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The spin-spin correlation function in the ground state of some two-dimensional fully frustrat-

ed spin models are investigated. The correlations are long ranged and decay as I/I' t, where I is
1

the distance between the two spins and q = —.This result is true for both the square and tri-
2

angular fully frustrated lattices, thus suggesting that these models form a universality class. It is

shown that the fully frustrated Ising model on a square lattice can be mapped exactly into a spe-

cial Baxter model. The spin-spin correlation function of this Baxter model can be calculated ex-

actly. The ground state of the fully frustrated square Ising model corresponds to the free fer-

mion point of the F model and therefore, through duality, to the decoupling point of the critical

Baxter line. The relationship between the F model above the critical temperature and the Gaus-

sian model above the multicritical point is discussed.

I. INTRODUCTION

Recent interest in spin-glasses has led to the inves-
tigation of the so-called fully frustrated periodic sys-
tems. In the case of discrete spins these are models
with competing ferromagnetic and antiferromagnetic
interactions. The distribution of these interactions
ho~ever instead of being completely random is

periodic. In two dimensions the interactions form a
periodic pattern of the kind shown in Fig. 1.
Although these models in two dimensions do not
show a spin-glass transition at finite temperature,

FIG. 1. The "fully frustrated" Ising model (FFSI) on the

square lattice. The cr spins are surrounded by two fer-

romagnetic and two antiferromagnetic bonds, while the s

spins are surrounded by four ferromagnetic bonds. The
spins denoted by circles are integrated out.

they show frustration effects" which are believed to
be essential for spin-glasses and also their ground
state has the character of spin-glasses.

Because of this last property, in this paper we in-

vestigate more carefully the correlations in the
ground state of several fully frustrated periodic
models. It is well known since the work of Stephen-
son' that the spin-spin correlation function of the
two-dimensional antiferromagnetic Ising model on a
triangular lattice (ATI) at zero temperature (but only
there) has a power-law behavior, reminiscent of
critical-point correlation functions. The ATI model is

a fully frustrated periodic model, that is at T =0 (T
is the temperature) there are unsatisfied bonds in

each unit cell. This lead's to an infinitely degenerate
ground state in the thermodynamic limit with finite
entropy per site. 4

An interesting question which one would like to
answer is whether the power-law decay of the spin-

spin correlation function is the property of only the
ATI model, or it is also true for other frustrated
periodic models. This question was raised by several
authors. Andre et ai. ' conjectured that this is true
also for the model iritroduced by Villain. Monte
Carlo studies' also suggest the power-law behavior.
However none of the above works gave the concrete
value of the q exponent characterizing the power-law

decay of the correlation functions. Recently South-
ern et al. ' showed that Villain's fully frustrated Ising
model on a square lattice (FFSI) can be mapped into

a special Baxter model. From this, they concluded
that the T =0 point of the FFSI model corresponds
to the F-model limit of the critical Baxter line. On
the basis of the results of Barber and Baxter South-
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em et al. conjectured that q= —for the FFSI model
1

being different from the result for the ATI model
where q = —.This would suggest that critical ex-

2

ponents in the case of frustrated periodic systems do
depend on the lattice structure thus naive universality
is not valid for these systems. There are also other
indications that in the case of fully frustrated systems
the lattice structure might be important. In three di-

mensions the antiferromagnetic fcc lattice has a first-
erder transition, ' while the fully frustrated simple
cubic lattice seems to have a higher-order transition. "

In the present paper we analyze the spin-spin
correlations in two dimensions more carefully and
show that q= —, also for the FFSI model at T=0.
The result q = —, will be obtained in two different

ways. First, the mapping of the FFSI model into a
special Baxter model will lead to the identification of
the T =0 point of the FFSI model with the free-
fermion point" of the F model ~ This point is
equivalent through duality to the decoupling point of
the critical Baxter line. " From this duality one ob-
tains that the spin-spin correlation function of the
FFSI model at T =0 maps into the square of the
spin-spin correlation function of the pure Ising model
at the critical point. Since the latter correlation func-
tion has q = —,we obtain the result q = —, for the

1 1

FFSI model.
We can also calculate the correlation function of

the FFSI model by connecting it with another model
originally introduced by Vaks, Larkin, and Ovchinni-
kov. ' For this model the correlation function was
obtained exactly for all temperatures. This connec-
tion will allow us to investigate the vicinity of the
T =0 point of the FFSI model and will help to
understand the special nature of this point. Finally,
the relationship between the FFSI model and a spe-
cial Baxter model gives the exact correlation function
of the Baxter model along a particular line in the
space of coupling constants.

The value of q at the critical point of the F model
is known exactly due to Barber and Baxter. They
obtained q = 4. At the free fermion point of the F
model we get q = —,. The F model has long ranged

1

correlations for any temperature above the critical
point, ""so q varies continuously with the tempera-
ture just like in the Gaussian model. ' The critical
point of the F model can be shown to be equivalent
to the multicritical point of the Gaussian model. "
Using the results of Kadanoff and Brown' and those
of Knops" one can derive a mapping function con-
necting the coupling constant of the F model with the
coupling constant of the Gaussian model.

The paper is organized as follows. In Sec. II we re-
capitulate the available exact information about the
FFSI model and show how this model can be mapped
into a particular Baxter model. In Sec. III we analyze

the ground state of the FFSI model in terms of this
Baxter model and identify this ground state with the
free fermion point of the F model. By performing a
duality transformation the correlation function of the
FFSI- model at T =0 will be mapped into the square
of the pure Ising model correlation function at the
critical point. The relationship between the F model
and the Gaussian model is discussed also in this sec-
tion. In Sec. IV we consider another model on a un-
ion jack lattice, which contains the FFSI model as a
special case and for which the two-spin correlation
function is known exactly. In Sec. V we analyze the
correlation function of the newly introduced model
around T = 0. In Sec. VI we summarize our -results.

II. FFSI MODEL

The FFSI model is shown in Fig. 1. Single lines
denote ferromagnetic bonds J & 0, while double lines
denote antiferromagnetic bonds with absolute value
equal to J. This model was introduced by Villain' in
order to investigate frustrated systems without ran-
domness. It was shown that this model does not
have a phase transition at any finite temperature,
The free energy is an analytic function for any
nonzero temperature. The ground state of the FFSI
model however is infinitely degenerate in the ther-
modynamic limit (all the spins denoted by a. in Fig. 1

are "loose" at T =0, the energy does not change if
one flips any of them). The entropy per site is
S = G/m =0.2916,' where G is the catalan constant.
The singular part of the free energy, f, behaves like
e 41 "r at low temperatures' (here k is the Boltzmann
constant). These results can be compared with those
obtained for the ATI model, where 5 =0.32306
(Ref. 20) and f, has the same low-temperature
behavior as above. " In the case of the ATI model
the two-spin correlation function was also calculated
exactly for both T =0 (Ref. 3) and T AO." At
T =0 the correlation function decays as r ", where r
is the separation between the two spins and q = —,

For T close to zero, the correlation function has the
asymptotic form e ' r where g = e'J "r is the correla-
tion length. " If one defines a reduced exponent
like" f, —( '2 '~" then one gets that 2 —a = 2v for
the ATI model. This implies hyperscaling and it will

be shown to be satisfied also for the FFSI -model.
Let us now try to determine the behavior of the

two-spin correlation function of the FFSI model. In
principle this can be expressed as a Toeplitz deter-
minant, but in the present case this is very tedious.
Instead, we will map the FFSI model into other
models and use the known information about those
models. In this section we map the FFSI model into
a special eight-vertex (8V) model. This is achieved
by a decimation transformation. By summing the
spins at lattice sites denoted by circles in Fig. 1 we
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get two interpenetrating Ising sublattices (formed by
the o and s spins) which are coupled through a four-
spin interaction (K4). The spins on the individual
sublattices are coupled through a nearest-neighbor in-
teraction (K2), but because of the special distribution
of the positive and negative bonds in the original lat-
tice there is no two-spin interaction, coupling spins
on different sublattices. One then recovers the 8V
model as formulated by Kadanoff and Wegner. '
One obtains

ZF(N;K) =e'N "Zsv(N/2;K2, K4)

2, in the limit T =0 one reaches not the critical point
of the F model, but rather the free-fermion point" of
the F model. Approaching the K2= ~, A. = —1 point
along the critical Baxter line one reaches the critical
point of the F model.

It is clear that under the decimation transformation
the correlation functions GF (K),GF'(K) between
two o- or two s spins in the FFSI model map, respec-
tively, into the correlation functions Ggy (K2, K4),
G8v (K2, K4) of the SV model between spins on the
same sublattice.

Here ZF and Z8v are the partition functions of the
FFSI and 8V models, respectively, N is the number
of lattice sites in the FFSI model K = J/kT and

III. EQUIVALENCE BETWEEN THE GROUND
STATE OF THE FFSI MODEL AND THE

0 POINT OF THE F MODEL
A = —, lncosh2K+

8
lncosh4K (2)

K2= —, lncosh4K
1

K =K 1
4lncosh2K

ln cosh4K
=ZK, . (4)

The 8 vertices of the 8V model are show in Fig. 3.
In the usual parametrization "the model solved by

Baxter corresponds to the following choice of the ao;

weights:

-2K4
e = sinh2K2 (5)

Our 8V model is special in that K2 and K4 are not
independent. In the (K2, X) plane equations (3) and

(4) give a curve which is depicted by a solid line in

Fig. 2. The dashed curve of Fig. 2 corresponds to the
critical Baxter'line and is given by.

CO I
= 0J2 = 0 0J3 = QJ4 = 6

QJ5 0J6 C 0J7 co8 = d
(6)

If d =0 and the weights are normalized in such a way

that c =1, the 8V model reduces to the F model. '

In order to analyze the K2= ~, A. = —1 point of the
solid line of Fig. 2, in terms of the weights, we recall
the correspondence between a, b, c, d, and K2, K4,

Now, the T =0 (K = ~) point of the FFSI model
corresponds to the K2= ~, A. = —1 of the 8V model,
which is the F (Ref. 9) model limit of the SV model.
The ground state of the 8V model becomes infinitely
degenerate at its F model limit. In the next section
we will show however that along the solid line of Fig.

-K4
a =tJ =He

2K 2+K 4c =He
-2K 2+K 4d =He

(g)

(9)

Kp

--2.0
I

I

I

I -- l.8
I

I

I

I -1.Z
I

I
I
I
& --0.8

K2+K4 ———ln2 .
I

2

Putting this into Eqs. (7)—(9), we get

(10)

lim a/c = —, , lim d =0
K ~oo

2 . 2
K

Here we used the parametrization given in Ref. 9.
SirIjce in our case the two-spin interactions on the two
sublattices are equal, we have a =b. In the above
formulas A is constant setting the normalization of
the weights. In the limit K2 ~, P —1 the equa-
tion of the Baxter line, Eq. (5) reduces to

(3) (4) (5) (6) (7) (8)

I I I I I I I I I l I I

2 4 6 8 l0 l2 X

FIG. 2. The dotted line is the Baxter line, or critical line

of the 8V model. The full line gives Eq. (4).
FIG. 3. Vertices in 8V model. In the F-model limit one

does not have vertices (7) and (8).
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which corresponds to the critical point of the F
model. " Equations (3) and (4) in the limit K
lead to

K2+ K4 = —ln2
i

4

which when inserted into Eqs. (7)—(9) gives

lim a/c = I/J2, lim d =0
K 2~oo

(12)

(13)

In Fig. 4 the critical Baxter line (dotted line) and
the line corresponding to the FFSI model (solid line)
are given in terms of the weights. Moving along the
d/c =0 line corresponds to varying the temperature
in the F model. In terms of the parameter lL, intro-
duced by Lieb i2 5 I is the, critical point of the F
model, while-at the point given by Eq. (13) d =0.'2

We thus conclude, that the ground state of the FFSI
model is equivalent to the 5 =0 point of the F
model. At the b, =0 the Baxter weights satisfy the

OJiQJ2 + M3(d4 = OJ5QJ6 +Cd7078 (14)

Ia b
)c c
I

I

I

I

I

I

2 I
'. ..

I

I

l

I

I

IL~ J ~ J l J
0.2 0.4 0.6 0.8

c

FIG. 4. The critical Baxter line (dotted), the FFSI model

(solid line), and the F-model line (the a/c axis).

free-fermion' condition. As was shown by Hurst
and Green the most general 8V model can be
solved exactly if Eq. (14) is satisfied. Using the exact
result of Villains for ZF in Eq. (1) at T =0 and the
result of Lieb for the partition function of the F
model at 5 =0, '2 one can verify that Eq. (1) (where
Z8v is replaced by the partition function of the F
model) holds.

Now let us calculate the correlation function of the
FFSI model at T =0. As has been pointed out at the
end of the previous section Gr (K) [GP(K) ] is

mapped into Gsv (K2, K4) [Gs'v (K2,K4) ]. By per-

forming a duality transformation's on the a.(s) sub-

lattice of the 8V model we can map Gsv (Kp, Ks)
[Gsv (K2,K4)] into G'A'T (L),Lp', L4)
[GAT (L ~, L2„L4)]. Here GAT is the correlation
function of the Ashkin-Teller (AT) model, L,
and L2 are the two spin couplings, and L4
is the four spin coupling of the AT model. It is

shown in the Appendix that the spin-spin correlation
function of the FFSI model can be transformed into
the polarization operator-polarization operator corre-
lation function of an AT model. T =0 of the FFSI
model will correspond to the decoupling point of this
AT model. At this point the polarization-
operator —polarization-operator correlation function is

equivalent to the square of the spin-spin correlation
function of the Ising model at the critical point. By
this we immediately get the result that

Kr = —, ln2(1 —Ll) = ln2sin( —,sr'KG) (16)

Here Kr (Ref. 12) and Ko are the coupling con-
stants of the F and Gaussian models, respectively.
This means that, for example, q of the Gaussian
model at K~ is the same as q of the F model at KF
given by Eq. (16). The multicritical point
(Ko =2/~) of the Gaussian model" corresponds to
the critical point (KF = ln2) of the F model.

IV. MODEL OF VAKS, LARKIN, AND OVCHINNIKOV

Consider the model shown in Fig. 5. Spins 7, o-, s
are Ising spins on a union-jack lattice. The spins are
coupled to each other through two different two-spin
couplings. The dashed interaction is denoted by Ji,
the solid is denoted by J2. The v spins have 4
nearest neighbors, the s and o spins (which are com-
pletely equivalent and are denoted by different sym-
bols because of later convenience) have 8 nearest
neighbors. This model was introduced and solved
exactly by Vaks, Larkin, and Ovchinnikov for arbi-
trary Ji and J2. ' We will refer to this model as the

G"(rT=O, ) [or GF (r, T=0)] ~ . (15)
~1/2

%e now know the value of g at 5 = —1 and 5 = 0
along the F model. At b, = —1 the exact result of
Ref. 9 gives q = 4, while at 5 = 0 we have just ob-

tained q = —,. q changes continuously along the F
model line above the critical point. It is well known
that the situation is similar in the Gaussian model'
and it was shown' ' that the AT, SV, and F models
belong indeed to the same universality class as the
Gaussian model provided the coupling constants of
these models are appropriately mapped into the cou-
pling constant of the Gaussian model. These map-

ping functions for the AT and 8V model were given
by Kadanoff and Brown. " Connecting the Gaussian
model directly to the F model' leads to
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FIG. 5. The VLO model. Dashed. lines correspond to J&,
solid lines to J2. Decimation is performed over the v spins.

that G (r) —r ' 4 for large values of r along the
whole phase boundary. However as we shall see in

the next section this result is not true at the special
point F where —y =+x = 1.

Let us investigate the relationship between the FFSI
and VLO models. First of all if J2= —J~ & 0 then in

each elementary triangle there is one bond which
cannot be satisfied, so we get another periodic fully
frustrated model. The spins s and o- are "loose" in

the ground state and the system has macroscopic en-
tropy in this state. To see the relationship explicitly
between the FFSI and VLO models let us perform
again a decimation transformation and integrate out
the v spins. The decimation does not involve J2.
After the transformation we get the following interac-
tions:

(y +1)'(x'+ 1)' —2(l. —x')'= 0 (17)

VLO model. They obtained the phase diagram
shown in Fig. 6.

In region AF the system is antiferromagnetic, in

region FE ferromagnetic, and in region P paramag-
netic. The equations of the phase boundaries (solid
lines in Fig. 6) are given by'~

K„=K =
8

lncosh41 J)
t

K, = + —ln cosh4
J)

kT 4 kT

ln cosh2J~/k7'
sltfo' ss

I h4J / 7

(19)

(20)

(21)

and

(y + 1)2(x2+ 1)2 2y2(1 —x2)2=0 (18)

FE

$y

0.8&
I

0.6t- FE

FIG. 6. The phase diagram of the VLO model. The F
point is mapped under decimation into the E2= ~, A. = —1

point of Fig. 2.

for the ferromagnetic-paramagnetic and anti-
ferromagnetic-paramagnetic transitions, respectively.
Here x =tanhJ~/kT, y =tanhJ2/kT. The phase di-

agram is symmetric under the change of the sign of
x. We will consider the case x «0.

The thermodynamic properties (entropy, specific
heat, etc.) of the VLO model can be all calculated ex-
actly using the results of Ref. 14. In Ref. 14 the
two-spin correlation function 6 (r) along the diagonal
direction was also calculated exactly with the result

1

M2 = —M) + —ln2
L ~oo

1

4
(22)

We see that the ratio K, , /K„goes to —1 as

M~ ~ but to recover the FFSI model we have to
take this limit according to Eq. (22). So in order to
obtain information about the T = 0 correlation func-
tion of the FFSI model using the exact results of the
VLO model we have to approach the point F (where
—M, =+M~ = ~, —y =+x =1) in Fig. 6 choosing a

path which in the limit M~ ~(x 1) reduces to
Eq. (22). It is easy to see that the curves given by

Eqs. (17) and (18) in the limit x 1 give exactly Eq.
(22). This means we will have to approach the F
point along the phase boundary in Fig. 6. (Since the
phase boundaries separating the ferromagnetic, anti-

ferromagnetic, and paramagnetic phases become
tangential near the F point we may choose any of
them. )

Here K„(K ), K, , and K, , denote the interac-
tions (divided by the Boltzmann constant times the
temperature) between two closest s (cr) spins, two
nearest-neighbor s and o- spins, and four spins be-

longing to the same square (plaquette), respectively.
Now, comparison of Eqs. (19) and (21) with Eqs. (3)
and (4) shows that if K, =0 we get the same 8V
model which was obtained from the FFSI model in

the previous section (with K =J~/kT). Consequently
if we choose J2 in such a way that K, = 0 the VLO
model becomes equivalent to the FFSI model.
K, =0 defines a line in Fig. 6, which is given by the
dotted line. Introducing M~ ——J~/kT and M, =J,/kT,
in the limit M~ ~ the condition K, =0 leads to
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}ak2%

T (, ta ei(k l&ru-p( )kl k I (23)

Here 1 ~ k, I ~ r —1 and r is the distance between
two spins along a diagonal (r is measured in units of
the lattice vector in the diagonal direction). The
function f(ta) is given by

1
1 2

(ui+u2) —uiu2e'" —e '"

(uiu2) —uiu2e '"—e'" (24)

V. CORRELATION FUNCTION OF THE VLO MODEL
II

As already mentioned the correlation function
G (r) of the VLO model between spins along the di-

agonal in Fig. 5 was calculated exactly in Ref. 14.
G (r) is given in terms of a Toeplitz determinant
whose elements are

r] I.f we approach the F point from the antifer-
romagnetic side, we get G(r), (—I)'x const,
where the value of the constant is again smaller than
unity. This analysis shows that reaching the F point
from different regions we select from the infinitely
many ground states either the ferromagnetic or the
antiferromagnetic ones. Since we know that there
cannot be a finite magnetization in a fully frustrated
ground state, in the above cases the average in (s;s&)
is actually taken only over one set of states (either
ferromagnetic or antiferromagnetic).

Now let us approach the F point along a phase
boundary. In this case we have from Eqs. (17), (25),
(26), and (28) u=&2 and ui = I, u, = —1. The ele-
ments of the Toeplitz determinant can be calculated
exactly. We obtain

where
Cp=0 (32)

I+y (x'+1)2y+4x2
CXi =

I —y (I —x')'
I —y (I —x')'
1+y (x'+1)'+4xy

(25)

(26)

x=1 E']

y = —1+no),
(27)

(28)
—2M)

where ei =e ', then from Eqs. (25) and (26) to
lowest order in e~ we get

In terms of a~ and o.2 the regions AF, I'E, and P
of Fig. 6 correspond to {ui & +l. u2 & —1},
{u, & l, u» —1}, and {ui & l, u', & I},respectively.
Expressing y through x from Eqs. (17)or (18) and
putting it into Eq. (25) we see that alongthe phase
boundaries o. ~

=1 for any value of X.
'Now let us approach the F point. If we write

C„= [(—I )"—I ], n = I, 2, . . . , (r —I ) . (33)
1

mn

This immediately is telling us that there is no
correlation between the s, v or cr, ~ spins. The corre-
lation between the s spins and cr spins turns out to
follow a power law with an exponent g = —, (see
Table I). It is easy to understand that the correlation

TABLE I. Diagonal correlations in the VLO model at the
F point (Fig. 5). G(r) = (Sa a,S„) The values in the
second column correspond to approaching the F point from
the ferromagnetic region, The values in the third column
correspond to approaching the F point along the phase boun-
dary.

A2=
CX]

(29)
6(.)

3a= —1/a=—
1 2 CX] = A2= 1

This means that if we approach the F point, for ex-
ample, along the

y = —-x(1+x")1

2
(30)

G (r) ~ 0.620 (31)

This is a typical result for a correlation function of a
ferromagnetic system below the critical temperature.
By approaching the F point from the ferromagnetic
side, we get to a ferromagnetic state, which, howev-
er, is not a ground state [in which G (r) = 1 for any

line with y=2(J3 —I), then u in Eq. (28) is J3 and
3 2

cx f 2
cx2

3
that is we approach the F point from

the ferromagnetic region. Calculating
G (r) = Det(Tki) numerically with the above values
of ui and u2 we get (see the second column of Table I)

1

2

3

4
5

6
7

8

9
10
11
12
13
14
16
18
20

0.586 53
0.638 90
0.616 31
0,622 93
0.61963
0.620 51
0,620091
0.620 22
0.620 16
0.620 18
0.620 17
0.620 17
0.620 17

0
0.573 159
0
0.584 020
0
0.586 366

. 0
0.587 222
0
0.587 625
0
0.587 846
0
0,587 979
0.588 066
0.588 126
0.588 169
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TABLE Il. Diagonal correlations at different points on the phase boundary in the VLO model.
The values in the second column correspond to the Ising model.

).1/4G ().)
x =0.441

I 1!4G(I)
x =0.8

).1/4G ().)
x =0.98

1

2

3
4
5

6
7

8

9
10
11
12
13
14
34
35

0.694 24
0.700 79
0.702 19
0.702 70
0.702 94
0.703 08
0.703 16
0.703 21

0.382 11

0.514 85
0.386 81
0.488 28
0.396 80
0.400 40
0.400 24
0.401 48
0.401 65
0.402 17
0.402 37
0.402 63
0.402 80
0.402 96

0.077 30
0.482 36
0.126 30
0.334 87
0.137 64
0.274 04
0.13705
0,238 72
0.132 76
0.209 45
0.126 56
0.183 91
0, 119 12
0.161 95
0,050 60
0.044 17

function between two nearest s (or o. ) and r spins is

zero. As pointed out before, at, T =0 the VLO model
is fully frustrated and the relative direction of the s
(or o.) and r spins is arbitrary. Our result, however,
shows that the correlation between s and o- is very
strong. Notice that the r '~2 behavior of G(r) is

reached already for rather small r values, just as in

the case of the ATI model. ' It is interesting to inves-
1 1

tigate numerically how the crossover from q = —to
2

takes place. In Table II we gave the values of G (r)
for different finite temperatures (x) along the phase
boundary. At the pure Ising model critical point
where x = &2 —I (y =0) the r' ' behavior is reached
very quickly, The larger the value of x is, the larger
the r values are at which the power-law decay sets in.
Very close to x = 1, the correlation between s (or o )
and ~ spins becomes very small and at T =0 it disap-
pears Using th. e exact expression [Eq. (23)j for
G (r) it can also be shown that if J2 is chosen such
that K, =0 in Eq. (21) (in which case we recover
the FFSI model) in the limit T 0, G(r) —e "e and

2J 1/Tf —e ' . This, together with the expression for the
singular part of the free energy, given in Sec. II,
shows that 2 —a = 2v also for the FFSI model.

tion function decays as r " at large distances where

q = —,. This is in agreement with the results obtained

for the ATI model. We also found that hyperscaling
holds in both models. These facts suggest that two-
dimensional fully frustrated models with finite
ground state entropy per particle form a universality
class.

VI. DISCUSSION AND CONCLUSIONS

Using an exact relationship between the FFSI and
VLO models we were able to determine the spin-spin
correlation function of the FFSI model for arbitrary
temperature. At T = 0 we obtained that this correla-

FIG. 7. The hexagonal fully frustrated lattice. Single
lines denote ferromagnetic and double lines denote antifer-
romagnetic bonds. Dots denote lattice points. Flipping
spins 1 and 2 simultaneously in the ground state does not
change the energy.
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In two dimensions all fully frustrated lattices seem
to have finite entropy per particle, so q = —, probably

for all two-dimensional fully frustrated lattices. The
neutral boundaries (regions of spins, which can be
flipped without cost in energy of the ground state)
are not, however, necessarily single spins like in the
cases considered in this work. On the hexagonal ful-

ly frustrated lattice shown in Fig. 7 there are no
"loose" spins because the coordination number is

odd, but one can flip clusters of two spins without
the change of energy.

Through another exact transformation we showed
that the FFSI model corresponds to a line in the cou-
pling constant space of the Baxter model.

The correlation function of the Baxter model along
the solid line of Fig. 2 or Fig. 4 is therefore known
exactly. We also showed that the T =0 point of the
FFSI model maps into the 4 =0 point of the F
model. The q = —, result for the correlation function

of the FFSI model therefore also follows from exact
duality relations between the F model and the AT
model (see Appendix).

ACKNOWLEDGMENTS

The author is indebted to T. Chui, E. Fradkin, and
M. Wortis for many illuminating discussions, and to
M. P. M. den Nijs for a helpful conversation. This
work was supported by the National Science Founda-
tion under Grant No. DMR 77-23999.

APPENDIX

Consider the two-spin correlation function Gs'v (r)
of Baxter's 8V model between spins on the s sublat-
tice. Performing duality on the other sublattice of

L 2
= —ln coth(K2+ K4) coth(K2 —K4) (A2)

coth(K2+ K4)
L4 = —ln

4 coth(K, —K )
(A3)

Here L ~ is the two-spin coupling between the s spins
(which are not affected by the duality transforma-
tion), L2 is the two-spin coupling between the dual
spins p, , and L4 is the four-spin interaction. We have

Gs'v (r;K2, K4) = Gpr (r;L ), L2, L4) (A4)

Let us define a new spin variable T in the AT model
by T =s p, . With this change of the spins G++ in Eq.
(A4) transforms into (TopoT„p, , ) L L L, which is

the polarization operator-polarization operator corre-
lation function of an AT model. The four-spin in-
teraction of this AT model is L

~ given by Eq. (Al).
At the special point K2+ K4=

4
ln2 in the limit

K, ~ (which corresponds to T =0 in the FFSI
model) one can easily verify that L

~
=0,

L, = L4= —, In(%2+ I). This is exactly the decou-

pling point of the AT model with the T,p, spins, so
( Top OT, p,„)= ( TOT, ) (p op, „) where ( ToT, ) and

(p,pp, „) are two-spin correlation functions of the ordi-
nary Ising model at the critical point. Since
(TOT4) ((pop, , ) ) =r ', for r » 1 we get the result
quoted in the text.

the 8V model, we get an Ashkin-Teller model, ' so
G8y (r) goes over to Ggr (r). If K2 and K4 are the
two-spin and four-spin couplings of the 8V model,
then

cosh(K2+K4) sinh(K2+K~)
L&=K&+

4
ln (A I)cosh(K, —K4) sinh(K2 —K4)

Permanent address: Central Research Institute, 1525 Bu-
dapest, 114 P.O.B. 1349, Hungary.

'G. Toulouse, Commun. Math. Phys. 2, 115 (1977).
2E. Fradkin, B. A. Huberrnan, and S. H. Shenker, Phys.

Rev. B 18, 4789 (1978).
J. Stephenson, J. Math. Phys. 5, 1009 (1964).

4G. M. Wannier, Phys. Rev, 79, 357 (1950).
G. Andre, R. Bidaux, J.-P. Carten, R. Conte, and L. de
Seze, J. Phys. (Paris) 40, 479 (1979).

J. Villain, J. Phys. C 10, 1717 (1977).
7I. Morgenstern and R, Binder, Phys. Rev. Lett. 43, 1615

(1979).
B, W. Southern, S; T. Chui, and G. Forgacs (unpublished).
M. N. Barber and R. T. Baxter, J. Phys. C 6, 2913 (1973).

' M. K. Phani, J. L. Lebowitz, M. H. Kalos, and C. C. Tsai,
Phys. Rev. Lett. 42, 577, 929(E) (1979).

"C. Jayaprakash and S. Kirkpatrick (unpublished).
' E. H. Lieb and F. Y. Wu, in Phase Transitions and Critical

Phe»ornena, edited by C. Domb and M. S. Green
(Academic, New York, 1972), Vol. 1.

' M. P. M. den Nijs, J. Phys. A 12, 1857 (1979).

'4V. G. Vaks, A. I. Larkin, and Yu. N. Ovchinnikov, Zh.
Eksp. Teor. Fiz. 49, 1180 (1965) [Sov. Phys. JETP 22,
820 (1966)].

' B. Sutherland, Phys. Lett. 26, ,A, 532 (1968).
' T. M. Kostezlitz, J. Phys. C 7, 1046 (1974); J. V. Jose, L.

P. Kadanoff, S. Kirkpatrick, and D. R. Nelson, Phys. Rev.
B 16, 1217 (1977).

' L. P. Kadanoff, Phys. Rev. Lett. 39, 903 (1977).
L. P. Kadanoff and A. C. Brown, Ann. Phys. (N.Y.) 121,
318 (1979).

' H. J. F. Knops (unpublished).
C. Domb, Adv. Phys. 9, 149 (1960).

2'R. M. F. Houtappel, Physica (Utrecht) 16, 425 (1950).
J. Stephenson, J. Math. Phys. 11, 413 (1970).
D. R. Nelson and M. E. Fisher, Ann. Phys. (N. Y.) 91, 226
(1975).

L. P. Kadanoff and F. Wegner, Phys, Rev. B 4, 3989
(1974).

C. A. Hurst and M. S. Green, J. Chem. Phys. 33, 1059
(1960).

F, J, Wegner, J. Phys. C 5, L131 (1972).


