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We have used a Monte Carlo method to study the face-centered-cubic (fcc) Blume-Capel

model: 3=—J 3, Sz S, +A X, SE+H 3,

S, , where S =1 and the sum (jj) is over the

¢ =12 nearest neighbors. We have traced out the A-T phase boundary and have found a tricrit-
ical point at k7,/qJ =0.256 £ 0.004. The tricritical behavior is consistent with the classical
behavior of the Riedel-Wegner Gaussian fixed point. We have also traced out the tricritical
"wings" in A-T-H space and have found their critical behavior to be consistent with three-

dimensional Ising exponents.

I. INTRODUCTION

Beginning with Griffiths’s observation' that the
change in the order of a phase transition along the
phase boundary could be due to the intersection of
three lines of critical points in a full three-dimen-
sional thermodynamic space (at a tricritical point),
extensive attention has been given to tricritical
behavior in a variety of physical systems?™ and sim-
ple theoretical models.~'® In particular, Riedel and
Wegner® used renormalization-group theory to show
that the tricritical behavior of a three-dimensional
Gaussian model is described by mean-field (classical)
exponents with logarithmic corrections for the order
parameter. (This result was further clarified by appli-
cation of the Ginzburg criterion.”) This study nei-
ther showed the location of the phase boundaries nor
did it indicate whether or not similar behavior should
occur in other models. Results of several numerical
studies (series expansions'® and Monte Carlo®)
showed that the simple cubic Ising metamagnet and
next-nearest-neighbor (NNN) antiferromagnet both
fit the Riedel-Wegner mean-field picture as predicted
by another renormalization-group study.!" The nu-
merical work indicated, however, that computational
difficulties were substantial (finite-size effects in the
Monte Carlo studies and the effects of crossover on
series of limited length) and that care must be exer-
cised in applying these methods. Blume, Emery, and
Griffiths® (BEG) studied the tricritical behavior of an
S =1 Ising model using mean-field theory. This
work has recentlylbeen extended to models with
higher spin dimensionality using renormalization-
group techniques.'®!” Extensive series expan-
sions'? !5 have been derived and analyzed for the
Blume-Capel model (a special case of the BEG
model) on an fcc (face-centered-cubic) lattice. The
most detailed study by Saul er al.'? is particularly sig-
nificant since it includes a detailed analysis of both
high- and low-temperature series. Substantial effort

2

was devoted to analyzing the free energy and its
derivatives as obtained from the series in order to
distinguish between a first- and a second-order transi-
tion. Even so, some features of the results are still
ambiguous. More recently a position space
renormalization-group method'® was applied to this
model, but we shall see that the results are not
promising. In this paper we shall present results of a
Monte Carlo study? of the Blume-Capel model. We
believe that the results of our study will not only pro-
vide new information about the properties of the
Blume-Capel model but will also provide an indepen-
dent assessment of the suitability of present series
expansion and real-space renormalization-group
methods for studies of multicritical behavior. Details
of the model and method will be presented in the
next section. In Sec. III we present our results re-
garding critical, tricritical, and wing-critical behavior.
In Sec. IV we summarize and conclude.

II. MODEL AND METHOD

The Hamiltonian for the Blume-Capel model'>!* is
defined as

=—J 3 8.8, +A3SI+H IS, . (1)
(ij) i i

where the ferromagnetic exchange J acts only
between the ¢ nearest-neighbor pairs of S =1 spins,
where in the case of the fcc lattice ¢ =12. Mean-
field theory® has shown that for J > 0 the ground
state is ferromagnetic and is separated from the
disordered state by a 2nd-order phase transition for a
wide range of the chemical potential (single-ion split-
ting) A. A tricritical point is found to lie at

A/qJ =2In%, kT,/qJ =, while for A/q/ > 0.5 the
system does not order. Since the ordered state is fer-
romagnetic, the order parameter m is the spontane-
ous magnetization and the conjugate ordering field is
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the magnetic field H. In this model the quadrupole
moment X =1— (S;?) is the "nonordering" parameter
and its conjugate field is A. The quantity X is the
spin analog of the fractional *He concentration in
’He-*He mixtures. (This situation should perhaps be
contrasted with antiferromagnets which show tricriti-
cal points where the staggered magnetization is the
order parameter and the conjugate field is the stag-
gered magnetic field. The magnetization and uni-
form magnetic field are then the corresponding
"nonordering" quantities.)

Monte Carlo studies were carried out on this model
using L x L x L fcc lattices with periodic boundary
conditions. (Since there are 4 atoms per unit cell the
total number of sites is N =4L3.) The method used
has been described in detail elsewhere?""?? and we
shall only outline it here. A "spin-flip" Monte Carlo
method was used in which the probability P of a suc-
cessful spin flip is given by

po e“./"r ife>0 , )
1 ifes0,

where € is the energy involved in the change of the
state of the spin. (Since this is a 3-state model the
possible "new" state was chosen randomly before each
spin-flip trial.) Lattice sizes considered varied from
L =4 to 10. Typically 100—200 Monte Carlo steps
per spin (MCS) were discarded and 500—2000 MCS
were retained for computing averages. All data
points were computed at least twice using different
starting configurations. No systematic differences
were observed except at the low-temperature first-
order phase boundary where distinct hysteresis
(metastability) indicated that the transition was first
order.

The size dependence of the thermodynamic quanti-
ties was interpreted using finite-size scaling theory.?
Finite-size scaling theory has been successfully used
to interpret Monte Carlo data for simple magnetic
models in zero magnetic field® 2! and near-field-
induced phase transitions.?* The maximum in the
specific heat is defined as the "pseudocritical" tem-
perature L. The corresponding infinite lattice criti-
cal temperature 7, is given by

T.=Tht+aL ™', 3)
where v is the exponent associated with the diver-
gence of the correlation length in the infinite lattice.
Similarly the magnetization m, ordering susceptibility
x*, etc., in the finite system are expected to depend

upon the scaled variable x = tL /¥ where
t=1-T/T.|:

m=L"Pf(x)—BB, ast—0, x—oo , (4a)
X*T=L"g(x)—Ct", ast—0, x —oo . (4b)

Both the "quality" of the scaling of the data and the
asymptotic, large-X behavior then provide a test of
the estimates.

III. RESULTS
A. Phase boundaries in the A-T plane

Data were taken along a number of paths of con-
stant A sweeping the temperature both up and down.
For all A/12J < 0.471 the results were qualitatively
the same. Typical data, for A/12J =0.4393, are
shown in Fig. 1 (this particular value was chosen be-
cause it was identical to a value of A, obtained in the
series study of Saul ef al.'?). Both the internal energy
E and nonorder parameter X increase smoothly and
continuously with increasing temperature with very
small finite-size effects except near the inflection
point which marks the transition. The order parame-
ter m decreases smoothly and rapidly near 7, and
shows a finite-size "tail" at high temperature. Both
the specific heat C/R and ordering (ferromagnetic)
susceptibility X* show sharp peaks whose magnitude
and location are clearly affected by finite lattice size.
Estimates for 7-(A) were obtained by examination
of the data, such as those shown in Fig. 1, and then
extrapolated to the infinite lattice 7.(A) using the
finite-size scaling relation in Eq. (3). For all paths
which cross the phase boundary at A/12J < 0.4393
our results agree well with the series expansion
values. For example, for A =0 we find k7,./12J
=0.570 £ 0.005 as compared with the series estimate
0.5684 £0.0010. For A/12J > 0.4393 we find small
but systematic differences. The resultant phase
boundary bends over rather rapidly and paths of con-
stant A become almost tangent to it. For this reason
additional data were obtained by sweeping A along
paths of constant temperature. Data taken at low
temperatures show distinct hysteresis indicative of a
first-order transition. As the temperature is in-
creased the hysteresis decreases until it disappears at
the tricritical point (see Fig. 2). We estimate that
kT,/12J =0.256 £ 0.002, A,/12J =0.471 + 0.004 for
an infinite lattice. The phase boundary is shown in
Fig. 3. Our estimate differs slightly from the series
value of kT,/12J =0.2615 +0.0070, A,/12J =0.4715
+0.0100 although the two agree within "experimen-
tal” error. The data show that the phase boundary is
quite smooth near 7,. A small "dip" appeared to be
present in the small lattice data but was much less
pronounced in our estimated infinite lattice critical
curve. A slight depression does appear in the series
expansion data but may be due, at least in part, to
the uncertainty in the location of the second-order
portion of the phase boundary near 7,. Therefore, if
a "dip" does occur, such as the one reported® for the
two-dimensional Blume-Capel model, it must be
quite shallow. Mean-field theory yields a phase
boundary which is systematically high in temperature.
The mean-field tricritical point lies close to the
correct value of A although the value of 7, is about
30% too high. The curve obtained from a position-
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FIG. 1. Temperature dependence of various thermodyamic properties along a path of A/12J =0.4393 for L =6, 0, L =8, A;

and L =10, @.
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FIG. 2. Variation of the order parameter, m, and nonorder parameter, X, with A along paths of constant temperature. Data
taken for increasing A are shown by open circles and data for decreasing A by closed circles.
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FIG. 3. Phase diagram in the A-T plane. Monte Carlo
results, ®; series estimates, O. The projection of the wing
boundary on the A-T plane is shown by filled triangles. The
predictions of mean-field theory (MFT) (Ref. 8) and
position-space renormalization-group (RG) theory (Ref. 19)
are shown by labeled curves. The solid curves are estimates

for the location of the second-order phase boundary, the
dashed lines are first-order phase boundaries.

space renormalization-group study'? is obviously in
serious error. The general analysis of the series is
quite complex, particularly near the tricritical point.
Saul er al.'? looked directly at the free energies of the
ordered and disordered phases in order to locate the
phase boundary. This procedure yielded only a slight
uncertainty in the critical point in the A-T plane for
each path, but the ambiguity in the phase diagram in
the X -T plane was quite large. In Fig. 4 we plot our

FIG. 4. Phase boundary in the X -T plane. Monte Carlo
results are shown by open circles. High-temperature and
low-temperature-series estimates are A and ®, respectively.
The predictions of mean-field theory (MFT) (Ref. 8) and
position-space renormalization-group (RG) theory (Ref. 19)
are shown by labeled curves.

values along with the series results for the X -7 phase
diagram. Our results show that neither the high-
temperature nor low-temperature series correctly lo-
cate the critical value(s) of X just above (below) T,.
As expected, mean-field theory yields systematically
incorrect results. The position-space renormaliza-
tion-group study'® yielded results which are substan-
tially worse than those predicted by mean-field
theory; in fact, the predicted tricritical point and
coexistence region do not even appear on scale in
Fig. 4.

B. Tricritical behavior

The asymptotic critical behavior along the second-
order portion of the phase boundary was described by
three-dimensional Ising exponents as expected. Near
the tricritical point, however, crossover between criti-
cal and tricritical behavior was observed. This is
demonstrated in the order parameter data in Fig. 5.
Extensive data were taken along the path A/kT
= 1.84 which essentially passes through the tricritical
point roughly perpendicular to the phase boundary.
Along this "tricritical path" there is no evidence of Is-
ing critical behavior. The order parameter data are
consistent with tricritical behavior which is classical
with logarithmic corrections

m = B,(tInt)"/* (5)

as predicted by renormalization-group theory. The
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FIG. 5. Critical and tricritical behavior of the order
parameters. t=|1—T/T,|. A/kT =1.84 is the tricritical
path. Data are for L =4, 0, L =6, ®, L =8, A; L=10, A.
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FIG. 6. Finite-size scaling behavior of the order parame-
ter along the tricritical path A/kT = 1.84 with g, =%, v, =%,
t=|1-T/T,|. Dataarefor L=6,0; L=8, A; L =10, ®.

significance of the logarithmic correction is demon-
strated in the finite-size scaling plot shown in Fig. 6.
If we ignore the logarithmic term the data do not col-
lapse onto a single curve, but they scale very nicely if
the logarithmic term is included. The high-tempera-
ture susceptibilities were also analyzed along the "tri-
critical path" assuming tricritical behavior of the form

XYT=C,it'"™ , (6a)
XT=C,'™ , (6b)

-where X' is the ordering susceptibility and X is the
nonordering susceptibility. The ordering susceptibili-
ty data (see Fig. 7) are consistent with Eq. (6a) with
the classical exponent y=1.0 and C,=0.23 £ 0.02.
This value for the tricritical amplitude C, is in good

102~

10

10"
1073 102 107! 10°

FIG. 7. Tricritical behavior of the high-temperature or-
dering susceptibility X*, and nonordering susceptibility X.
Data are for L =4,0; L =6, @, L =10, A, t'=|1-T,/T|.
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FIG. 8. Field dependence of the order parameter along
the tricritical isotherm £7/12J =0.256. Data are for L =4,
O,L=60,L=8 A, L=10,A.

agreement with the (more precise) series estimate of
0.241 £0.001. Finite-size effects are much more im-
portant for the nonordering susceptibility (see Fig. 7).
The large L data are consistent with Eq. (6b) with the
classical exponent A = % and C,=0.09. Our estimate -
for C, is much less than the series value of C,=0.50.
The only possible explanation that we can offer is
that the region of asymptotic behavior could be
t' < 0.01 and that the "fit" shown in Fig. 7 is there-
fore not appropriate.

In Fig. 8 we analyze the field dependence of the
magnetization along the tricritical isotherm

1/8,

m=DH @)

The data (Fig. 8) are well fitted by Eq. (7) with
8,=5.0and D,=1.0 £0.2. For comparison the series
expansion yielded §,=5.2+0.5 and D,=1.1.

In Fig. 9 we analyze the A dependence of the
nonordering parameter along the "tricritical path"
A/kT =1.84:

X=X td"" . , (8)

The asymptotic behavior is consistent with the classi-
cal value w,=% with d=1.5 £ 0.2 as compared with
the series estimate of 2.1.

0.03 | 1 | 1 |
0.01 0.03 0.01 0.03 0.1 0.3

t

FIG. 9. Tricritical behavior of the nonorder parameter
along the tricritical path A/kT =1.84, r=|1-T/T,|.
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FIG. 10. Temperature dependence of the discontinuity in
the order parameter across the first-order phase boundary,
r=|1- T/T,l. Open circles show series expansion results,
closed circles are Monte Carlo values.

We have also analyzed the discontinuities in the
ordering and nonordering densities along the first-
order phase boundary. As the tricritical point is ap-
proached from the low-temperature side the discon-
tinuities should behave like

Am = btﬁ" , (9a)
AX =gt | (9b)

where t = (1—T/T,). The data for Am, shown in

Fig. 10, agree well with the series values well below

T, but decrease much more rapidly near 7,. In the
region of small r where the asymptotic form [Eq.

(9a)] is expected to hold, our data are well fitted by
Eq. (92) with 8, =5 and 6 =2.2+0.2. Since the
series expansion estimate for Am does not go to zero
at- T, (see Fig. 4) we must also regard the estimates
for very small r as suspect. The data for AX (see Fig.
11) are also consistent with Eq. (9b) with w, =1 and ¢

=3.9+0.3. The relatively large errors in these data, for

both Am and AX, would clearly make it impossible to
exclude nonclassical exponents. Furthermore, we
cannot draw any conclusions regarding logarithmic
corrections.

C. "Wing" boundaries

Griffiths' pointed out that the phase diagram for a
tricritical system such as the Blume-Capel model con-
sists of three thermodynamic sheets in the full A-H -
T parameter space. The phase transitions which are
observed upon crossing these sheets are first order;
however, each surface is bounded by a line of
second-order critical end points. The phase boundary
to one surface, described in Sec. IIl A, is in the A-T
plane; the other two surfaces or "wings" extend out
symmetrically into the +H directions. The intersec-
tion of the three lines of critical end points is the tri-
critical point. In order to map out the wing boundary
we studied the behavior of the system at fixed tem-

0 wu=I.O
fog= o
[ ]
<
< 107
1072 | I |
1072 1o 100
t

FIG. 11. Temperature dependence of the discontinuity in
the nonorder parameter across the first-order phase boun-
dary, t=|1-T/T,|.

perature by either varying H with A held fixed or
keeping H constant and sweeping A. Pronounced
hysteresis was observed in both the other parameter
and nonordering parameter when the wing surface
was crossed far from the line of critical end points.
The wing phase boundary was then determined by
observing the disappearance of hysteresis. The pro-
jection of the wing boundary onto the A-T plane is
shown in Fig. 3 and onto the H -T plane in Fig. 12.
Scaling theory can be used to predict?® the shape of
the wing critical line as it approaches the tricritical
point

k(T,—T,)=aH?f (10)

with p= % In Fig. 13 we show a log-log plot of (T, —

0.5
.10 'wing' (H>0)
He
12J
005
0.0 ! ! ] J
0.18 0.20 0.22 .24 0.26
KTe
12J

FIG. 12. Projection of the wing boundary on the / -T plane.
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FIG. 13. Behavior of the wing boundary as the tricritical
point is approached.

T.) vs H,. Our data are consistent with the theoreti-
cal prediction, although the relatively large error bars
associated with the location of the critical end points
make any independent estimate for p quite inaccu-
rate. We have also studied the critical behavior along
the wing boundary. In Figs. 14 and 15 we show an
analysis of the order parameter and high-temperature
susceptibility for A/12J =0.60. The order parameter
follows the usual power law

m = BtP an

with 8=0.32 +£0.02 and B =1.34. For comparison
we note that along the H =0 phase boundary

SLOPE =8=0.32+0.02

Am

l | |
o.l
1072 Tol 10°

t .

FIG. 14. Wing critical behavior for A/12J =0.60. Data
are for L =10, t=[1-T/T_].

50

J
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FIG. 15. High-temperature ordering susceptibility data as
the wing boundary is approached along A/12J =0.60; L =4,
A L=6,0.L=10, @/ =[1-T,/T|.

B=0.31 with B=1.36 for A=0, and for A =—oo,
B =1.49. The high-temperature susceptibility obeys
a simple power law

X*T=Cr'~ (12)

with y=1.2+0.1 and C =0.30. For A=0, C =0.56
and for A=—oc0, C =0.97. Since the A/12J=0.6
wing critical point is not really very far from the tri-
critical point we regard the amplitudes obtained for
the wing critical behavior as quite similar to those ob-
tained along the "usual” critical line.

IV. SUMMARY AND CONCLUSION

We have studied the behavior of the fcc Blume-
Capel model in the full A-H -T space. Our estimate
for the location of the phase boundary in the A-T
plane agree closely with that obtained by series ex-
pansions. We find tricritical behavior which is
mean-field-like with logarithmic corrections in the
case of the order parameter. In addition the tricritical
amplitudes obtained generally agree with those ob-
tained from series expansions. These results show
that, in spite of some ambiguity in the nonorder
parameter, a series study can be quite accurate pro-
vided both high- and low-temperature series are
available. We have also traced out the "wing" boun-
daries. Our data are consistent with wing critical ex-
ponents which are the same as normal three-
dimensional Ising exponents.
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