighboring spins self-consistently.

This concludes our discussion of the basic physical
picture of the spin-glass structure.

III. STATISTICS

In principle, one could calculate the distribution
functions of the local fields h; and hence those of
other quantities of interest by solving the variational
problem outlined in Sec. II. No such calculation is



22 DYNAMICS OF A VECTOR SPIN-GLASS MODEL 4491

attempted herc. Wc shall only make rough estimates
based on plausibility arguments.

Note that for large h

4rr h2Po( h ) =
3

n h (3.4)

A. Random spin approximation

Let us ignore the nuclei for the moment. We shall
obtain an approximation to the distribution of the lo-
cal field h; by assuming random orientations for
average spins (s~) which produce h; [see Eq.
(2.10)]. Corrections to this approximation will then
be discussed.

We define P ( h ) as the distribution, normalized to
one, for the local field

't

P(h) = 8 h —XJ»n»/2
J

(3.1)

where the average is taken over the positions
r&, (J» =+4/~ r; —rj ~'). Assume random orientation

We obtain

Po( h ) = (2n p') '
, 'e

(3.5)
Jap= 977A0

8 Ir=o2/r—o3

The detailed algebra is included in the Appendix.
This result can be understood in view of the central
limit theorem. (h2) can be calculated directly:

This implies a logarithmically divergent (h ) and
linearly divergent (Ir'). The reason is that the model
allows spins to get so close to each other that I/rj3
can become very large. If we impose a cutoff rp and
exclude rJ & rp, then the large-h behavior will be al-

tered. We obtain

Po(h) = —', [(—', n')+h'l ' . (3.2)

The details of the algebra leading to Eq. (3.2) may be
of interest to some readers and are included in the
Appendix.

The dashed curve of Fig. 5 represents 4rrh'Po(h).
It peaks at

r ' 2
f~ co 4

4m r2 dr—
4 ~ ro r3

= 3go (3.6)
hp= —m =6.582 (3.3)

Note that , J/r3=2 for r = I—andJ =4. [Remember

our units given by Eq. (2.5).] If we say that there
are 10 neighbors each producing a field of random
sign of magnitude 2, then we would expect a fluctua-
tion of 2410 = 6, which is about the same size as Eq.
(3.3).

The same result also follows from Eq. (3.4):

8 "pdA 2 8(h') = nh'= -r—rho=3lMo
3 Qp g2 3

(3.7)

The average (h) is more difficult to calculate since it

depends on the intermediate range of h too, but

(h) = —,n Inp, o

0.2—

I

h, h P, (h)ML

h h P(h)

or (3.g)

(h) = pong/n

from Eqs. (3.4) or (3.5) should be a reasonable esti-
mate.

O. I

S. Corrections to the random

spin approximation

I I

I 2

h /hp

FIG. 5. Plot of h Pp(h) (dashed curve) and h P(h)
(solid curve). See Eqs. (3.2) and (3.15). The cavity is not
as dramatic here as in Fig. 1(a) because of the h2 factor.
h = —m2

2

P 3

Now the question is how good the approximation
(3.2) is. Let us discuss the most obvious implica-
tions of the energy-minimum condition (2.11), that
each spin must point along its local field.

First we note that P ( h ) must vanish at h =0, con-
trary to what Eq. (3.2) says. The reason is as follows.
Suppose that h; =0. Then a small rotation of a
neighboring spin to nJ + hnJ would produce a local
field h; = J»hnJ. This would produce an energy
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~I [ A ~t A

h[ = h& +
2 J~2h2 h2= h2+

2 J[2h) (3;9)

change jhhE = —
]JJLLn& ~

and contradicts the energy-
minimum condition that AE must be of 0 ((()hn )')
and positive. Therefore no h; can be zero.

The above argument can be extended-to estimate
the correction to Po(h ). Let h(, h2 be the local fields
at sites 1 and 2. Let h~ and h 2 be the contribUtions
to h ~ and h 2 from spins other than s ] and s 2.

Thus

Po(h) as follows. Given h; = h, the restriction in the
space of all hj imposed by Eq. (3.12) is

ge(hg —JJ2/4h ) (3.13)

The smaller h, the stronger the restriction. We now
take the average of this product over the random dis-
tribution of h, (i.e. , over Po) and write the corrected
distribution as

~l ~ I
To minimize energy h~, h2, h~, and h 2 must all lie in
the same plane. Let 8 and 8' be the angle between
h [ and A2 and that between h

&
and h2, respectively.

Both 8 and 8' are less than m.

P(h) ~ Po(h) gg
4A

g (h') —= (O(hj —h') ) = ~, dhJPO(hj )

(3.14)

From Eq. (3.9) we see that

h& x h2=h&h2 sinH'e,

A A= h) x h2 —
4 J[2h ( & h2

= (h(hp —
4 J(2 ) sin&e, (3.10)

A

where e, is the unit vector along h~ x h2. It follows
that

h, h, ——,J,', = ()I ('h2 sin0'/sinH ) 0 . (3.11)

This must be true for any pair. Thus

h;hj & —J,)2 (3.12)

for all i,j. This is a rather restrictive condition. Us-
ing this condition, we can estimate the correction to

Carrying out the algebra, we find that a "cavity" is
created around h =0 (see Fig. 1).

P(h) = Po(h)CO(h), Co(h) = 1 8e.
(3.15)

The solid curve in Fig. 5 gives 47rh'P(h). We see
that compared to 4rrh'Po(h) the maximum of the
curve differs by about 20%. The small h part is
suppressed. The large h part becomes larger as re-
quired by normalization.

When a cutoff is taken into account, the large h

behavior [Eq. (3.5)] is also modified by the energy-
minimum condition. An estimate of the modification
can be made by keeping the j W k terms in Eq. (3.6).
Since there is a nonzero average of Jlkhk along h, , we
write

(h ) k X(ji'hkh, hk)=( —X(jkh') h; —' X(Jkhk) h;
Jk

+—g (J2[l —(h, h, )~]) = (j),)'+ —X (J&~[1 —(h, h, )'])
J

(3.16)

since h; =
&

J&A&. Now we take the average over
Eq. (3.5) to obtain

(()(') = ((((')(8/m) + 2(M(') = 3p,o(1.52) (3.17)

This implies that p, o is increased by 1.5 as a result of
the energy-minimum condition.

Note that one can also estimate ( jr') using Eq.
(3.15) for large h:

who
(h') = Jl 4n h (1.8)h dh = 3(Mo(1 8)

3Q

C. Distribution of h and h

Now we proceed to discuss the statistics of h and
anisotropy fields h of a strongly coupled pair or a
larger nucleus. Without a much more elaborated
analysis, it is difficult to give a precise criterion for
"strong" coupling. Fortunately, we can easily esti-
mate the number of nuclei with J larger than a given
J . Note that e is the probability of finding no
other spin in a volume u around a given spin. There-
fore the probability that a given spin is coupled to at
least one other spin with coupling larger than J is

(3.18) p(J )= 2(1 —e "), (h
=—,

'
rr (4/ J )—(3.19)

which is in reasonable agreement with Eq. (3.17). where the factor —, is to exclude negative J. For
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P(h, h ) = PO(h)PO(h')

where the function Po is given by

P, (h) = —,
' [(-,' ~')'+/']-'

for small h and

(3.20)

(3.21)

Po( h ) (~J/o )
—3/2&- h /J 9

7T

(3.22)

for large h'. There is an additional simplification
made in deriving these results. The distance
I r~ —rq~ between the two spins of the pair is as-
sumed to be small compared to the distance to other
spins. This simplification makes h and h indepen-
dent. [See Eqs. (Al 1) and (A13).] Each neighbor
either contributes to h or to h but not both. We
have chosen the cutoff ho= J, i.e., excluded the cases
where the surrounding spin is too close to the pair.
Po(h) is simply Po(A) with a change of scale [see
Eqs. (3.2) and (3.5)].

The extension of these calculations to trios and
larger nuclei is straightforward but involving many J's
and h 's. Since we are only making a qualitative es-
tirnate, we shall simply apply the above results to all

nuclei. h' is taken to be a typical anisotropy field
and h /J a typical anisotropy energy for any nucleus.

There are also corrections to P due to the energy-
minimum condition, as there was in the single-spin
case. This correction should not be as large as in the
single-spin case since a pair can have its ground state
with h =0 as long as h' ~ 0. The cases with both h

and h' small is not very significant statistically. How-

ever, we do expect that a nucleus with small h is

more likely to be found in a metastable state of the
system. The decay of metastable states will therefore
modify the distribution of h. This is discussed next.

—,J = 5, 10 we have p = 28% and 17%, respectively.

This tells us that there are plenty of nuclei and the
distribution of J is very wide.

For a given pair, the distribution of h and
h, P ( h, h ), can be calculated approximately by as-
suming random and independent orientations of the
surrounding spins. The calculation is similar to that
for Po(h ) and we leave the details in the Appendix.

, We have

A = h'2/J+ A' (3.23)

where A' is expected to have a probability distribu-
tion extended a bit toward the negative side. Since
A' simply smears up the distribution to a limited ex-
tent, we shall drop it for simplicity of discussion.
The smearing due to A' can always be put in at the
end of a calculation without difficulty. Dropping A'

we obtain a simple estimate of the barrier height dis-
tribution

h'
p(A)—= J d'/'P, (/ )S A-

J

= ( / )' 2mWAe (3.24)

We have used Eq. (3.22) for Po(h') since the contri-
bution comes from large h' —JJ. Near A=0, the
smearing due to A' of Eq. (3.23) would wash out the
square-root singularity.

(ii) We expect that there are more metastable nu-
clei with small h. Therefore we assume that the de-
cay of metastable states will gradually create a cavity
on the distribution of h centered at h =0. What is
more important is the cavity shape function C before
any substantial decay of metastable states, i.e., the
"initial" cavity shape. Clearly, C depends on how
the system is prepared. We have to make special as-
sumptions about C for each case of interest. The im-
portant overall assumption is that C would change
slowly with a characteristic rate y = (1/r)e " r, which
will be discussed further in Sec. IV.

(iii) We set

Co(h) of Eq. (3.15) but not vanishing at h =0 since
any nonvanishing h' would produce some metastabil-
ity. The decay of metastable states would make the
cavity deeper. Some decays occurred while the sys-
tem was being cooled from a higher temperature be-
fore the observation. Fig. 1(b) showed what one
would expect for the distribution of h.

We shall need information concerning the distribu-
tions for various quantities for our calculations in the
following sections. We now make the following esti-
mates and assumptions based on the above discus-
sion and the analysis of Sec. II.

(i) The barrier height A is of the order of h"'/J.
We write

D. Distributions involving the
metastable states

h, for h ) h "/J,
(s) ='-

,
hJ/h"= h/A, for h ( h'2/J. (3.25)

If h' = 0, then the nucleus would have no meta-
stable state. According to our arguments in Sec. II,
h' is essential to keep a nucleus with small h from
reorienting itself and increasing h. For very small h',
we therefore expect that the distribution for h would
be Po(h) multiplied by a cavity factor similar to

This is an approximation to Eqs. (2.19) and (2.20)
for the spin of the pair.

These estimates [Eqs. (3.23)—(3.25) ] involve two
characteristic energies: the field energy h and the an-
isotropy energy h'2/J. They should apply qualitative-
ly to all nuclei.
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IV. DECAY OF METASTABLE STATES nore other details of the transitions and write the de-
cay rate as

A. Transition rates
y(A) = (I/r)e "t (4.1)

The effect of the term H, ~
[see Eqs. (2.1) and

(2.4)] in the Hamiltonian is to cause transitions
among the eigenstates of Hp. A transition is "al-
lowed" if the transition amplitude is nonzero to first
order in H, ]. Otherwise the transition is "forbid-
den. " Only single-spin-flip transitions are allowed.
We shall not enter into any of the details of the
spin-lattice interaction. We simply regard all single-
spin-flip rates as approximately equal to some con-
stant I/r. The characteristic time r is regarded as a
microscopic time, (computable by applying the
Fermi's "golden rule" to H,~), even though H„is as-
sumed to be very weak.

The more interesting transitions are the higher-
order transitions, i.e., the forbidden transitions
between metastable and stable states, involving the
flipping of two or more spins. The flipping of a nu-
cleus of spins is a higher-order process. The rate can
be calculated with H, ~. Such a rate is expected to be

extremely small. One reason is that H, ] is small.
The other reason is that the final state is very dif-
ferent from the initial state because of the readjust-
ment of many neighboring spins. Therefore, we ex-
pect that the forbidden process must be accomplished
by a succession of independent allowed transitions,
rather than by a single high-order process. In other
words, we exclude the quantum-mechanical tunneling
as a mechanism for the decay or activation of meta-
stable states. The spins are flipped one by one. The
energy barriers which make the states metastable
must be overcome by thermal activation.

The most important factor in the decay rate of the
metastable state via successive transitions over the
barrier is e A, where A is the barrier height. For
our qualitative discussion here, we shall simply ig-

B. Inteegrations over e ~'

In calculating various quantities of interest involv-
ing the metastable states, one encounters integrals of
the form

l(t) = ) dAg(A)e "'""
Jp (4.2)

x —= T In(t/r)
(4.3)

Clearly, yt is very large for A « x and very small
for x « A. For very small T, e "' therefore
behaves like a step function. It is zero for A & x and
1 for A & x. The region of transition from 0 to 1 has
a width of about T. Thus we have for small T

e «'=e(A x) =O(A —T—ln(t/r)) . (4.5)

This simply says that the metastable states with bar-
riers lower than x have decayed and those with barriers
higher than x remain. The integral (4.2) is therefore
simply

where y is given by Eq. (4.1). It should be helpful to
learn the basic feature of such an integral before ap-
plying it.

We write

yt =(t/r)e "tr

= exp [ —[A —T ln(t/r ) ]/T [

l(t) = Jl dAg(A), Jf dAg(A)e "=Jf dAg(A) (4.6)

This a very useful formula. It is a good approxirna-
tion if g (A) does not change much when A changes
by T. Clearly, this is useful only for t/r )) 1. I (t)
is the area under g (A) to the right of x = T In(t/r)
(see Fig. 6). The part to the left has decayed. For
positive g, I is always a decreasing function of x. For
example, if g (A) = e '", we have simply

(4.7)

Even if g (A) has ups and downs, the integral I will
be smoother and decreasing as a function of x, For
small T it would remain a down-sloping straight line
in the plot I vs ln (t) for a wide range.

From the derivation, it is clear that the formula
(4.6) is valid for small T even if we multiply y by a
smooth function of A. The change can be regarded
simply as a change of v. Since v appears in the loga-
rithm, it has very little effect.

It is important to note that the magnitude of ~ of
experimental interest is of the order of the spin-
lattice relaxation time ~ —10 ' sec. The macroscop-
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tI(kj

/'II
, X

h —h&. The average spin is then

nl = JI d hPp( h —hg )Cp(h)—
2

= — 'I d3h hq h Cp(h)—

From this we obtain the susceptibility per spin

A

Xi = 6 hg/hg = 0.03 (5.2)

Note that the high-temperature susceptibility (Curie
law) is

Xcurie 1/4 y' (5.3)

FIG. 6. The factor e ~' is approximately a step function
8(A —T In(t/r)). The integral t (t) [see Eq. (4.2)l is the
area under the solid curve.

ic time scale is t —10 sec. Thus ln (t/r) —25. For
T/T, —0.1, (T/T, ) ln(t/r) is not a small number.

V. MAGNETIC SUSCEPTIBILITY

When an external magnetic field h& is turned on, a
total magnetization appears. A part of this magneti-
zation appears very fast. We shall discuss it first.
There is also a part, which involves the metastable
states, and appears very slowly after the field is
turned on.

A. Fast response

When the applied field h& is turned on, the local
field is changed for each spin. If h& is turned on not
too abruptly, each spin will follow the field and ends
up in the direction of its new local field, according to
the "adiabatic theorem" of quantum mechanics.
What is needed now is the distribution function for
the new local fields. A reasonable estimate is

P'( h ) = Pp( h hg )Cp(h) (5.1)

where Cp(h) is the cavity factor —e 23t " given by
Eq. (3.15) and Pp given by Eq. (3.2). The applied
field shifts all local fields by h&. That is why the ar-
gument of Pp is replaced by h —h&. On the other
hand, the factor Cp(h) comes from the adjustment of
spins to reach an energy minimum. This process of
adjustment is completed only after the field is turned
on. The discussion leading to Cp [see Eqs.
(3.9)—(3.15) ] was independent of any applied field.
Therefore the argument of Cp must be h, not

Since we expect the spin-glass transition temperature
T, to be of the order of magnitude unity, we see that
Xi given by Eq. (5.2) is a small fraction of the sus-
ceptibility at the transition temperature.

Frozen neighbors are assumed in arriving at Eq.
(5.2). The neighbor spins do change under h& and
thereby change h;. However, due to the random
signs of J&, the resulting change in h; is expected to
be random and thereby not affecting Eq. (5.2). A
part of the spin readjustment is taken care of by the
fact that the cavity factor Cp(h) does not follow h„.

The response of a nucleus of Z spins to h& is very
different from that of Z single spins each in a frozen
field. We need to calculate the susceptibility contrib-
uted by a nucleus by treating the nucleus as a single
unit. When h& is turned on, h is changed into
h + h& but h is unchanged if we ignore the decay of
metastable states. Thus the average magnetization
per nucleus is

r7t = „d3hd'h'P ( h —h„,h ) ( s ), (5.4)

where (s) is the total spins given h and h [see Eq.
(3.25)]. The susceptibility per nucleus is then

Xtt= ——, q
d'hd'h' — '„' ' i(s) iPp(h') =0.04

(5.5)

where we have used Eqs. (3.21) and (3.22) for
evaluating the integral, This result has not included
the effect of the decay of metastable states. As we
have mentioned earlier, the stable states have larger
total spins. Therefore, we expect X& to increase as
more metastable pairs decay. We now turn to this ef-
fect.

B. Time-dependent part of
the susceptibility

The decay of the metastable states will introduce a
time-dependent part of the susceptibility". The reason
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E = E —h2J/2h" =E„—h2/2A (5.6)

can be seen from Fig. 7. The center of the distribu-
tion is shifted from 0 to h& after the field is turned
on. The decay of metastable states will move the
cavity back toward zero. This will increase the net
spin and hence the susceptibility. The cavity would
also increase in depth as more metastable states de-

cay, but the contribution to the net average spin
comes only from the asymmetry of the cavity.

We estimate the cavity factor as follows. Ignore
the applied field h& for the moment and imagine that

the system is cooled down from a high temperature.
When the temperature reaches T, the metastable
states freeze. T should be about the same as T„
the transition temperature. Metastable states with

very high barriers would freeze a little earlier and

those with low barriers freeze a little later. As the
temperature drops further and before waiting for very

long, the metastable states follow the distribution

exp (—E/T ), with

for the cavity factor. For h & A

h /2AT —A/2 TCh =e e (5.7)

E„(h„)= —h„(s„)+E„(0) (5.8)

since the derivative of E„with respect to an applied
field is just the net average spin (s„)of the neigh-

bors. Thus, the new cavity factor is

A2/2A T

T-, A' ",'

and C(h) =1 for h & A. This factor is normalized

so that C(A) = 1.
After the field h& is applied, how would the cavity

change? We simply take the new shape as
C ( h —h„)since all local fields change by h„if h„is

small enough. There is an additional correction to
C ( h —h~ ) because the neighborhood would also

change with h&. For small h&, this change can be
estimated from Eq. (5.6):

Here E„denotes the energy of the neighbors and the
h' term is the energy of the nucleus [see Eq. (2.16)].
In other words, the distribution is frozen at the
equilibrium distribution of T . Ignoring the correla-

tion of E„with h, we arrive at the following estimate

Clearly h/A+ ( s„)is just the total spin of the nu-

cleus and its neighbors. The symmetric term C(h)
does not contribute to the net magnetization. The
asymmetric term will decay in time. Using the bar-

rier. height distribution (3.24), we obtain the time

varying part of the susceptibility

X'(/) = — d Ag (A) e r'
~p

' 3/2

d'hP (h) + —O(A —h) exp[ —(A —h')/2AT ]
m

(5.10)

(5.11)

We have replaced ((s„)')by nand —dropped

((s„)).Here the second average is over all the pairs
and n is the mean number of neighboring spins
which rearrange following the decay of the metastable
state.

The function g (A) is plotted in Fig. 8. It is calcu-
lated with T =1 and n =10. Figure 2 shows X' ob-
tained from Eq. (5.10) versus x = T ln(//r). The

I

magnitude of X' is roughly proportional to T and n

but the variation in x is roughly independent of these
parameters. Note that X' is negative. It is flat for
small x arid decays to zero for large x. Comparison
with experimental results will be discussed in Sec. VII.

o.oos—

0 &a
X

FlG. 7. The external field shifts the whole distribution to
the right. The cavity will slowly move back to the center to-
ward the dashed curve, due to decays of metastable states.

FIG. 8. The function g(A) for X [see Eq. (5.10)],
evaluated for Tm = 1 and n = 10,
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VI. REMANENT MAGNETIZATION

A. General considerations

The remanent magnetization is the macroscopic
magnetization which remains after the applied field
h& has been turned off. Its magnitude depends on
h~ and also depends on how the sample was prepared
and how h& was applied. Two cases are of current
experimental interest: (i) the thermal remanent mag-
netization (TRM), and (ii) the isothermal remanent
magnetization (IRM). In the case of TRM, the sam-
ple is cooled to the low temperature T from above
the spin-glass transition temperature T, at the pres-
ence of h~. Then one turns h& off. For IRM, the
sample is cooled to T without h&. One then turns on
h& for some time. Then one turns it off.

Clearly, the existence of the remanent magnetiza-
tion reflects the existence of metastable states. We
shall examine how the metastable states behave
under the TRM and IRM conditions in our simple
picture.

For a nucleus in the fields h and h, the applica-
tion of h& changes h to h + h& but does not change
h, as we learned earlier. Ho~ever, there are addi-
tional complications when h& is or was large enough
to produce a sizable magnetization, which then pro-
duces changes of local fields through the exchange
couplings. These changes of local fields are largely
random since J» are random. But it seems entirely
reasonable to expect some asymmetry in the distribu-
tion of the random changes since there is a preferred
direction h&. For simplicity we shall ignore this com-
plication.

We expect that as h& is turned on or off smoothly,
the total spin ( s ) for a nucleus always follows the
field smoothly or "adiabatically. " However, when
the variation of h& is very large, we expect some
abrupt readjustments of the neighboring spins to oc-
cur since the applied field influences every spin
directly. Such abrupt readjustments of the neighbor-
hood cause random changes on the local fields and
interrupts the adiabatic change. In short, turning h&

on or off effectively stirs up the spins and causes
readjustments. The probability for adiabatic change
to survive when the applied field is changed by h~ is
expected to follow

ing Eq. (3.3)] that n —10. This change of energy is
an estimate of the change of the barrier height for
the metastable state. When it is comparable to the
barrier height itself, the metastable state may become
unstable and decays right away, or decays faster due
to a decrease in barrier height. The barrier height
could increase as a result, too. However, the proba-
bility for this is small. The energy most likely would
increase (and hence the barrier height decreases) as a
result of stirring, not decrease. We can also look at
the effect still another way. Since h& dir'ectly affects
all the spins, it does not have to be large to produce
an abrupt change of at least one of the spins in the
neighborhood. Since a field change of order 1 would
most likely produce sizable changes for all spins, we
expect h~ to be —I/n. These arguments are all very
crude, but it is safe to say that h~ should be a frac-
tion of unity.

8. Thermal remanent magnetization (TRM)

We can gain some qualitative understanding by
looking at simple sketches of the distribution of h.
The sample is cooled with the field h& on. Thus we
expect a distribution centered around h& but with a
cavity around h =0, as shown in Fig. 9(a). This cav-
ity is created to minimize energy as the system is
cooled down. Now turn off the field h&. If h& is not
too large, the distribution ends up centered around
zero with a cavity around —h& with little change in
shape. This is shown in Fig. 9(b). The deficiency of
spins pointing in —h& direction due to the cavity
thus produces a total net spin in h~ direction. This
gives the remanent magnetization. Clearly the
remanent increases with h& linearly for small h&. For
larger h&, the increase is diminished by random
changes of spins mentioned above. The remanent
thus is expected to decrease for large h&.

(a)

P(/ ) e A M (6.1)

where hM can be estimated roughly as follows.
When the applied field is changed by the amount

h„,it affects each spin energy by —h&. Assuming
that the spins in the neighborhood of the nucleus are
randomly oriented, we expect the change of energy in
the neighborhood to be roughly Jn h„plus the
change in exchange energy, where n is some effective
number of neighbors. We argued earlier [see follow-

(bj

FIG. 9. TRM: (a) Distribution of h„before hz is turned
off (hz along x direction) and (b) shortly after hz is turned
off.
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The decay of metastable states then gradually
moves the cavity to the center and the remanent
magnetization thus decays. Based on this qualitative
picture of TRM, we can easily write down an expres-
sion for the remanent magnetization ii per nucleus
plus neighbors

t

R= Ji dAp(A)e "' d3hPO(h)(S)C'(h)p(hq)

(6.2)

where (S) = h/A+ ( s„)is the average total spin
(nucleus and neighbors), C' is a cavity factor, and
p(h~) is the decay factor [Eq. (6.1)] due to large h„.
For small h„,we can expand Eq. (6.2) to first order
and use Eq. (5.9) for C' to obtain simply

I

ha

(c}

hx

R(t) = (x"(t) i h, (6.3))

RTaM(t) = Ix'(t) Ih„e
As a function of h„,m (t) has a peak at hA = h~.

(6.4)

C. Isothermal remanent magnetization (IRM)

where x"(t) is the time-dependent susceptibility
evaluated in Sec. V [see Eqs. (5.6)—(5.11)]. This is

of course expected since it is the same cavity shift
which produces the magnetization in both cases. For
X', the cavity center shifts from 0 to h& as h& is
turned on, and back toward zero as metastable states
decay. For TRM, the cavity center shifts from 0 to
—h& when h& is turned off, and toward zero as meta-
stable states decay.

Equation (6.2) .is valid also for larger values of h„.
The dominating dependence of h& comes from the
survival probability p(h„)given by Eq. (6.1), since
hM is small compared to the scales of h and A in the
integral. Thus, we simply have

FIG. 10. IRM: (a) Initial distribution; (b) turn on h&',

(c) hz turned off. The cavities are exaggerated for the clari-
ty of illustration.

plitude proportiona1 to 1 —e ™.It will, diminish
-AA/AM

by a factor e M when it is shifted to —h& in Fig.
10(c). One immediately arrives at the reasonable
conclusion that the remanent can be fitted by

R~aM(t) = ~x'(t)
~ hz (1 —e " )e " . (6.5)

This should be good for h& not too small. It essen-
tially assumes that changing the field by a large
amount has the same effect as that of heating up the
system as far as stirring up the spins goes. After the
stirring stops the spins settle down very much like

they settle down when the temperature is decreased.
Therefore, for very large h~, the cavity created
around h =0 in Fig. 10(b) should be comparable in

size and shape as that in Fig. 9(a); which was a result
of cooling down from a higher temperature.

Again let us gain some qualitative understanding
by looking at some sketches of field distributions for
the nuclei. In this case, the sample was cooled
without external field. So we start with Fig. 10(a),
which shows a cavity around h =0. Now we turn on
h„.The whole distribution is shifted by h&. Then
we turn off h&, the whole distribution gets shifted
back. Therefore if h& is very" small, there is no
change at the end, i.e., no remanent magnetization.
However, for h& not small, other things can happen.
As we discussed earlier, h& causes decay. Thus, it
would create a cavity around zero and also makes the
cavity around hq shallower as shown in Fig. 10(b).
The larger h~, the stronger the effect. Now we turn
off h„.The result is a cavity at —h„[seeFig.
10(c)], as well as one at the origin. We therefore
have a nonvanishing remanent. The cavity generated
at the origin of Fig. 10(b) is expected to have an am-

D. Saturation remanent

m, —(x"(hM/Jn (6.6)

is consistent with our arguments.

Experimental results indicate that both TRM and
IRM approach an asymptotic "saturation remanent
magnetization" for large hA. Our results [Eqs. (6.4)
and (6.5)] show that IRM and TRM vanish for large
h&, and fail to account for the saturation remanent.
This is not surprising in view of the crudeness. of our
approximations. Our argument for the factor
exp( —h„/hM) of Eq. (6.1) was that h„stirs up the
spins and the average spin thus vanishes for large h&.

'This conclusion is accurate within an error of
0 (lan) where n is the number of neighbors. Thus,
a saturation remanent of the order
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Figure 3 summarizes our conclusions on the
remanent magnetizations.

VII. DISCUSSION

A. Comparison with other models

As a result of the vector nature of spins, the spin
configurations in this vector model are "soft" as op-
posed to the rigid configurations in the Ising spin-
glass model. We have constructed nuclei by putting
together strongly coupled pairs, trios, or more spins.
A metastable state is a result of cooperative behavior
of a nucleus and its neighbors. In contrast, the meta-
stable state in Ref. 5 for the Ising model involves
only the nucleus. The neighbors are rigid.

The anisotropy energy tensor for a nucleus is also a
consequence of the vector nature of spins. The bar-
rier height of a metastable state is of the order h "2/1

which is smaller for larger J. For the Ising model,
the barrier height is larger for larger J.

The quantum nature of this vector model allows a
simple calculation of the anisotropy energy tensor,
which would be more difficult to obtain in a purely
classical vector model such as that in Ref. 7.

The r ' interaction and the dimension three are
special for our calculation above, although the basic
theory of Sec. II is quite general. For short range,
Gaussian-distributed interactions, there would be far
fewer nuclei, for example.

The cluster picture is quite common in various
branches of many-body physics. One usually tries to
stress the similarities of different cluster approaches.
The more recent theory of glasses by Anderson,
Halperin, and Varma' approximated the low-lying
states by those of a set of two-level systems. The
linear temperature dependence of the specific heat,
among other observed results, followed. As was

pointed out in Ref. 5, the clusters in the Ising spin-
glass resembled the two-level system, of Anderson
et al. Again here we have nuclei which resemble
these two-level systems. However, there are some
important differences, too. For example, the specific
heat in Ref. 5 came from single-spin excitations, not
the metastable two-level systems, and in Ref. 7 the
specific heat came mainly from collective modes, i.e.,
the spin waves, not any cluster. The cluster in Ref.
5, and the nuclei here, play an important role in

metastability, i.e., in dynamics, not in specific heat.
The two-level systems of Ref. 10 were proposed to
characterize the basic energy-level structure of
glasses, not so much the metastability.

We have emphasized the change of neighboring
spins of a nucleus when the spin of the nucleus

-is changed. Such change is very important in the for-
mation of metastable states (see Sec. II C). This
change is parallel to, the role of "reaction field" as

discussed by Cyrot. " The discussion of Sec. III in
the correction to local-field distribution can be in
some sense indirectly related to the idea of the reac-
tion field.

We note that the concept of "anisotropy" has been
extensively used in analyzing experimental data on
spin-glass (see for example Ref. 1 and reference cited
therein, Ref. 12). There has been some theoretical
effort to find a justification (e.g. , Ref. 11). The no-
tion of anisotropy fields and tensors introduced in
Sec. II seem to serve as a simple and natural justifica-
tion directly following the mean-field approximation.

It should be emphasized that this anisotropy con-
cept discussed above is a local anisotropy seen by nu-
clei. It is not the anisotropy involved in the electron
spin resonance (ESR) line-shift and -broadening ex-
periments, which comes from spin nonconserving in-
teractions such as spin-orbit, dipolar, and crystal
fields. These nonconserving interactions are not in-
cluded in our model. They have to be included in or-
der to calculate ESR observed quantities. Recently
there have been ESR experiments" and phenomeno-
logical theory. '

B. Quantitative calculation

The picture provided by the mean-field approxima-
tion formulated above is that of a set of single spins
and nuclei, each in self-consistent fields h and K„'„.
This is essentially a semiclassical approximation.
Quantum mechanics enters only in determining the
structure of nuclei and K„'„.This picture points to
the direction of a more quantitative calculation. With
the structure of nuclei and K„'„ready,one can sam-
ple the statistics of spins, nuclei, and local fields by
numerical simulation. The simulation program will

be similar to those in Refs. 5 and 7 but will be more
involved.

The qualitative picture of the cavity in the field dis-
tribution and the concept of h~, the memory field,
should remain useful in a quantitative analysis.

C. Comparison with experiments

The above rough calculation is mainly a prelim-
inary check on the ideas formulated in Sec. II.
Although exhaustive comparison with the vast
amount of data available is not warranted at this
stage, we see that our crude results above do describe
qualitatively some of the observations.

The main result here is the estimate for the time
dependence of the susceptibility and the remanent
magnetization. This time dependence is summarized
in Fig. 2 for X" vs T In(t/r). In our crude approxi-
mation, the remanent magnetization is proportional
to ~X'~. Its plot versus T in(t/r) would just be Fig. 2
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upside down since X' is negative. For T (( T,
( T, —1 in our units), the plot of X" vs ln( over one or
two decades of t would be just a segment of the curve
in Fig. 2 and would thus appear as a straight line.
Experimental data are often fitted to a small ex-
ponent aT defined by

gupta, and Professor Amnon Aharony for helpful
discussions and references. He is also grateful to Dr.
Dasgupta and Professor Wayne Saslow for carefully
reading and commenting on the manuscript. This
work is supported in part by the National Science
Foundation under Grant No. DMR-77-04679.

fX"f ( r -a= —In/X f,
dx (7.1) APPENDIX

where x =—T In((/r) is the absissa of Fig. 2. It is
clear that the value of a depends on which segment
of the curve in Fig. 2 is plotted. It depends on the
value of T in(1/r) crucially for a given range of (,
which is often 1—1000 seconds. Although the defini-
tion of 7 is far from precise, the values of 7 vary
considerably among different spin-glasses. For exam-
ple, for (LaGd)A12, Lohneysen and Tholence3 gave
7 10 sec; for MnCu, the estimate of Prejean'
would imply 7 —10 " sec.

According to Fig. 2, we have a = 0 for very small
x = T ln(1/r). For x & I, ~X'~ roughly decays ex-
ponentially in x and a = 0.3. Since T, —1 in our
units, a ' is roughly a few times larger than T, .
These results are in qualitative agreement with obser-
vations. (Note that aT can be identified as a of Ref.
3, and a ' is T, of Prejean, Ref. 1.)

The above results show also that, for T &( T„the
susceptibility is an increasing function of T. The
magnitude of X at T = 0 is smaller by a factor of 4 or
5 than that at T, (estimated by Curie law), according
to our analysis. Because of the uncertainties in the
number of nuclei, the parameter T, .and the effec-
tive number of neighbors per nucleus, the estimate
of the magnitude of X is very crude. These uncer-
tainties do not enter in the analysis of the time varia-
tion discussed above.

The observed falling off of the remanent magneti-
zation as a function of the applied field" is explained
in Sec. VI as a consequence of the decay of spin
memory due to the stirring effect of varying the ap-
plied field.

We can apply our analysis above to examine the
hysteresis loop. We would get a simple smooth loop.
Recent experiments" on hysteresis show that some
spin-glasses show smooth loops, but some exhibit
sudden reversals of a large fraction of spins. Such
sudden reversals were attributed to effects of spin-
orbit interactions. Clearly, much more theoretical
work is needed.
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1. Derivation of the 1oca1-field distribution assuming
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First we express the distribution as a Fourier in-
tegral

i

P(h) = 5 h ——, XJjh,.
J

d3g(2~) —3~(r hg(~e
' i ji)

J
(Al)

Each average is over Jj ——+4/r3 and orientations h, :

dhe
—2( g ~ h/r

V~~p 4~ ~ (A2)

8~ g(hot)
3hp V

where the function g is defined by

(A3)

'I

t'x dy 1g(x) =—x Ji —, I ——siny
p y

(-x')"
, (2n —1)(2n+I)!

1
t'" dz= —mx —1+x i

—sinz
4 x z3

~here dv =—4m r2dr and V is a spherical volume cen-
tered at r =0. We have introduced a lo~er cutoff
Vp:

3
s'fp to exclude the possibility of spins closer to

the origin than some minimum distance rp. We shall
make use of this cutoff later.

The integral over the solid angles dh is easily done.
In the limit of large V, we have

r

C(g) = I+—t dv sin —I
I
lr Jvp 2g r3

!
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hp =—2/rp'

Let there be N spins in the volume V. In the large V
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limit, we have from Eq. (A3)

C(g)N-exp — g(hpg)—8m N

3hp
(AS)

In our units, N/V= 1. Substituting Eq. (AS) in Eq.
(Al), we obtain

P(h)= d $(22r) 3exp[i g h —(8n/3hp)g(hpg)]

P ( h ) = —', [(—'2r')'+ h2] (A7)

(A6)

In the limit of hp ~, we have (grr/3hp)g(Ape)

3
2r g. The g integral is then easily evaluated to

give

We shall make the approximation r1= r2, i.e., we
assume that the distance between spins 1,2 is small
compared to their distances to spin j, or,
J)2 » J(J J2J Since Ir~+r21 is either two or zero,
Eq. (A12) becomes simply'

C(g g+) ~ [(e 2if—hir ~

) + (e 2i f —hlr ) ]

= —,
' [c(g)+c((")], (A13)

where C(() is given by Eq. (A2), and hence Eq.
(A3). It follows that h and h are independent, and

P(h, h ) =Pp(h)Pp(h )
(A14)

Pp(h)—= d g(2n) 3exp[if h —(4rr/3hp)g(hpg)l

Sm 1 8

3h
g(i,g) =-(-~/, )g (A8)

to obtain

For finite hp, we can evaluate P(h) approximately
using the first term of the series in Eq. (A4): which differs from Eq. (A6) only in an extra factor—

2

in front of g (hpg).
For small h, we have

Pp(h) = —,
' [(-,'~')'+i']-'

P(h) = (22rihp2) 3 2e "p, iho=—
p

2r/tp (A9)

This form is of course what the central limit theorem
would imply. It makes sense only if we integrate it
over a range comparable to p, Q.

and for large A, we have

I 2/ 2

Pp(h) = (2rp, ') ''e

where ihp2 is given by Eq. (A9).

(A15)

2. Joint distribution P(h, h )

Using the same method and under the same as-
sumptions as above, we can calculate the distribution
function for h =-(h~+ h2) and h = —,(h~ —h2) for

a pair s1, s2. Write

3. Derivation of the effective Hamiltonian for
the strongly coupled spin trio

We write the Hamiltonian H123 in two parts:

H)p) = Hp+3C,

HQ= —J12s1 s2 —J23 s 2 s 3 J31 s 3 s
(A16)

P(h, h ) = (8(h —-'(hi+ h2))5(h —
2

(hi —hP)))

(A 10)

1 ~ ~ 1
& lJ &2J

—,(h, + h, ) = —, X (J(, + J22)—= X2 J f1J

and K is the rest of H ~23 as given in Eq. (2.25). We
assume J12 is the largest of the three J's. Without
losing much generality, we simplify the algebra great-
ly by assuming J23= J31=—J. We have, writing K for

(A11) Hp= —Ks~ s2 —J(s~+ s2) s3 (A17)

Similar to Eq. (Al), we obtain

P(h, h ) =(22r) p d3$d3$'exp(i g h+i g h )

The energies are now very easy to find. We obtain a
quartet and two doublets:

F. ' '= ——K ——J
xc(g, g )

(A12) p (0) (A18)

~ Jgg 1 g2C($, $ )= exp —ig h —+-
~1 ~2

1 g2—ig h ———
r

p (0)
4

Now we can use the standard second-order perturba-
tion theory to calculate the splitting of the quartet
levels. The new quartet levels are eigenvalues of an
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operator H, fq in the four-dimensional subspace of the
quartet

H, rr
= Eo' ' — .QXD)XQ — QXD 2X Q

2

This procedure applies to all the other terms in 3CDDC

of Eq. (A21). The algebra is straightforward. After
we express H, ff entirely in terms of s operators, we
obtain the form Eq. (2.26) with

where Q is the projection operator for the quartet
subspace, D1 and D2 are those for the two doublet
subspaces, respectively, and AE1 2:E1 2 Eo . Let
us write & as

A =—1+—1 J 1 JB=—1—
6J 2K+ J ' 6J 2K+J

(A24)

K= —h1 p, 1
—h2 p, 2, p 1, 2=—s1, z

—s3 (A2O)
EO=EO 4A (b(" +by ) zBh] ' hz

then

XDBC = h1~h 1p p, 1~D p, 1p+ h2~hp'p p2~D p, 2p

+ h)'~h2'p (&)~D&zp+&2pD&)~) (A21)

The anisotropy energy tensor K„'„definedby
(2.26) and (2.27) is

K„'„=A(b)'„h)'„+bp„hp„)+ B(h)'„hz'~ + hg~h)'„)

Qp, ,~Dp~pQ =as~sp+b5~p (A22)

where repeated a, P imply summation over x,y, z.
Each term of Eq. (A21) involves a tensor operator,
e.g. , p, 1 Dp, 1&. In view of the signer-Eckart
theorem (or, simply by symmetry), the matrix ele-
ments of a tensor operator in the quartet subspace
must be proportional to a combination of those of
s s& and the identity, e.g. ,

(A25)

This tensor is defined by two vectors, h1 and h2.
Therefore two of its principal axes are in the plane
defined by h1 and h&. The third is perpendicular to
the plane and has zero principal radius.

In the plane, the trace and determinant of K' are,
respectively,

where a, b are constants. To determine a, b, we sim-

ply set a = P = z and calculate two matrix elements of
both sides, and then solve for a and b. In particular,
take l —,) and l —,), i.e., s, = —, and —,, we obtain for3 1 ~ 3 1

D1.'

TrK"=A (h~"' +h&') +2B h&

detK'=(A' —B')(h, & h2)'

(A26)

O=a( —', )'+b

( —, lpi, Disci, l —, ) = —, =a( —,)'+b,1 1 1 1

1 9a= ——, b=—4' 16

(A23)

From Eq. (A26), the two nonzero eigenvalues of K'
are readilv obtained. They are both nonzero provid-

ed that h1, h2 are not collinear. The two lowest-

ene~ry configurations have s pointing perpendicular
to h1 and h2.
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