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Critical behavior of the four-dimensional Ising model
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The phase transition of the spin-one-half, four-dimensional hypercubic Ising model has been

investigated by means of the Monte Carlo renormalization-group technique. The results agree
' with mean-field critical exponents.

I. INTRODUCTION

While the four-dimensional (4D) Ising model is not
directly applicable to real magnetic systems, it is use-
ful to investigate the influence of dimensionality on
phase transitions. A comparison of results for the
discrete hypercubic model to those from continuous
models may shed some light on problems concerning
universality and ~ expansions. Further, the four-
dimensional Ising model is of interest for the Z2 lat-
tice gauge theory' in elementary-particle physics.

The four-dimensional simple hypercubic Ising lat-
tice (the 4D analog of the simple cubic lattice, with

one particle per unit cell) has already been investigat-
ed by high-temperature series expansions. Fisher
and Gaunt' derived terms up to 11th order in the
nearest-neighbor coupling, from which the transition
was estimated to be at J/kT; =0.29976. The critical
exponent for the divergence of the susceptibility
(X —

( T —T, (
'r) was estimated as y = 1.094+ 0.0025.

Another estimate of the critical coupling from series
expansions was given by Moore. ' He obtained
J/kT, =0.29962 + 0.00013, close to the value of Fish-
er and Gaunt. ' He also provided estimates for the
critical exponents o., y, and v for the temperature
dependence of the heat capacity, susceptibility, and
correlation length, respectively (a = —0.12+0.03,
y = 1.065 + 0.003, v =0.536 + 0.003). However, the
series of Moore were also consistent with a set of
mean-field type exponents (n = 0, y = 1, v = 0.5) if
logarithmic correction factors were allowed. Unfor-
tunately, the increase in the number of parameters
that had to be fitted to the series expansions, was
found to inhibit an accurate determination of the ex-
ponents in that case. An approximation using an ex-
pansion of y in the inverse number of dimensions by
Abe4 suggested that y approached 1 continually with
increasing dimensionality, which was in qualitative
agreement with results of Fisher and Gaunt. ' Also
Bakers found, using series expansions, that the criti-
cal behavior in four dimensions was nonclassical.
Further, he concluded that his results did not support

hyper scaling.
However, most recent results are in favor of

mean-field exponents. It is interesting to note that
for d ( 4 dimensions, molecular-field theory gives
internally inconsistent results for the influence of
fluctuations at the transition. For d «4, these incon-
sistencies disappear, allowing for the possibility-that
mean-field theory gives an accurate description of the
critical behavior. Kadanoff et al. ' have used an ana-
lytic renormalization-group (RG) method (one-
hypercube approximation) to derive the critical ex-
ponents of the four-dimensional hypercubic Ising
model. Their results are close to the mean-field pre-
dictions.

Further results have been derived from related
Hamiltonians. Starting from a Landau-Ginzburg
Hamiltonian (continuous in space as well as in the
length of the spin) Wilson' found, using
renormalization-group transformations, that the criti-
cal behavior was determined by the Gaussian fixed
point; i.e., the critical behavior is essentially
molecular-field-like. This result was confirmed and
supplemented by calculations of Larkin and Khmel-
nitski' and of Wegner and Riedel' who showed that
the existence of a marginal eigenvalue at the critical
dimensionality d =4 leads to a modification of the
classical critical behavior of the specific heat and the
susceptibility by correction factors )In) T —T, )('~'. As
already noted by Moore, ' these correction factors
could account for the difference between series
results and mean-field theory. Recent series expan-
sion results of McKenzie et al. " and Gaunt et al. '

are in agreement with classical critical behavior modi-
fied by such correction factors. Further, these au-
thors did not observe (using longer series than were
available to Baker') any apparent violations of hyper-
scaling. Monte Carlo (MC) simulations have also
been found to be consistent with the presence of log-
arithmic corrections. "

A further confirmation that the four-dimensional
Ising model plays the role of a borderline case
between molecular field and nonclassical critical
behavior is given by Knops, van Leeuwen and Hem-
mer. ' Their position-space RG treatment included
weak long-range interactions and showed that the
infinite-range fixed point is attractive for d & 4.
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II. RESULTS

We have applied the Monte Carlo —renormaliza-
tion-group (MCRG) technique to the spin-one-half
four-dimensional simple hypercubic Ising model.
MCRG calculations were first described by Ma."
The MCRG technique used here derives critical ex-
ponents, which are related to the eigenvalues of the
linearized RG transformation, from correlations
which are obtained by MC simulations. The principle

'of this MCRG method is described elsewhere. ' The
method has previously been applied to the two- and
three-dimensional Ising models' ' with results that
are in good agreement with values for the critic.- '. ex-
ponents obtained by other methods. It was shown in
Ref. 17 that a RG transformation with a linear scale
factor 2 and a modified majority rule (using a "tie
breaker") works well in two dimensions. Therefore,
a similar RG transformation was applied to the four
dimensional model. The critical parameter
i/kT, = 0.29962 was taken from Moore. ' Although
the MCRG method itself can be used to estimate the
transition temperature, the error margins of Moore's
result are smaller than the present MCRG calcula-
tions on a 124 lattice can produce. The interactions
used in analysis were divided into an odd and an
even group as explained in Ref. 19. Even interac-
tions used in the present MCRG analysis are between
nearest neighbors, 2nd neighbor, 3rd neighbors, and
4th neighbors. Odd interactions are: one spin, and
three spin (corresponding to a 90' angle) interaction.
The lattice size permitted two RG transformations,
yielding a 34 lattice, still allowing for a large number
of interactions.

Results for the eigenvalue exponent y„= ink. „/ lnl
are shown in Table I, together with results for
mean-field theory. The subscripts o, e stand for the
odd and even interaction subspaces, A. stands for a
relevant eigenvalue of the linearized RG transforma-
tion matrix, and I is the linear scale factor of the RG
transformation. The MCRG results in Table I show
a clear trend towards mean-field exponents.

The accuracy of our data is determined by statisti-
cal errors, finite size effects, uncertainty in the transi-
tion temperature, convergence with increasing
number of interactions included in the analysis, and
convergence with increasing number of RG itera-
tions.

(i) The statistical accuracy was estimated from a
comparison with other MCRG runs using different
initial configurations. These comparisons suggested
that the statistical error in the eigenvalue exponents
is about 0.1 for the second RG step, which is more
than the difference with the mean-field eigenvalue
exponents. Time dependent correlations further
showed that. the relaxation time of the system was
very short (about 15 MC steps per site for the
nearest-neighbor correlation function of a 12~ lattice)
in comparison with the length of the calculation.

(ii) Finite size effects were estimated by compar-
ing the results in Table I with those from a calcula-
tion on a 64 lattice. The first RG step yielded, within
statistical error, the same results so that finite size ef-
fects probably are unimportant.

(iii) The inaccuracy as a consequence of the un-
certainty in the transition temperature was inferred
from a MCRG calculation at i/kT =0.294, 2% above
the transition temperature. The eigenvalue ex-

TABLE I. Eigenvalue and critical exponents for the four-dimensional, spin-one-half Ising model.
Results for a MCRG calculation of 6000 MC steps per site (after 600 steps per site to allow the sys-
tem to reach equilibrium) on a 124 lattice are presented as even (temperaturelike) and odd (mag-
netic) eigenvalue exponents y, and y, . The calculation was performed at the critical coupling as
given by Moore (Ref. 3). The number of digits in this table is not meant as an indication of the
accuracy.

RG
step

Number of
interactions &e

1.57
1.64
1.63
1.63

—0.55
—0.44
—0.45
—0.45

0.64
0.61
0.61
0.61

2.97
2.96

2.87
2.84

0.06
0.08

2.00
2.04
2.04
2.04

0.00
0.04
0.04
0.04

0.50
0.49
0.49
0.49

3.06
2.96

3.28
2.83

—0.13
0.09

Mean field 0.5
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ponents for the second RG step decreased by about
0.4 (even) and 0.2 (odd). This indicates that the er-
ror as a consequence of the uncertainty in and
between the values of the critical parameter as given
by Fisher and Gaunt, ' Moore, and Gaunt et al. " is
probably unimportant.

(iv) The effect of the n'umber of interactions in-

cluded in the analysis can be seen from Table I. In
accordance with MCRG results"" on analogous,
lower dimensional Ising systems using the same type
of RG transformation, we observe that only a very
small number of interactions are important in this
case. The accuracy of the entries in Table I is there-
fore mainly determined by statistics, and the error in
the eigenvalue exponents is about 0.1.

Actually, the rapid apparent convergence of the
MCRG data to the classical values is some~hat
surprising. A marginal operator should be present at
the critical dimensionality giving slow convergence
toward the mean-field exponents and logarithmic
corrections to scaling. ' We do not see this effect,
which suggests that the component of the 4D
nearest-neighbor Ising Hamiltonian in the direction
of the marginal field is relatively small. This is in
basic agreement with calculations of Kadanoff et al.

for the 4D hypercubic Ising model, which yielded a
fixed point very close to the nearest-neighbor Harnil-
tonian. In such a case, i.e., when the marginal scal-
ing field is small, one may still expect to find "effec-
tively" rapid convergence (the effects of slow conver-
gence are smaller than the statistical error).

Thus the accuracy in our results is mainly deter-
mined by statistics and by the fact that only two RG
transformations could be performed together with the
possibility of slow convergence. The inaccuracy is
tentatively estimated as 0.1 in the eigenvalue ex-
ponents. We conclude that our results agree with a
small marginal field and the classical set of critical ex-
ponents.
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