
PHYSICAL REVIE% B VOLUME 22, NUMBER 9 1 NOVEMBER 1980

Monte Carlo renormalization-group analysis of the classical Heisenberg model
in two dimensions

Stephen H. Shenker
The James Franck Institute, University of Chicago, Chicago, Illinois 60637

Jan Tobochnik
Laboratory of Atomic and Solid State Physics and Materials Science Center,

Cornell University, Ithaca, Ne~ York I4853
(Received 30 April 1980)

Monte Carlo renormalization-group methods were applied to the classical three-component

Heisenberg model on a two-dimensional lattice. Expectation values of local correlations of spins

and various sized block spins were computed using traditional Monte Carlo methods. By

matching quantities at different length scales generated by different Monte Carlo Hamiltonians

we directly determined the renormalization of the nearest-neighbor coupling. Using these data

and the results of high-temperature expansions and low-temperature renormalization-group cal-

culations we have determined that this model does not have a phase transition. We have also

obtained the amplitude for the low-temperature divergence of the susceptibility and the correla-

tion length.

I. INTRODUCTION

The renormalization group (RG) has developed in

recent years into a powerful technique for studying
the critical behavior of statistical mechanical systems.
The blending of block-spin RG ideas with Monte
Carlo (MC) techniques by Ma' and Swendson2 has

greatly increased the versatility of these methods.
A statistical mechanical problem of particular in-

terest to high-energy theorists is the four-dimensional
non-Abelian lattice gauge theory, which so far has
resisted all attempts at analytic solution. Wilson' has
implemented a MCRG scheme particularly suited to
this model, where a smooth crossover from the small
fluctuation to large fluctuation regime is expected.
His ca1culations are currently underway.

In this paper we apply Wilson's version of the Ma
and Swendson ideas to the two-dimensional (2D) n

component classical Heisenberg model (specifically
n = 3) where a similar smooth crossover is expected.
Our purpose is twofold. First, we hope to describe
the behavior of this model quantitatively in all re-
gimes, and, second, we hope to demonstrate the
validity of the MCRG techniques in this relatively
simple situation, opening the way for their application
to other more complicated systems.

II. CLASSICAL HEISENBERG MODEL

The 2D n-component Heisenberg model is defined
by the partition function

Z= X exp —XS; SJ
1 g(1 ) T &y)

where S is an n-component unit vector, T is the tem-
perature in dimensionless units, and (ij ) denotes
nearest-neighbor sites on a square lattice.

When n =1 this model reduces to the 2D Ising
model, known to have a phase transition between a

disordered high-temperature phase with exponentially
decaying correlations and a low-temperature magne-
tized phase. At n = 2 this model is the 2D planar
model, which behaves according to the Kosterlitz-
Thouless theory which predicts a phase transition
between a high-temperature phase with exponentially
decaying correlations and a low-temperature phase
with power-law decay. As n approaches ~ this model
becomes the spherical model, ' known to have ex-
ponentially decaying cort'elations for all nonzero T.
We are interested in the intermediate region
2 & n & ~, and in particular would like to know for
what value of n a phase transition ceases to occur.

Real progress in answering this question first came
with Polyakov's development of a low-temperature
renormalization group, .further elaborated on by Brez-
in and Zinn-Justin' and Nelson and Pelkovitz. ' At
low T one assumes the spins are almost aligned. One
can then do a spin-wave expansion; we write

S=[n)vr2, . . . ,, m„, , (1 —w, n, )'j']

where a sum on a (a =1, 2 n —1) is implied.
Assuming the n fields are small (formally of order
JT ), we expand the nonlinearities of the square root
and the integration measure to do a perturbative
analysis in T.

Following the spirit of Wilson's renormalization
group, we can integrate out the high-momentum
modes of the m field, and rescale our units of length
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and our fields to obtain a new system with the same
form of interaction as before, but at a different tem-
perature. If we integrate our momenta between A

and A/b (where A is the high-momentum cutoff), we

find

= —(d —2) T+ T2
d lnb 2m

quire some technique that can take us from the low-
temperature regime to the high-temperature regime,
allotting us to demonstrate that there are no inter-
vening pathologies and to calculate quantitatively the
behavior of the model.

In Secs. III—V we describe an approach for attack-
ing this problem.

+ " ' T'+O(T') .
(2m)'

(3) III. BLOCK-SPIN RENORMALIZATION GROUP
VIA MONTE CARLO

We often use the variable K =1/T, in terms of which
Eq. (3) becomes

dK d 2 K (n —2) (n —2) 1 0 1

d ln b 2n (2~)' K
t

(4)

These remarkable formulas tell us a great deal
about the behavior of the system. Note first that for
d & 2 the right-hand side of Eq. (3), called the P
function in field theory, vanishes at some T = T, . If
the function vanishes, then the system is invariant
under length rescaling, and so all lengths characteris-
tic of the system must be either zero or infinite. In
fact, the correlation length at T, is infinite; thus T, is
a critical point of the system. The critical exponents
can be read off Eq. (3) by calculating the slope of the

p function at T, .
In two dimensions a very interesting phenomenon

occurs. For n & 2 the P function is always positive,
so no matter how low a T we start with, the system
iterates upon repeated rescaling to higher and higher
temperatures, eventually leaving the domain of val-

idity of Eq. (3). If we imagine for a moment that Eq.
(3) is qualitatively correct for all T, we can say that
the system always iterates to a regime where high-
temperature expansions, indicating exponetially de-
caying correlations, are valid. So the system would
be disordered at any T & 0 for all n & 2.

What makes this behavior particularly interesting is
that a formula very similar to Eq. (3) holds in non-
Abelian gauge theories. ' T is replaced by g', the
coupling constant of the theory, (d —2) is replaced

by (d —4), and the numerical factors are changed.
When translated, the above analysis would imply that
non-Abelian gauge theories are disordered for all g2

in d =4. The disordered behavior of a gauge theory
means confinement of static sources. The assertion
then is that non-Abelian gauge theories confine for
all couplings at d =4. It is very important to discover
if this is indeed the way gauge theories behave. The
2D Heisenberg system, then, takes on new impor-
tance as an analogous system in which to explore
such questions.

In order to decide if the model is really disordered
for all T, we must be able to extend our understand-
ing of tile low Tregime described by-Eq. (3). We re-

J6n JSn

where the S; are the original spins, n' denotes a site
on the block lattice, and j E n' labels the four sites
within block n'. Note that the lattice spacing of the
block lattice is t~ice that of the original lattice.

We now define a new system whose degrees of
freedom are the block spins t. Let

e'+ ' = K((S), (t))e~~Is}
where

(6)

K((S), (r )) = Qg r, —X S
I I

J E-n

Xs,
JGn

(7)

where 3C is the Hamiltonian of the original system
and 3C' is the new Hamiltonian of the block spins.
This is the RG transformation.

There are several important properties of the
transformation [Eq. (6)]: (i) The partition function
is unchanged. This is demonstrated by integrating
both sides of Eq. (6) over the t spins. The left-hand
side is just the partition function of the block system.
The integral over the 8 function gives 1 and the

X
~ ~

X X

0
X X

X X

0
X X

X X
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X X

X X
0
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0 0
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FIG. 1. Schematic diagram of block-spin procedure.

The block-spin renormalization-group (RG)
method is not in principle restricted to a perturbative
regime. This method was first formulated by Ka-
danoff" and later made a working tool by Niemeijer
and van Leeuwe'n. " It has been extensively applied
to various discrete spin systems.

We can easily construct such an RG for the 2D
Heisenberg system. Consider the original lattice of
spins. Group each four-site square of spins into a
block spin (Fig. 1) and define a block-spin variable t
as follows:

Xs,
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right-hand side then becomes the partition function
of the original system.

(ii) The correlation length of the block spins in

units of the block lattice spacing is one-half that of
the original spins in units of the original lattice spac-
ing. This rescaling of lengths is the key to any RG
transformation.

(iii) The block Hamiltonian will in general contain
many new interactions, even if the original 3C con-
tains only one. Next-nearest neighbor, second-
nearest neighbor, four-spin coupling, etc. , will in gen-
eral all be generated. " The luxury of tracking the ef-
fect of renormalization by following only one cou-
pling, as in Eq. (3), is restricted to the low-temper-
ature perturbation regime.

(iv) Even on a quite small lattice, say 4 & 4, the
evaluation of Eq. (6) is a formidable task, involving
an integral over a very large dimensional space (e.g. ,
32D for n =3 on a 4 x 4 lattice). Since no analytical
tricks have yet appeared, the only alternative is a nu-
merical evaluation, and the direct numerical evalua-
tion of Eq. (6) would be very difficult. Fortunately a
method exists for dealing with a calculation like this,
the Monte Carlo technique.

The Monte Carlo (MC) method generates a se-
quence of spin configurations distributed according to
the Boltzmann distribution eels l/Z. In principle any
thermodynamic quantity or correlation function can
be computed using MC. However, for quantities
sensitive to long-wavelength' fluctuations, one must
do MC on a lattice large enough to represent these
long-wavelength fluctuations accurately. Thus, the
lattice should be somewhat larger than the correlation
length. Near criticality correlation lengths are huge,
and the required lattices are computationally impracti-
cal. We can circumvent this difficulty by combining

B C

-a~/a
~ I

3—M
[]a,

FIG. 2. Possible diagram of renormalization-group flows.
Point A represents the low-temperature fixed point. B, C,
D, and E represent possible starting points for the iteration
of the MCRG procedure. n& and cx2 are coupling constants
in the Hamiltonian which are proportional to 1/T'.

MC with block-spin RG.
Ma' and Swendson' made the following observa-

tion: if one generates a sequence of configurations
[S), distributed according to el~i/Z and to each of
these configurations applies the blocking rule [Eq.
(5)I to generate a sequence of block-spin configura-
tions [ t [J, rhen the [ t j; are, by Eq. (6), distributed

f

according to e+ l'l/Z. (Recall that Z is the same for
both systems. ) Thus it is easy to compute block-spin
expectation values by Monte Carlo. Block-spin ex-
pectation values do not directly reveal the couplings
of the block-spin Hamiltonian, but can be used to
determine if two Hamiltonians have the same cou-
plings. So an admittedly impractical scheme for
determining the block Hamiltonian couplings would
be to simulate systems with many coupling constants
and adjust these by trial and error to match the calcu-
lated block expectation values. Searching the many-
parameter space required, however, is computational-
ly unmanageable. However, we expect from the
low-temperature analysis that all but one combination
of interactions is irrelevant. " That is, after repeated
iterations all Hamiltonians in some neighborhood of
the T =0 fixed point collapse into a one-dimensional
submanifold of interaction space. This line is called
the "renormalized trajectory" (RT). If we could
iterate by Monte Carlo enough times to, reach the
RT, then we need only parametrize our location in
this one-dimensional space. .

We depict the expected situation schematically in

Fig. 2, where o.
~

and n2 are two representative cou-
plings„both are proportional to I/T. We emphasize
that this picture is a two-dimensional projection of
the infinite-dimensional parameter space. Point 3 is
the unstable fixed point at T =0 implied by Eq. (3).

We now describe how to use the Monte Carlo re-
normalization group (MCRG). Initially we do not
know where the RT is, but suppose we could draw a
line (e.g. , the dashed lined in Fig. 2) not too far from
it, say a line where a small number of iterations
would carry us onto the RT. We could then do the
following: start at some point on our line, e.g. , point
B of Fig. 2. Iterate (the filled circles), arriving close
to the RT after one jump and then continue along it.
(In what follows we refer to a trajectory by its point
of origin. ) Now search our line for a point C such
that after one iteration (the open circles) it reaches
the RT at close to the same location that B did after
two iterations and continues to track B. We check
how close these points are by comparing various
block expectation values. At point F, for example,
the B system blocked 4 times and C blocked 3 times
have almost the same Harniltonian. Hence, they will

have almost the same correlation length $. But we
iterated 4 times from B to get to F so B has correla-
tion length 24/. Similarly, point C has correlation
length 2'(. So B has twice the correlation length of
C. We have computed the shift (the distance BC)
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needed to change the correlation length by a factor of
2. We are therefore computing the P function for
the model along our line!

If we want information along the o.2=0 axis, we
can begin with a point there, such as D, and iterate it
until it approaches the RT. (In general, this will take
more iterations than from our carefully chosen line. )
Once we have matched onto a point on the RT we
can transfer information back to the o.2=0 axis. If
we can perform the required number of iterations, we
can compute the P function directly along the az = 0
axis by finding a point such as E. If T~ and T2
parametrize distance along any two lines in coupling
space, then it is a consequence of the low-tempera-
ture RG that points with equal correlation length are
characterized

of comparing quantities calculated on a finite lattice.
If one computes various expectation values of identi-
cal Hamiltonians on different size lattices, the
numbers will differ. The size of the difference will

depend on the range of the operator compared to the
size of the lattice. So in comparing sets of expecta-
tion values to see whether they come from the same
Hamiltonian we must make sure they are computed
on the same size lattice. If we take point 8 (Fig. 2)
on a 32 x 32 lattice and block it twice, we get a
block-spin Hamiltonian on an 8 x 8 lattice. To find a
point C that matches, we could take a 16 & 16 lattice
and block it once to get an 8 x 8 lattice. We could
then compare the expectation values of the two 8 x 8
lattices. If they agree, they have the same Hamiltoni-
an.

(We assume suitable normalizations. ) From Eq. (3)
we see that the P function is identical through 0 (T3)
along the two lines. This result allows us to use Eq.
(3) to calculate the P function along any line at low
temperature.

We can repeat the procedure outlined above, ob-
taining a sequence of points with correlation lengths
differing by a factor of 2 until we are at a tempera-
ture T large enough that we can calculate the correla-
tion length of the system directly by direct MC or
high-temperature expansions. We then can compute
the correlation length of any point on our path by
counting the number of points at which a jump by a
factor of 2 occurs between this initial point and the
high-temperature point.

This procedure, if it worked as described, would
confirm a posteriori that the situation is as depicted in

Fig. 2 (at least in the neighborhood of our line).
Other possibilities, such as t~o relevant operators,
would make the matching fail. A nontrivial fixed
point close to our line would show up as a point that
matched onto itself.

There is no guarantee that the situation is as de-
picted in Fig. 2. In particular we cannot be certain
that the RT will retain its attractive character all the
way to the high-T regime. The only way to tell is to
try it.

Before we proceed, we must discuss a complication

IV. CALCULATION

A. Low-temperature analysis

In order to test the method outlined in Sec. III we
must choose some line which we think will not be
too far from the RT. One possibility, suggested by
the low-temperature RG, is to find a set of couplings
close to the T = 0 fixed point and hold their ratios
fixed as we move away from it. To find this set of
couplings, we study the RG transformation. [Eq. (6)]
at low T within the (lowest-order) spin-wave approxi-
mation.

It is impractical to keep a large number of cou-
plings in the computer calculation, so we somewhat
arbitrarily decided to keep just three (nearest, next-
nearest, and third-nearest neighbor) and to get as
close as possible to the low-T fixed point with them.
Our 3C looks like

gQ = K) XS„S„~-+KzX(S„S,„+„.+.+S„S„+„..)
N, p n

+ K3 XS„S„+z„.
~L

t1, Pl

where n is a lattice site and p, a unit vector in the lat-
tice. For the spin-wave calculation it is convenient to
regroup these terms in a "continuum" formulation

—3{'.= X[u(('7„S„) (V~S„)+az(V„'7~S„) ('7„V„S„)+u3[(VzS„) (V„'S„)+ (VyzS„) (Vy'S„)]], (10)

where

We have

K) = 2a) + 16a2+ 8a3, K2 =—4+2, K3 = 2a2 —20.3

Because the o.2 and o.3 terms contain more derivatives, we expect them to be irrelevant operators around the
T =0 figed point.
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TABLE L Spin-wave results. NN =o ~(1 —C&N) and NNN =o.&(1 —C&NN). CN& and C&NN

are defined in Sec. IV 8.

Block
length

32 && 32 lattice

NNN
Block
length

16 x 16 lattice

NN NNN

1

8

16

1

2

4
8

16

0.2498
0.1618
0.1341
0.1153
0.0598

0.1464
0.1275
0.1238
0.1125
0.0591

A f
~ A2 A3 1:0:0

0.3178
0.2172
0.1846
0.1560
0.0840

A j ~ A2 ~ A3 5 ~ 1.0

0.2037
0.1805
0.1739
0.1531
0.0832

a (.n2. n3 = 5:2:0

1

2

4
8

0.2490
0.1589
0.1220
0.0616

0.1457
0.1245
0.1116
0.0588

0.3163
0.2115
0.1630
0.0859

0.2023
0.1748
0.1523
0.0830

1

2

4
8

16

0.1077
0.1082
0.1160
0.1100
0.0584

0.1554
0.1579
0.1653
0.1505
0.0825

0, 1069
, 0.1053

0.1038
0.0564

0.1539
0.1521
0.1438
0.0805

To see how close we are to a fixed point, we examine
various expectation values and see how much they
change upon iteration. We computed nearest-neighbor
(NN) and next-nearest-neighbor (NNN) spin-spin corre-
lations for different block sizes in the spin-wave approx
imation. This just involves doing some Gaussian in-

tegrals. The required k-space sums were done on the
computer. Results for three a~, o.2, o.3 values are
displayed in Table I.

It is clear that the o. ~'.a2'. o.3
= 5:1:0Hamiltonian is

closer to a fixed point than either of the others. We
work with this set of ratios, but make no special
claims for it, Undoubtedly others would work as
well.

We now turn to the actual Monte Carlo calculation.

B. Monte Carlo calculation

We used the traditional Metropolis MC procedure
to generate spin configurations located on a square
lattice with periodic boundary conditions. Spins were
updated by adding to them a random vector selected
out of a sphere of diameter d „, „and then normaliz-
ing the spin vector. This updating procedure satisfies
the symmetry requirement of the Metropolis method.
It is commonly believed that d „, „should be adjusted
to give an acceptance ratio of 0.5; however, we have

found that at low temperatures better statistics can be
obtained with lower acceptance ratios.

We selected five quantities to compute for each
block size

CNN
——(S„'S„+&)

CNN2 = ((S„'Sz+&) )

C =(S„S„„„),p, W v

CNNN2 ( (Sn Sn+p p) +) p' + ~

C4s = ((S„S~+„)(S„+~ S„+„+„)

x (S„+„+„S„+„)(S„+„S„))

(12a)

(12b)

(12c)

(12d)

(12e)

These quantites are the ones we use to ascertain if
two Hamiltonians are close to each other. In addition
we always calculated the susceptibility X = (1/W)
x (($„S„)')and sometimes the spin-spin correla-
tion function C(n) = {So S„).

In analyzing MC data it is important to be able to
estimate errors correctly. In particular, we must
determine how many statistically independent sam-
ples we have from a given MC run, Configurations
that differ by only one pass through the lattice will

not be independent of each other unless d „. „ is very
large and the temperature is very high. In general,
configurations are correlated over many passes and
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one must take this into-account in computing stand-
ard deviations a-. We do this by grouping numbers
into groups of L numbers, averaging them and then
computing the o- of the groups. When o- drops by
l/v~L on grouping we believe we have independent
samples and call the number of passes within an in-

dependent sample the correlation time r. The error
for a particular quantity is then the cr of the indepen-
dent samples divided by vL.

v depends on d,„, the temperature and the quanti-
ty being studied. Large block quantities have larger
7's than small block ones. In the regime we studied
v ranged from 200 to 1300 passes for the 16 && 16
block averages ori the 32 x 32 lattice. 7 was usually
less than 400 passes for the 8 x 8 block average on
the 16 x 16 lattice.

At low temperatures v can be cut down significant-
ly by using a low-acceptance ratio. For example at
n~ =0.7, v can be reduced by a factor of around 4 by
reducing the acceptance ratio from 0.5 to 0.3. This
means the same accuracy can be achieved in one-
fourth the computer time.

Because of these correlations we compute averages
once every eight passes. This saves computer time
with a negligible loss in statistics (except, perhaps, at
the highest temperatures).

Our program was run on an array processor
manufactured by Floating Point Systems, Inc. This
inexpensive source of computing power made this
calculation feasible. The update time for the three-
coupling Hamiltonian is about O. S and about 0.4 msec
for the one-coupling Hamiltonian. This rather slow
time could be improved by a factor of 3—6 by coding
the inner loops of the program in assembly language
rather than using the Cornell FoRTRAN compiler. The
random number generator needed for the spin updat-
ing was written in assembly language and contributed
a negligible amount of time to the calculation.

To compute our matching quantities we made runs
ranging from 30000 to 200000 passes through the
lattice. We routinely discarded approximately the
first 20% of a run to allow for equilibrium.

V. RESULTS

A. Nearest-neighbor correlation

Before proceeding to our MCRG results we discuss
the behavior of the nearest-neighbor correlation,
CNN. In Fig. 3 the Monte Carlo data for one-
coupling constant calculations (K, = K, K, = 0,
K3=0) are shown along with the high-temperature
series (HT)' to order K' and the low-temperature
spin-wave (SW) calculation to lowest order, i.e., the
equipartition theorem. The units are chosen so that
C» = 1 when the spins are perfectly aligned.

The high-temperature MC data points have an un-

I.O-

0.8

C9
IX
LLI

UJ

0.4

0.2

0
0

FIG. 3. Energy vs K. The uncertainty in the data is

smaller than the size of a square.

B. MCRG data

We now wish to present the new data calculated
using MCRG. First we must be confident that the
procedure outlined above actually works. An exam-
ple of a typical match is shown in Table II for a pair
of three coupling constant Hamiltonians matching a
32 x 32 lattice into a 16 x 16 lattice. As can be seen,
the two largest block sizes match well within the un-
certainties of the data. The next length scale (i.e.,
4 x 4 blocks on the 32 x 32 lattice and 2 x 2 on

certainty of a few tenths of a percent and agree
within this uncertainty with. the HT series up to
around K = 1.4. In addition to showing where the
series breaks down, this is an excellent test of our
MC calculations.

The MC points shown in Fig. 3 beginning at
around K =2.0 are just below the SW results, as
would be expected since we are not yet at very low

temperatures, where the lowest order SW result is

sufficiently accurate. At lower temperatures (not
shown) the SW and MC data agree as expected.

By comparing the MC data with the analytic results
we see that the crossover region between HT and SW
calculations occurs in the region around K =1.3
—2.0. Also, we note that the C~N curve is rather
featureless. This behavior may not, however, be
relevant to the critical properties of the system. For
example, the equivalent curve in the n = 2 planar
model exhibits similar behavior despite the oc-
currence of the Kosterlitz-Thouless phase transition.
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TABLE II. Representative MCRG match of two three-coupling Hamiltonians. The last two length scales match within one a.,
and the third largest scales differ by about one o.. The 32 & 32 lattice was run through about 133000 passes and the 16 & 16 lat-

tice about 106000 passes through the lattice.

Block
length CN CNN2 CNNN C C4s

16

0.7817
0.0002

0.7888
0.0007

0.7727
0.0019

0.7680
0,0057

0.8597
0.0094

0,6560
0.0002

0.6620
0.0008

0.6422
0,0023

0.6369
0.0058

0.7573
0.0136

32 & 32 lattice

n( =0.70

0.7030
0.0003

0.7084
0.0012

0.6889
0.0033

0.6929
0.0096

0.8083
0.0165

0.5669
0.0003

0.5714
0.0012

0.5531
0.0031

0.5571
0.0092

0.6865
0.0203

0.3962
0.0003

0.4079
0.0012

0.3796
0.0032

0.3713
0.0099

0.5564
0.0212

16 x 16 lattice

n) =0.640

0.7608
0.0003

0.7694
0.0009

0.7670
0.0022

0.8576
0.0026

0.6324
0.0003

0.6391
0.0010

0.6359
0.0026

0.7548
0.0039

0.6757
0.0005

0.6845
0.0015

0.6882
0.0036

0.8023
0.0047

0.5417
0.0004

0.5845
0.0014

0.5526
0.0035

0.6787
0.0065

0.3615
0.0004

0.3743
0.0015

0.3701
0.0037

0.5523
0.0065

16 x 16) is about one standard deviation off from
matching. It is clear that we could have all three
scales match within one standard deviation by match-
ing onto a 16 x 16 lattice at a slightly higher value of
n~. However, SW theory suggests that we have not
quite iterated to the renormalized trajectory at this
scale, so it is probably more reliable to use the 8 x 8

to 4 x 4 matching as the basis for determining the
change in a~. We have performed a number of
matchings along this three-coupling path (i.e. ,
A/. A2. A3 5:1:0).

Although this path is more useful than the one
coupling path for the MCRG at low temperatures it is
more difficult to study at high temperatures. In par-
ticular, the high-temperature expansion is more diffi-
cult to calculate. In order to join onto the high-
temperature series results for one coupling we must
find a correspondence between one- and three-
coupling paths. At low temperatures this amounts to
computing the constant c in Eq. (8). Comparing the
8 x 8 block-spin expectation values on a one-coupling

lattice with that on a three-coupling lattice we found
the correspondence to be (at K = 1.50 and 1.42)

2n~(3-coupling) +0.42+0.02 = 2a~(l-coup1ing) —=K.

(13)

This K is the same as in Eq. (4). 1f the correspon-
dence is a constant shift in 2a ~, as suggested by Eq.
(8), our determination of the P function will not be
affected by the uncertainty in determining the con-
stant C.

Although spin-wave theory suggests that for one-
coupling Hamiltonians we can only make an MCRG
match on our largest length scale we have found nu-
merically that at intermediate tempeatures we are
able to match on two length scales. So we have per-
formed a number of matches directly on one-
coupling Hamiltonians.

. In Fig. 4 we show the MCRG results for hK,
which measures the change in K going from a lattice
of correlation length ( to one of —g. A positive b, K
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0.40-

0.35

0.30

0.25

TABLE III. MCRG results. K is the nearest-neighbor

coupling for one-coupling Hamiltonians, and K —= 2ai+0.42
for three-coupling Hamiltonians, where a~, a2, and a3 are
defined by Eq. (10) and e&.o.2'.o.3=5:1:0. 4K is the change in

K as one goes from a lattice of correlation length ( to one of
—(. The fourth column lists the side lengths of the two lattices
2

used in computing hK.

0.20

o. I 5

No. of
couplings Lattice

O. I 0

0.05

0
0 0.6 0.9 I.2

I

l.5 I 8 2.I

FIG. 4. d, K vs K. b, K is the change in K needed to go

from a lattice with correlation length ( (at K) to one of
2 g,

The filled squares are MCRG data using three-coupling
Hamiltonians, the filled triangles are MCRG data using
one-coupling Hamiltonians, and the open circle is a MC
direct calculation of ( plus the high-temperature-series calcu-

, 1
lation of 2g.

corresponds to a disordered phase.
The data points represent MCRG results for three-

and one-coupling constant Hamiltonians matching
32 x 32 onto 16 x 16 and 16 x 16 onto 8 & 8 lattices.
These results are listed in Table III. One point on
the curve is based on calculating g directly from MC,
because at this high temperature the MCRG pro-
cedure breaks down, as explained below. A high-
temperature b K was computed from a ten-term
series for g." The other curve shown in the figure is
the low-temperature RG result to two-loop accuracy.

The uncertainty of the data points is determined by
multiplying the change in K as the block-spin aver-
ages change by the uncertainty in these quantities. In
plotting the three-coupling results on this graph, we
assume a constant shift between 2a~ (three-coupling)
and K of 0.42. The uncertainty in this shift results in

some uncertainty in the position of these points along
the K direction of the graph. If the shift is not con-
stant there is an additional uncertainty added to hK.
For example, at u~ = 0.427 (three-coupling) we find
h, K =0.164 even though the corresponding one-
coupling lattice at K =1.28 gives bK =0.21. This in-
dicates that at this temperature the shift is not con-
stant. However, at k =1.50 and 1.42 the three-
coupling results agree with the one-coupling results,
indicating that the shift is constant within statistical
uncertainties.

/1 =3
2.02 (O. i =0.80)
1.82 (a( =0.70)
1.70 (~i =0.64
159 (oi=0585
1.50
1.50 (0.) =0.54)
1.42
1.42b (n, =0.50)
1.35
1.28
1.28
1.274 (a( 0.427)
1.20
1.05'

0.130 + 0.025
0.116+ 0.020
0.120 + 0.010
0.060 + 0.007
0.112 + 0.017
0.118 + 0.011
0.138 + 0.014
0.146 + 0.008
0, 189 + 0.011
0..216 + 0.032
0.209 + 0.006
0.164 + 0.004
0,260 + 0.020
0.265 + 0.030

32 16
32 16
16 8

08 4
32 16
16 8

32 16
32 16
32 16
32 16
16 8
16 8

32 16
32 16

)? 2

1 07 (u& = 0 325
1.20

0.025 + 0.030 32 16
—0.025 + 0.020 32 16

n=6
9.42 (. i =4.5) 0.4 32 16

We have found that with a three-coupling Hamil-
tonian we could match 16 && 16 onto a 8 X8 lattice on
two length scales. We used the largest scale to actu-
ally determine the numerical value of hK. %e also
tried one low-temperature match of an 8 x 8 onto a
4 && 4 lattice and assumed that there was matching of
the 4 & 4 onto 2 x 2 block averages. This gave a
result for AK almost one-half that given by our other
MCRG results and the low-temperature RG. We
thus conclude that these lattices are not large enough
relative to the range of the interactions generated by
the block spin transformation to accurately represent
it.

This procedure seems to break down at K = 1.05.

'These points give anomalous values of LLK for reasons
cited in the text.

bThe MC run used here was inadvertently computed with a
spin update procedure utilizing a slight sampling bias, We
have checked the 16 & 16 results for changes due to this bias
and found them not detectable to our accuracy. Thus, we
feel our value for hK is correct.
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When CNN, CNNq, and C4& were matched we found
that CNN2 and CNNN2 did not match by many standard
deviations. We conclude that at this temperature the
Hamiltonian does not iterate to the renormalized tra-
jectory under our blocking procedure.

As a comparison test we tried our method on two
planar model lattices. In this model one expects a
line of critical points (AK = 0) for K )K„where K,
is around 1.1. As can be seen from our data in Table
III, the MCRG results are close to the expected
hK =0. In fact, for the three-coupling Hamiltonian
we may be slightly into the disordered phase, where
we expect AK to be greater than 0. For the one-
coupling result we may have a slight systematic error
due to not having reached the renormalized trajecto-
ry. This effect tends to make AK too low. In any
event, there is a dramatic distinction between the
planar model data and that of the Heisenberg model.

In addition, we performed a qualitative check on
the n = 6 component model at low T where we expect
from the low-temperature RG that b, K =0.44. We
found AK =0.4, clearly distinct from the LT n = 3
model results.

Our MCRG results clearly join onto both the high-
and low-temperature analytic results. The remarkable
feature of these results is that the low-T RG is valid
down to a correlation length of roughly five lattice
spacings, a region which is within the scope of con-
ventional Monte Carlo.

In principle we could test the low-T RG to very low

temperatures, but in practice this is impossible be-
cause the various quantities used in the matching
change very slowly with K and the correlation times
are long. So incredibly long MC runs are necessary
to achieve the very small o- needed to determine an
accurate AK. Nevertheless, we have a AK good to
around 20% at K =2.0 where the correlation length is
around 240 lattice spacings, a feat far beyond the
capabilities of conventional MC.

P e2+K 1

1+2n. K
(14)

where we find from our MCRG and MC results that.
Co is around 0.010 with an uncertainty of around
30%. This uncertainty includes the MCRG uncer-
tainties and also possible analytic corrections due to
the third loop term in P(K), assuming that the coef-
ficient in front of this term is of the same order as
that of the previous terms.

The actual nature of the joining between HT and
LT is rather interesting. The breakaway from the
low-temperature RG is very sharp. One speculation

IO

the second moment of the spin-spin correlation func-
tion. The difficulty with this definition for MC im-
plementation is that the weight of the second-
moment peaks at 3(, so that the MC lattice must
have a correlation length smaller than at least —, of
the size of the system. In addition, the second mo-
ment gives a large weight to the large r part of the
spin-spin correlation function, which is the least accu-
rate part of the MC calculation. On the other hand,
there is no ambiguity in extracting g from the second
moment.

These MC results are shown in Fig. 5 along with
the HT series result" and the low-temperature result,
which is given by

C. Correlation length

In the region where correlation lengths are short
enough to be computed by straight MC we can in-

dependently verify the MCRG results. There are
various ways of extracting g from our data. One
method consists of calculating the spin-spin correla-
tion function and fitting it to a function with an ex-
ponentially decaying factor. One difficulty with this
procedure is that the exact form of the spin-spin
correlation function is not known and the g deter-
rnined is sensitive to the approximation form chosen.
In addition the answer depends somewhat on the
range of r in (S (0)S(r) ) used in the fit. Thus, we
have only been able to determine ( to +10—20'k.
Our values agree with the MCRG results within these
uncertainties.

The second method for extracting g is to calculate

0.4 0.8
K

1.2

FIG. 5. Correlation length, ( vs K. Squares are based on
the asymptotic decay of the MC calculation of the spin-spin
correlation function. The circles are based on a direct MC
calculation of the second moment of the spin-spin correla-
tion function. All data are from one-coupling Hamiltonians.
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is that this behavior is due to instanton configura-
tions becoming energetically important. ' We have
looked at graphical displays of spin configurations at
equilibrium and found no obvious evidence of instan-
tons. However, this is not conclusive since for the
planar model it is also difficult to spot vortex con-
figurations by eye, even though they are known to be
there. by computing numerically the vorticity in vari-
ous regions of the lattice.

To ensure that we are including all possible spin
configurations (and thus possible topological defects)
we used two tests. First, at n~ =0.5 we ran our MC
starting from a more ordered configuration as well a
from a more disordered configuration and found no
statistically significant change in any quantity.
Second, at o, ~

=0.54 we started from a configuration
with an instanton already on the lattice and found
after equilibrium that the results were the same as
those started from a previous MC run. Thus we be-
lieve that our MC procedure will include instantons if
they are there. It would be an interesting analytic
calculation to determine the effect of instantons on
P(K) and compare with our results.

D. Susceptibility

directly from P(K) because of spin rescaling con-
siderations. The high-temperature series results are
from a ten-term series. " The Monte Carlo data be-
gin to deviate from HT above K =0.90. X can be
calculated accurately from MC only when the correla-
tion length is a few times smaller than the size of the
system. The finite size of the lattice tends to cause X

to be smaller than the true thermodynamic X because
one loses correlations which contribute to X at large
distances. One way to estimate the effect is to as-
sume that the spin-spin correlation function C(r) de-
cays. exponentially and compare the integral over
C (r) for an infinite system with that of a periodic
lattice of length L. For example, for L /g = 5 we ex-
pect X from the MC calculation to be about 96% of
its true value.

At K = 1.42 we estimate g = 7, thus for L = 32 our
MC result is probably around 95% of the true value.
From our MC data on X at K = 1.42 we estimate that
X for an infinite lattice is about 100. (MC data give
96+ 5.) It is important to obtain a reliable value for
X at K =1.42 because the value of hK which takes
you from some K to K = 1.42 agrees with the low-
temperature RG results. Thus, we can determine the
amplitude of the low-temperature susceptibility,
which is given to two-loop accuracy by:

In Fig. 6 we show the susceptibility, X, as calculat-
ed from various methods. X cannot be calculated

Ce 4+K 1

2+K+1

r 4

(15)

IOO

IO

This form results from integrating the two-loop P
function exactly and not taking the large-K limit. See
Brezin and Zinn-Justin (Ref. 7). From our data we

find C =0.018, which is probably accurate to within

50%, although analytic corrections could very well be
large.

Fisher and Nelson" tried to find C by matching the
low- and high-temperature results for X. They did
not use P(K) to two loops, thus changing the prefac-
tor appearing in Eq. (15), making direct comparison
difficult. However, a rough estimate indicates their
method will produce a result off by a few orders of
magnitude.

VI. CONCLUSION

0.4 0.8 l.2 I.6

/

FIG. 6. Susceptibility, X vs K. Squares are MC data cal-

culated using one-coupling Hamiltonians. Normalization of
X is such that X = 1 for K =0.

Using the MCRG technique we have been able to
map out the behavior of the three-component classi-
cal Heisenberg model. We have followed the model
from deep in the low-temperature spin-wave regime,
where we make quantitative contact with Polyakov's
LTRG, through the crossover, all the way to the
high-temperature regime, joining onto high-tempera-
ture series expansions. These results provide very
strong evidence that the model has exponentially de-
caying correlations for all temperatures —there is no
phase transition.
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We can calculate the behavior of the model [such
as Eqs. (14) and (15)] quantitatively, and examine
the very interesting crossover regime in detail. The
crossover is so sharp that 1—2 doublings of length
scales are enough to take one from the low- to high-

temperature regime. Aside from their intrinsic in-

terest we hope these results can serve as benchmarks
against which other approximation techniques,
developed for this model or for the analogous gauge
theory, can be tested.

The calculation also serves to demonstrate the utili-

ty of the MCRG technqiue. There are many meth-
odological questions left to explore (the breakdown at
high T in particular) but the simplicity and generality
of the method seem to invite extensive application.

Any system that can be simulated and for which a

blocking rule can be defined becomes a candidate
problem. We hope the method lives up to its prom-
ise.
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