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A renormalization-group calculation has been carried out in d =6 —e dimensions to lowest or-

der in e, using the continuum generalization of the Potts model. The equation of state and the

various thermodynamic functions have been calculated explicitly by integrating up the recursion

relations in both the ordered and disordered phases. The transition is found to be first order

for p ) 2. For 2 & p & —the transition is first order in spite of the fact that there is an acces-
3

10
sible stable fixed point for all p & —.At the first-order transition, instead of the usual expan-

sion in temperature, the various thermodynamic functions are studied as functions of (p —2).
Finally it is shown that the free energy of the Potts mod. el has an essential singularity at the

first-order transition temperature T„due to instantons, which is of the same form as that of the

Ising model at H =0.

I. INTRODUCTION

In renormalization-group calculations based on
Landau-Ginzburg-W ilson free-energy functionals,
second-order transitions are characterized by accessi-
ble stable fixed points corresponding to infinite corre-
lation lengths (=~. First-order transitions are (usu-
ally) characterized by the absence of accessible stable
fixed points. Under the iterations of the renormali-
zation group the parameters flow off to infinity, out
of the region of parameter space where the theory is

applicable. Using a real-space renormalization ap-
proach Nienhuis and Nauenberg' have shown that
first-order transitions are characterized by discon-
tinuity fixed points for which /=0.

The present calculation is based on the continuum
generalization of the Potts model' due to Priest and
Lubensky. ' The critical properties are studied in

d =6 —e dimensions, to lowest order in e. An acces-
sible stable fixed point is obtained for all values

p (—.For p & —there is no stable fixed point,
10 10

and the resulting runaway is believed associated with
a first-order transition in the usual way, However, as
will be shown in detail below, for 2 & p ( —, a first-

order transition is obtained in spite of the presence of
an accessible stable fixed point.

These results are consistent with recent real-space
Monte Carlo renormalization-group calculations by
Blote and Swendsen. 4 They find that the transition is
first order for p = 3 in three and four dimensions,
but that the transition is not associated with a discon-
tinuity fixed point. Instead (in three dimensions)
evidence was found for the existence of a second-
order fixed point associated with singularities in the
metastable region just beyond the first-order transi-
tion. The present calculations suggest that if their

calculations were repeated for larger p values, a con-
ventional first-order transition with a discontinuity
fixed point might be expected. For d =6 the boun-
dary value separating the two types of first-order
transitions is p, = —,-. The value of p, in lower di-

mensions is not known. When corrections of order e

are included the value of p, increases. '
There appear to be no other examples, as yet dis-

cussed, where there exists an accessible stable fixed
point but where the transition is nonetheless first or-
der. Further, within the same model, there appears
to be two distinct types of first-order transitions
depending on the value of p.

Instantons, which are solutions of nonlinear equa-
tions associated with tunneling phenomena, are
known to play an important role at first-order phase
transitions. ' ' This suggests that the kind of low-

order perturbation expansion which characterize
momentum space renormalization-group calculations,

10
may not be a good description for 2 & p & —, , even

though a fixed point with values of the parameters
—e is obtained. Clearly for p & —, no such expan-10

sion is possible.
Much of the work on the Potts model has been

concerned with determining the order of the transi-
tion. The three-state Potts model is known to be of
second order in two dimensions. After some early
conflicting results, it now seems well established that
the transition of the three-state Potts model is first
order in three and four dimensions. ' " Tl-us find-
ing the tr nsition to be first order for p & 2, makes
the results of the e =6 —d expansion consistent with
those obtained by other methods.

The results of the renormalization-group calcula-
tions in the disordered phase is presented in Sec. II.
In Sec. III, the ordered phase is discussed. The
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mean-field theory is reviewed briefly followed by the results of the second-order transition for p ( 2. The prop-
erties of the first-order transition at T = T, are then described as functions of (p —2). Finally there is a brief dis-
cussion of the role of instantons in the neighborhood of the transition temperature and the two stability limits.

II. DISORDERED PHASE

Following Priest and Lubensky' the effective reduced Harniltonian is written

Ã = ——, „' (r +k') ggt(k)gt( k) +—«) „xgt(k)gtk(k')Q«( k ——k')

—u x Qt (k ) Qtt (k') Q«(k") Q«( k ——k' —k") —2) $ Qi& (k ) Q&k (k') Q„,(k")Qtt( —k —k' —k")

where Q;, are symmetric traceless tensors and in the
case of the Potts model also diagonal. The corre-
sponding propagator has the form,

I

by
/

Q;;=XA a;;
a ]

(4)

(Q,, (k)g»( —k)) =-, 8,,——2 1

r+0 p

The tensor components Q„are related to the com-
ponents A of the p-state Potts model,

(2)
where

a P
p —a+1

)

i]z 0 ifi &n
x'1 ifi =o.

—1/(p —u) ifi ) u

X = —J X A(x) A(x') (3) When written in differential form the recursion rela-
tions are given by,

—(I) = [2 —2)(l) )r (I) —144K6«)2(l) 1 —— +2 K« (p +1)u (I)+3 1 ——2)(l)
dI p [1+r (I) ]' p 1+r(l)

1 t

de) 1 3(I) = [—e ——2)(l )1«)(l ) +288K6 1 ——
3

—2 3K6 2u (I ) +3 1 ——2)(()
3 «) ( I) 4. «) (I )

dl P [1+r (I ) ] P [1+r (() ]

t

= [—2+e —22)(l)]u(l) +3'26K6u(l)«)2(I) 1 ——,+3 2 K62)(l)«)(l)2 —,
dl p [1+.(0]' p' [1+r(l)]3 '

(6)

dl
= [—2+e —22)(l)]2)(l)+3'2'K6u(I)«) (I) +3 2 K62)(l)«) (I) 1 ——

[1+r(l)]' p [1+r(l)]'
where a=6 —d and,

2)(i) =48K6(1 —2/p) '(I)

Only linear terms in u (I) and 2)(l) have been included. This will be justified later.
For d ) 4 the quartic coefficients are irrelevant with an I dependence —e "for d —6. In the disordered phase

the u (I) and v(l) terms can then be neglected, and we obtain results derived previously, "
r(l) =t(l) +72K6«)2(I) 1 —— 1 —2t (I) in[1+ t (I)]-

p 1+I(()
«)2(l ) = «)2e "/ W(l )

I (() = 2Ite(W() 5 3 2 p) ()0 3p)
(8)

CdW(l) =1+144K6 —3 (e"—1)
p
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and where for later reference

exp (( ) d( p/ (( ) [(2—p )/( 10—3p)]/3
J

In these equations t and co are initial values,

(9)

order transition for p ~ 2 and at the spinoidal point
for 2 (p & —.For p = 2, which corresponds to the

10

Ising model, TrQ3=0, and we obtain exponents ap-
propriate to the Gaussian model.

t = t (I =0), co = co(l =0)

The critical behavior is determined by relating prop-
erties in the critical region to those far from criticality
by means of the recursion relations. The free energy
is given by"

III. ORDERED PHASE

To describe the ordered phase we set

A (x)=(A )+2 (x) (13)

F = —K6(p —1) J ln[1+r(l')]e "' dl'

t3
(p —1) [ &((')""""'—l l,

12 QJ
(10)

where I' is determined by setting t (I') = 1. Similarly
the susceptibility is given by

p 4'
l

X '=exp —2('+& 2((l') dl' )( '(I')

t 11r ( (+)
—2 (2-p)/(10 —3p)

[Q, n= 1

0, otherwise (14)

The corresponding expression for Q;; is given by Eq.
(4),

1/2

p —1

P
(g+z), (15)

where the brackets denote the thermal average and
g is the fluctuating part. Following Priest and Lu-
bensky' only uniaxial order will be considered. Thus,

since to leading order, 2X '(I') = t (I")= l. Equa-
tions (7), (10), and (11) yield the exponents'"

I 3 1/2

= -1 1
Q;;= p —— (Q+c)+q;;

p —1 s
(16)

u = —1+ [p/(10 —3p ) ]e,
y = 1+ [(2—p )/(10 —3p ) ]e

2) = ——e(2 —p)/(10 —3p )
1

3

(12)

These are the appropriate exponents at the second-

fori A1

where q;; is a traceless diagonal tensor of dimension
(p —1) and where the subscript on 2( has been
dropped.

We add a fictitious field —A)(x)h (x) to the Ham-
iltonian and separate it into its fluctuating part,

X=—— (r +Lk2)Z(k)2( —k) ——
&

(rr+k2) Xq;;q;; —
J h(k)Z( —k)

i&1

+[(p —2)cru —4Q(u+bu)] 2(k)Z(k')Z( —k —k') —[3coc+4Q(u+3uc')] Z(k) Xq;;(k')q;;( —k —k')

i'll

+ ((v+4cug) X q;;(k)q;;(k')q;;( —k —k') —(u +bu) Jl 2 (k)2(k')2 (k")2(—k —k' —k")
ill

—2(u +3vc2) 12 (k )Z (k') X q;;(k")q;;(—k —k' —k") +4vc l 2 (k) X q;;(k')q;;(k")q;;( k —k' k")— —
i'll i&1

—u X q;;(k)q;;(k')q, , (k")q//( k —k' —k") ——v X q;;(k)q;; (k')q;;(k")q;;( —k —k' —k")
i'll

(17)

and its fluctuation-independent (mean-field) part,

&M„=— rQ + (p —2)co)g——hg —(u +bu)Q1

(18)

In these equations

rL = r —12(p —2)0)cg + 24(u + b u) Q'

rr = r + 12(ucg + 8(u + 3uc2) Q2

h =h —
2 rQ +30)c(p —2)Q2 —4(u +bu)Q3

c=[p(p —1)] ', b=(p —3p+3)c2

(19)
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(a) continuously with Q cc ~r ~, the Q' terms can be
neglected in the neighborhood of r & 0, and we ob-
tain simply

fL= r, rT= r
(p —2)

(23)

(b)
F

We note that rT & 0 for p & 2 while rr & 0 for p & 2.
Thus the apparently locally stable minimum I Fig.
1(b) is, in fact, unstable. "

In order to test the stability of the large Q
minimum denoted by II in Fig. 1 consider case 2.
Equating the free energies for Q = 0 and Q & 0 gives

rQ2+—cue(p —2)Q3 —(u + bu)Q4=0 (24)

Q

where Q is determined by Eq. (21) as before. Solv-
ing these two equations, we obtain

FIG. 1. (a), (b) Mean-field free energy as a function of
order parameter 0 with decreasing temperature from 1 to 4.

(p —2) c~
fc (u+be)

1 (p —2)cpu
2 (u+bu)

The corresponding values of rTL are

(25)

A. Mean-field results

~L +MF
a 2

(20)

Thus it follows that XL
' & 0 for all the local minima

shown in Fig. 1. We shall find, however, that
X&' ( 0 for several of the local minima sho~ing that
these are, in fact, unstable saddle points. The extre-
ma of the mean-field free energy are determined by

(8/8Q) xMF

Q[ —,'r —3cuc(p —2)Q+4(u+bu)Q'] =0 . (21)

For Q = 0, rL = rr = r and the Q =0 extremum
changes from a local minimum to a local maximum
at r =0 in the usual way. For the Q N 0 extrema we
obtain

rL = r8+(u + b)Qu', —

rr P r+gu 2 P + 8UQ (2P 3)
(p -2) (p -1)(p -2)

(22)

For the extrema denoted by I in Fig. 1 which develop

In Fig. 1 the mean-field free energy has been plot-
ted as a function of Q for p ) 2 and p & 2 for de-
creasing temperatures from curves 1 to 4. The stabil-
ity of the mean-field solutions is determined by the
requirement that the coefficients of the quadratic
terms rL and rT, describing fluctuations about the
mean-field order parameter, be positive. Or, equiva-
lently that the longitudinal and transverse susceptibil-
ities XL, 'r = , rL r be p—ositive. By Eq. (18) the longi-

tudinal susceptibility is also given by

(p —2) 'c'co'
(u+bu)

(26)
. 6(p —2)c'ru' + (p —2)'c'o)' [3„+(b+6 2) ](u+bu) (u+bu)'

However, for p & 2 all terms in rT are positive while

rr & 0 for p & 2. Thus the (apparent) minimum II is
stable for p & 2 but is unstable for p & 2.

From the above discussion it follows that the
mean-field approximation provides a consistent
description of the model for p & 2. A first-order
transition is obtained at r = r, when Q = 0 and Q W 0
minima are equal as in Fig. 1 curve 2. For p & 2
both of these minima are locally stable with rT & 0.
The Q = 0 minimum is an absolute minimum for
r & r, and remains metastable for 0 & r & r, . At the
stability limit r =0, the order parameter changes
discontinuously to the positive value

Qei = —,Q.

where Q, is the discontinuity at the first-order transi-
tion. The large Q minimum, which is an absolute
minimum for r & r„remains metastable for r & r,
until the stability limit,

9 . 1

r, 2= —,r.; Q, 2= —,Q. ~

is reached. At the stability limit r, 2, XL =0 while
Xr' )0. We note that Q is nonzero at the superheat-
ing stability limit while the slope, dQ/dr —I/Qr, 2 r-
has a square-root singularity.

For p & 2 the minimum that develops continuously
from Q =0 is not stable because rr & 0. Thus a con-
tinuous transition is not possible. Also, the stable
large Q minimum is always lower.
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In Secs. III B—III 6 the results of the renormaliza-
tion-group calculations will be presented. The most
interesting result is that the presence of metastable
state persists although only for a limited range of p
values. Whereas in mean field a metastable state
with Q = 0 is obtained in the temperature range
0 & r & r, for all p & 2, in the renormalization-group
calculation a metastable state is obtained only for
2 &p &

3
. For p ) 3

a first-order transition is ob-

tained without metastable states. The properties of
the first-order transition are calculated explicitly for

p & 2. It should be noted that the value p =
3

enters only through the renormalization-group calcu-
lations. In mean field there is no indication that

p =—,or any other value apart from p = 2, should1Q

play a special role.
For p & 2 the picture is much less clear. In this

case the large Q minimum (with Q & 0) is unstable
because XT & 0. However, for r & r, this is the
deepest minimum. Thus in order to have a well-

defined model for p & 2 higher-order terms in Q
need be included. It is possible that if terms to all

orders in Q are included there will be no large Q
minimum with Q & 0. This would be analogous to
the random ferromagnet where for certain choices of
parameters a first-order transition is obtained in

mean field when only quartic terms are included, "
whereas it is believed that when terms to all orders
are kept in the free-energy functional, the additional
minimum disappears and the transition is second or-
der. ' Priest and Lubensky have argued on physical
grounds that, at least for p =1, a solution with Q & 0
is not permissible. Thus in this paper it will be as-
sumed that the transition is second order for p & 2.
With this assumption the renormalization-group cal-

culation presented below, keeping only the low-order
terms and thus ignoring any large Q minimum, will

give a correct description of the transition. All the
higher-order terms are irrelevant at a second-order
transition. Because of the instability of the large Q
minimum, the model given by Eq. (1) cannot
describe a first-order transition for p & 2.

B. Solutions of the recursion relations

From the effective Hamiltonian for the ordered
phase Eq. (17) we derive the following recursion rela-

tions for rL (I ), rr(l ), and h (I ), the solutions of
which are required in order to calculate the longitudi-
nal and transverse susceptibilities, the equation of
state, and the free energy.

dl
(I) = [2 —q(l)]rL(i) —2 3 K6(p —2)c co (I) [(p —2)gL(l) +gr2(l)]+2 3K6[u (I) +bv(i)]gL(i)

+24K6(p —2) [u (I) +3c2v(i)]gr(I) +2 3 K6(p —2)co)(l)Q(I) [u(i) +bv(i)]gL2(l)

—273K6(p —2)ceo(i )Q (I ) [u (I ) +3c2v(i ) )gr2(i ) (27)

dl
(I) = [2 —J(l)7]rr(I) —2 3K6c to (I)gr(i)gL(I) —2 3K6 al (I)gr(I)

(p —1)

+2 K6p[u(i)+3c'(p —2) (v)I]g (rl) +2 K6[u(i)+3c'v(l)]gL(i)

—2 3K6cro(l)Q(l)[u(i)+3c v(l)]gr(i)gL(l) —2 3 K6crv(l)Q(l) gr(i) (28)

dl 2 2
(I ) = [4 ——'a ——'q(i ) ]A (I )+6K6(p —2)c ~(I ) [gL (I ) —gr(i) ]

—2 3K6Q (I) [u (I) +bv(i)]gL(I) —2'K6(p —2)Q(I) [u(I) +3c'v(i)]gr(i) (29)

where

(30)

For ru(i), u (I), and v(i) the recursion relations for the disordered phase will be sufficient.



22 RENORMALIZATION-GROUP CALCULATION OF FIRST- AND. . . 4455

The solutions of these equations are given by,

rL(l) = TL(l) +2 3~K6 1 ——co (I)+263K6(p —2) 2u(l) +3 1 ——v(l) ceo(l)Q(l)

—2~3~K6(p —2) [(p —2)c~aF(i) —8[u (I)+bv(l)]c~(l)Q(i) } TL(l) in[1+ TL(l)]+—
2 1+T (I)

—2'3'K6(p —2) [c'cu'(I) —8[u(I)+3c'v(l)]ceo(l)Q(i) } Tr(l) 1n[1+ Tr(l)]+—
2 1+ Tr(l)

+ 2'3K6[u (I ) + b v ( I ) ] [ [ TL ( I ) —
z ] + TL In [1 + Tz (I ) ] }

+23K6(p —2) [u (I ) +3c~v(l) ] [ [Tr(l) ——] + Tr~ 1n[1+ Tr(l) ] } (31)

'I

rr(l) = Tr(l) +2 3 K6 1 ——co (I) +2 3K6 2u (I) +3 1 ——v(l) ceo(l)Q(l)

—2"3K6[3cia)~(l ) + 8[u (I ) + 3c'v(l ) ]c(o(l ) Q (I) }

[T~(l) + T'(I) + T (I)T (I)] 1+ T (I)
[T (I) —T (I)] 1+T (I)

+ [Tr(l) in[1+ TL(l)] —TL(l) in[1+ Tr(l)] }
[T,(l) + T, (l)]

Tr I —, TL I

—2~3~K6 P [co~(l) +&v(l)ceo(l)Q (I)] Tr(l) 1n[1+Tr(l)]+-
p —1 21+Tr I

+23K6p [u (I ) +3(p —2)c~v(l)] [ Tr(l) —
~

+ Tq~(l) 1n[l + Tr(l ) ] }

+ 2 K6 [u ( I ) + 3c v ( I ) ] [ TL ( I ) —
~

+ TL ln [1 + TL ( I ) ] }

h (I ) = h (I ) —
~

t (I ) Q (I ) + 3(p —2) cpu(l )Q~(i) —4[u (I ) + b v {I ) ]Q3(l )

+3K6(p —2)ccrc(l) [ TL(l) —Tr(I) —TL(l) In[1+ TL(l)]+ Tr(l ) 1n[1+ Tr(l)] }

—2'3K6 [u ( I ) + b v ( I ) ]Q ( I ) (
——, + TL ( I ) —TP ( I ) In [1 + Tr. ( I ) 1 }

—2~K6(p —2) [u (I) +3c~v(l) ]Q (I) (
—

&
+ Tr(l) —Tq~(l ) 1n[1+ TL(l ) ] }

(32)

(33)

where

TL (I ) = t (I ) —12 (p —2) c r0(l ) Q (I ) + 24[u (I ) + b v (I ) ]Q'(I )

Tr(I) =t(l)+12ccu(l) Q(l) + &[u (I) +3c~v(l)]Q (I)

are the leading order solutions of the drL/dl and drr/di recursion relations,

(34)

1 pl
1

~(

h(l) =h exp (4 ——,e)l ——, J 7I(l') dl', Q(l) =Q exp (2 ——,e)l+» ri(l') dl'
(35)
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and where t(l ), ro(/), u (I), and u(/) are determined by the set of equations,

—(I) = [2 —/r(/)]t(/) +253K6 1 ——ro'(/)t(/) +24K6 (p+1)u(/) +3 1 ——u(/) t'(I)
dl

1 '! t '| 1

(I) = ———r/(/) (o(/)+2'3'K6 1 ——to'(/)+2'3K6 2u(/)+3 1 ——u(/) oo(/)t( I)

t 'I

(I) = [—2+a —2r/(/)]u(I) +2632K6 1 ——u(I)to'(/) +2633Ko—v(/)oo'(/)
dI

t

(I ) = [—2+ a —2r/(I) ]u(l ) + 2'3'K6u (l)ro'(I) +2 3'K6 1 ——u(l )ro2(/)
dl P

The solutions of this set wi11 be needed only for various special cases.

(36)

C. Susceptibilities

The susceptibilities in the critical region XT& are related to those far from criticality XTL by

I
Xrt, =exp —2/" + r/(/) 4/ Xt L(l') (37)

where XrL(l') is calculated by fluctuation corrected Landau theory. The diagrams needed are the same as for
the rTL recursion relations. %e obtain,

k dk k5 dk2XL'(I ) =rL(l ) —2 3 (p —2)c co (I ) (p —2)K6 J rt I +k22 o tr ( +k22

k dk+2 3[u (I') + b u(l') ]K6J, + 2 (p —2) [u ((') + 3c2u(/') ]K6 J~

+ 2 3 (p —2)c co(I') Q (I")[u (I') + b u (I') ]K6 Ji
rL (I' + k 2 2

—2'3(p —2)cro(l') g (I') tu (/") +3c'v(l") ]K,J o rr(l +k
(3g)

/1 5 1 5

2Xr &((")=rr(p) 2&32c2ro2((")K k 4k 2432 (p —3) 2((~)K I
k 4k

"o [r (I') + k'l[r (I') + k'] (p —1) ' » [, (I")+ k ]

k dk k dk+ 2 p [u (I")+ 3c'(p —2) u (I') ]K,J), , + 2~[u ((")+ 3c'u((') ]K,
rr I' +k "o r, (i')+k'

/1 k' dk2'3c (I"-)g(i') [u(i')+3c' (I")]K,
rL I' +k rr I' +k2

2732 (p 3) (/4) g (/4) (p)K k 4k
(p —1) [rr (I') + k ]

(39)

Performing the integrais and substituting Eqs. (31) and (32) for rL, and rr we obtain

2XL '(I') = TL (I') —243 K6(p —2) c~cu2(l")

x [(P —2) [—,
' TL(l") + TL(I') inTL(l')]+ —, Tr(l') + Tr(I') inTr(l') [

+2 3 K6(p «2)coo(l')Q(I') [u(I") +bu(I')][ —'TL((') y TL(/') inTL((')]

—2'3K6(p —2)ceo(I') Q (I') [u (I') + 3c'u(i') ] [—, Tr(I') + Tr(/") in Tr((') ]

—2 3K6[u (I') + b u(l") ] TL (I') tn TL (I ) —23K6(p —2) [u (I') + 3c'v((') ] Tr2(i') inTr(i') (40)
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[Tr'(I") 1nTr(i") —TL (I") inTt (I")]

[T,(l') —T.(I') ]

—2 3 K t«(I ) [—T (I")+ T (I") in Tr(l') ]'(p 1)

7(y)(g)[(y)2(+)] [Tr(I") inTr(l") —TL(l')1nTL(l )]

—2~3K6 P c«t(l')Q(I')u(I') [—Tr(I') + Tr(l') InTr(l')]

—23K6p[u (I")+3(p —2)c2u(l')] Tr2(I ) inTr(l') —23K6[u(l') +3c2u(l") ]Tt2(l") inTL(l") . (41)

D. Equation of state

The magnetization is determined by the self-consistency condition (2) =0. When evaluated at I = I' the di-
agrams that need be included are the same as for the h (I) recursion relation. We obtain,

0= It (I') +6(p —2)c«t(l")K6„k dk
rt. I" +k rr I' +k

k dk—2'3K, [u(l")+b (I')]g(l")K, J'
o r, (l')+k'

k5 dk—2'K6(p —2) [u (I') +3c'u(l')]Q(l') "o r (I')+k'

Performing the integrals and substituting for h (I") the solution obtained by integrating up the recursion rela-
tions, gives,

0 = It (I') —, t (I")Q (I'—)+ 3(p —2)c t«(l")Q~(l') —4[u (I")+ bu(l') ]Q3(l')

—3K6(p —2) c«&(l') [TL'(I') 1nTL (I') —Tr'(I") 1nTr(l") ]

+ 2'3K6[u (I') + bu(l') ]Q (I")Tt2(l') inTt, (I")

+ 2'K6(p —2) [u (I")+3c'u(l") ]Q (I') Tr'(I') 1nTr(l")

(42)

(43)

E. Free energy

The free energy is given by,

the mean-field contribution to Eq. (44). We obtain
ra1%

F = 6K6(p —1) J dl t3(l)e '"

F =
4

rg2 —(p —2)c«tg3+ (u + bu) Q"

F14'

+ 2K6 dl [1n[1+rt (I)]

+(p —2) in[1+rr(l)] ]e ~t . (44)

This consists of a mean-field part and a trajectory in-

tegral describing the effect of fluctuations. To lead-

ing order the trajectory integral is given by,

+ I —,
'

t (I')g'(I") —(p —2)c (I")g'(I')

+ [u(I') +bu(l')]Q (I') ]e '

where t(l), a&(l), u (I), and u(l) are solutions of
Eqs. (36).

F. Second-order transition p ( 2

(45)

-K6 dl [Tt3(I) +(p —2) Tr3(l)]e t~

Part of the contribution from the lower limit cancels

In the case of a second-order transition the ir-
relevant variables u (I) and u(l) do not contribute in
the neighborhood of the critical point. The results
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((~) t (I')
6(p —2) c ~((') (46)

where t(/) and co(/) are given by Eqs. (8). The or-
der parameter in the critical region is therefore deter-
mined by

then reduce to those derived previously with only cu-
bic terms included. '

From the equation of state we obtain, to leading
order, in the limit h (I')/Q (I') 0

(47), (50), and (54) we obtain for p ( 2

Q

c„

x, , - It I

with a and y given by Eqs. (12) and P given by

(3 = 1 —e/(10 —3p )

(55)

(56)

Q
I

W ((a) 2/(10 3P)

6(p —2) co)
(47)

2x;,,'(I') = T,,(I'),
where now

(48)

T (I) =t(l) —12(p —2)c (l)Q(/)

T (I) =t(/) +12ccu(/)Q(/)
(49)

The free energy takes the form

At I = I' the susceptibilities are, again to leading or-
der, given by

in agreement with scaling
From Eq. (54) it follows that xr & 0 for p ( 2, and

the assumed second-order transition is stable. For
p ) 2 W(/') becomes complex such that all the ther-
modynamic functions develop an imaginary part due
to the fluctuations. Because there is no real solution
for Q a second-order transaction is not possible in
this case. Instead the stable transition is found to be
first order.

According to Eq. (53) TL(l') vanishes as p 2.
We note from Eqs. (40), (41), and (43) that this
does not give rise to any singularities in higher order
in XL ~ or the equation of state as p 2

(p —2)2

x [(p'+4) W(i')""" "'—(p —2)'] (50)

-'t(I') = P
p

such that to leading order

1

2I
/I/

— p
p

For Tr((") =1, it further follows from Eqs. (46) and
(49) that

TL(l") =
p

(53)

and the susceptibilities take the form,

From Eq. (49) it follows that Tr(() ~ TL(I) for
p ~1. The solutions of the rL and rT recursion rela-
tions are only valid for rr, rT & 1. In the ordered
phase we therefore choose I' such that" Tr((") = l.
By Eqs. (46) and (49) Tr(l') =1 is equivalent to

G. First-order transition p & 2

In the case of a second-order transition, as just dis-
cussed, u(/) and u(l) can be neglected because they
are irrelevant variables with an / dependence
(neglecting e corrections) —e ". In the disordered

phase e " —t and these terms vanish as t 0. In
the ordered phase products of u (/) and u(/) with

Q (I) can be constructed with an I dependence of the
same order as the leading terms. However, because
Q 0 as t 0 the u and v terms again do not contrib-
ute in the neighborhood of the critical point. In the
case of a first-order transition, on the other hand,
neither t nor Q vanish at the transition point and the
quartic terms, as well as other higher-brder terms
may all be equally important, unless another small
parameter can be found in which to expand. The
transition is second order for p ~ 2, and (p —2) will
turn out to be a convenient parameter in which to
expand.

Equating the free energies of the disordered and
ordered phases determines the first-order transition
temperature. We note that the first term of the or-
dered phase free energy Eq. (45) is equal to the free
energy of the disordered phase. Thus we obtain,

2x ' =' 'gati W(l') '" """"'f

-p/(p -2)
!

(54)
, t (I') Q'(I') c~((—')Q'—(I')

+[u(I')+hu((')]Q'(I") =0 . (57)

where we have made use of Eq. (9). From Eqs. Taking the limit h ((')/Q ((') 0, we obtain from
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the equation of state Eq. (43) a second equation,

,
'

/ —(I')—3c ~ (I")Q (I')

+4[u(/')+I u(l')]Q'(I') =0 . (58)

From Eq. (59) it follows that:

2c2
(p —2)'W(l')-'

(u+bu) (66)

Solving these two equations, we obtain,

(/») (p —2)'c 4u'(I')
[u ( I') +b u( I ) ]

(59)

. (p 2)2+»/2

where t, is the shift in the transition temperature
from the spinodal point. From Eq. (60)

(67)

(60)Q (,)
1 (p —2)cd(/')
2 [u(/') +bu(l')]

Making use of Eqs. (59) and (60) the expressions for
TL(/) and Tr(I) given by Eqs. (34) may be written

or

Q, = —(p —. 2) — W(l")
(u +bu)

TL(/) =r, (l), Tr(() = /, (I),6

p —-2

with the latter expression valid only for p —2. As
before /' is determined by the condition Tr((') = 1,
or equivalently,

/, (/') = —,(p —2) (61)

" (I) = (—2+.) u (/)
dl

—2432/t6[4u (/)co2(/) —3u(l)(u2(I)], (62)

"(I)=(—2+a)u(/)
dl

+ 2~32/t ['4u (()4u (() —3u(/)o)2(/) ], (63)

The latter condition will be used to determine l'.
It follows from Eqs. (59) and (61) that irrelevant

variables will be of higher order in (p —2). Thus
u (/) and u(l) can again be neglected in the dr/dl and

dc'/d/ equations. Thus the solutions for I (I) and

40(/) will as before be given by Eqs. (8). Further-
more it will be sufficient to solve the du/dl and du/dl
equations only for p =2. In this case Eqs. (36)
reduce to

Q (p 2 ) 1+»/4 (69)

or

((&
1 (p 2) 2+»/2

//
—1 (p 2 ) 1+»/2

(71)

These expressions show that the assumed first-
order transition is stable for p & 2 but unstable for
p & 2 when W(I') becomes complex. For p & 2

there is no real solution for Q„and a first-order tran-
sition is not possible.

In the above discussion only the leading-order
solution for X~, XL, and h have been made use of. It
is, however, easy to check from the next-order
corrections that no divergences develop in higher or-
der, as p ~2+.

where Q, is the discontinuity of the order parameter
at the first-order transition.

For p —2 the susceptibilities take the form,

2 2

2XL'=e " = (p —2)'W(I') '
u+bv

(70)
6' c2Xr'= (p —2) W(l') '

M +Av

with solutions

u(l) = ——', ue' '+"[W(/) ' —1]

e( 2+»)i[3 W(l)-s 2

u(/) = —,'ue' '+'"[W(/) '+ —'
, ]

——'ue' '+'"[W(/) ' —I],
10

where W(/) is given by Eq. (8). From Eqs. (8),
(59)—(61), and (64) I' is determined by

u +bu W(l')
~2c2 6(p —2)

4

(64)

(65)

H. Essential singularity at T, . The role

of instantons

Above it has been shown explicitly that the transi-

tion is first order for p ) 2 by calculating the discon-

tinuity in the order parameter as a function of
(p —2) and by testing the stability of the transition.
It is generally believed that the free energy has an

essential singularity at a first-order transition. ' "
The most detailed investigation has been carried out
for the P4 continum Ising model in a magnetic field

h. In the ordered phase this model undergoes a
first-order transition at h =0. For the Potts model
the free-energy functional for the ordered phase is

given by Eq. (17). It is reasonable to assume that
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.any instanton, which is associated with tunneling
phenomena, results only from the longitudinal de-
grees of freedom (see also Fig. 1). Neglecting the
transverse degrees of freedom Eq. (17) reduces to

H = —
g~

d~x [—('72)~+ —rLZ' —o)Z'+ AZ~+ hL]

(72)

~here

m = (p —2)ceo —4XQ

A. =u +be
(73)

and where rL and h are given by Eq. (19). To make
contact with an Ising model in an external field we
translate Z(x)

where

1 2C QJ
2 2

F = ——(p —2)
2

(p -2)e(o
( )

Sx

(75)

and where we have made use of Eqs. (25). We note
that F & 0, and that the effective field h is linear in
(r —r, ) For t.he @4 model described by Eq. (74)
there is an instanton, which is usually referred to
as a critical droplet. The imaginary part of the free
energy as h 0 has been calculated by Langer for
three dimensions and has been generalized to d di-
mensions by Gunther, Nicole, and Wallace. ' When
expressed in terms of the Potts model the result is

ImF —exp( —8(p —2( + /(r —r, (
') (76)

for r r, +, where only the leading exponential
dependence has been kept. This expression has an
essential singularity at T, . When the coexistence
curve is approached from the stable phase an essen-
tial singularity is expected in the real part of the free
energy. A calculation for this case has been carried

.out by Klein, Wallace, and Zia'6 using a real-space
renormalization-group approach.

As discussed in Sec. III A the upper (superheating)
stability limit is determined by rL =0, while I ~ & 0.
The transverse degrees of freedom are noncritical,
and will therefore vanish under the iterations of the
renormalization group. Thus again only the longitu-
dinal part of Eq. (17) need be considered. In this
case a shift in 2 to eliminate the cubic term is not
useful, as this gives rise to a constant field indepen-

g(x) =Z, +y(x) .

By choosing go = co/4h. , the cubic term in $(x) is elim-

inated, and we obtain a Q continuum Ising model,

X'. = —„I d'x [—,
' ( 7$)'+ 4rp'+h. P' ——h@], (74)

dent of (r —r, q) for r = r, q, Q = Q„. Thus at the
upper stability limit, r r, 2 —,the behavior of the
Potts model is the same as for an Ising model with a
cubic term

K = —
J d'x [—,( 7@)'+ ,'F y—' —~y'+) d'], (77)

where

r = ( r+—r„)

Ql = ——coc (p —2)
(78)
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for r =r, 2, at its lower stability limit F 0+. It is
well known that the $' model does not have any
stable fixed points. It does however, have instanton
solutions. " Thus in the same way as the properties
near T, may be described in terms of instantons of
the $4 model, it is possible that the properties near
these stability limits may be described in terms of in=

stanton solutions of the $3 model.
Finally we discuss briefly the lower stability limit

(spinodal point). Although a first-order transition
. occurs at t = t, for p & 2, within the renormaliza-

tion-group calculation the Q =0 minimum remains
locally stable for all p & —, until the stability limit

t =0 is reached. It follows from Eqs. (8) and (11)
that X ' & 0 for t & 0 and p & —, . It is not clear

whether the exponents given by Eqs. (12), which
describe the second order transition for p & 2, in any
sense describe the spinodal point for 2 & p & —, , or
whether instead the usual small-amplitude and low-
order perturbation approximations of the renormali-
zation group breaks down in this case. The latter
seems more likely. The possible role of instantons
has not been investigated.

For p & —, there is no stable fixed point, X ' is no

longer real, and no description of the spinodal points
is possible by renormalization-group calculations
based on a perturbation expansion in cu'. As dis-
cussed above, the behavior of the Potts model at the
upper stability limit is for all p & 2 identical to that at
the lower stability limit of a Q' Ising model. This
model has no stable fixed points and the behavior is
presumably similar to that obtained for the Potts
model at the lower stability limit for p & —.

The results for 2 & p & —at the lower stability
10

limit remain anomalous. However, the present calcu-
lations demonstrate that the presence of a stable ac-
cessible fixed point is no guarantee that the transition
is second order as has generally been assumed.
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