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Real-space renormalization-group analysis for finite ferromagnetic systems
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The real-space renormalization-group transformation based on the cumulant expansion is

modified for systems with free-surface boundary conditions. A discussion is given of the accu-

racy and limitations of the method and of the extension to higher orders in the cumulant expan-

sion. Free energies and heat capacities of ferromagnetic strips (n x ~) and slabs (It && ~ && ~)
are determined over a wide temperature range. Exact results are obtained by a transfer matrix

technique for strips with n ~ 8, and compared to the renormalization results. The critical or
pseudocritical behavior is found to approach the bulk limit as n ~ according to a simple

power iaw I Tr(n) —T(~) i
~ i& ", where the shift exponent h. is equal to the reciprocal of the

critical length exponent. Renormalization equations are used for the first time to calculate the

heat capacity of the three-dimensional Ising model over a wide temperature range. In addition,

the effect of surface anisotropy is considered for ferromagnetic strips, and procedures are out-

lined for obtaining analytic derivatives of the free energy with respect to the renormalized

parameters.

I. INTRODUCTION

r

The renormalization-group concepts introduced by
Kadanoff' and Wilson have resulted in great prog-
ress in the study of critical phenomena. Applica-
tions of these ideas have utilized either a perturba-
tion expansion in momentum space, ' or a coarse-
graining method in real space. However, either ap-
proach requires the symmetry of the underlying lat-

tice to remain unchanged after any number of renor-
malization transformations, which implies that the
lattice cannot be finite in any dimension. In this pa-

per we present a modification of the real-space cumu-
lant expansion method of Niemeijer and Van
Leeuwen' so as to permit calculations on bounded
systems. 4

The modified cumulant expansion technique is il-

lustrated for ferromagnetic Ising strips on a square
lattice infinite in one dimension and ferromagnetic
Ising slabs on a cubic lattice infinite in two dimen-
sions. The results of our calculations are carefully
examined in order to determine the limitations and
successes of the method. Our calculations can be
easily extended to other systems and different kinds
of boundary conditions.

Section II reviews the cumulant expansion method
and Sec. III presents the modifications required for
the case of a finite thickness in one dimension. Re-
normalization equations are derived, as an example,
for the first-order cumulant expansion on the square
lattice. In the Appendix we give a gen'eral analysis
for any order in the cumulant expansion to determine
the number of interaction parameters for a Hamil-
tonian that will preserve the form of the surface in-

teractions upon renormalization. In Sec. IV we re-

view briefly the transfer matrix method' of obtaining
exact results for very thin ferromagnetic strips, and
in Sec. V we obtain the heat-capacity and magnetiza-
tion curves for a first-order cumulant expansion cal-
culation on ferromagnetic strips, with cell sizes of
four and nine spins. In the same section we give the
results of a second-order calculation with a cell of
four spins, and we compare with the exact results
from the transfer matrix method. We carry out cal-
culations for the Ising system on a simple cubic lat-
tice using the first-order cumulant expansion with an
eight-spin cell, and we determine the shift of the crit-
ical temperature with changing thickness. We find
good agreement with the proposed scaling law of
Fisher and Barber. Finally in Sec. V we investigate
the effects of surface anisotropy' in the coupling
between spins for ferromagnetic strips. The conclu-
sions are presented in Sec. VI.

In the Appendix we give the expressions for the
analytic derivatives of the free energy with respect to
the renormalized parameters which are required to
obtain accurate magnetization and heat-capacity
curves near the critical point.

II. CUMULANT EXPANSION

In the cumulant expansion method of Niemeijer
and Van Leeuwen4 the system is divided into groups
of spins (cells), and a renormalization transformation
is defined to convert the starting Hamiltonian into
one in which every cell has been replaced by a single
spin. The new Hamiltonian can be expanded in
terms of averages weighted by the intracell energies,
giving the parameters for the new Hamiltonian in
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terms of those for the old. In this paper the cumu-
lant expansion method is modified for nearest-
neighbor Ising Hamiltonians describing systems of
thickness L = (n —l)a (where a is the lattice spacing
and n is the number of spin sites perpendicular to the
surface) in one dimension, and infinite in the
remaining d dimensions (d =1, 2). We shall refer to
these as ferromagnetic strips and slabs, respectively.

The real-space renormalization transformation
proceeds as follows. We group the spins of our sys-
tem into cells of b +' spins, forming a new lattice of
the same symmetry, but with spacing a'= ba and
thickness L'= (n/b —1)a'. Thus the number of
layers in the system has shrunk by a factor of b. We
now replace each cell by a single new spin interacting
with new nearest-neighbor and magnetic field cou-

pling parameters, such that the form of the Hamil-
tonian and the value of the partition function are
preserved. Repeated transformations reduce the
number of layers in the finite dimension, until it col-
lapses into a system of dimensionality d. The slabs
collapse into the 2D (two-dimensional) Ising model
and the strips into the 10 Ising model, both of which
can be solved. For a system of cell size b +' and
thickness a (b' 1—), the renormalization transforma-
tion must be repeated t times in order to reach the
lower dimensionality. The free energy of the original
system can be related to that of the collapsed system
by relating the new coupling parameters to the old at
each step in the process.

We use a nonlinear renormalization transformation
of the form

exP ' = X Q 2
[I + o sgn(jth cell) }exp

ks T {~} ksT

where k~ is Boltzmann's constant and the sign of the
spin of each cell is determined by a modified majority
spin rule described below. Equation (I) has the ef-
fect of scaling the free energy per spin F by a factor
b

-d- I
, 1.e.,

—F/ks T -—In X exp (—3.' ( a }/ks T )
N

( )

(2)

I

If we split the original Hamiltonian into two parts

K {o }=3Cp( o. }+ V ( }o (3)

where ~p(o. } contains any constant terms, the mag-
netic field terms, and all couplings within cells, while
V {a } contains all couplings between cells, then we

can express the transformation in terms of averages
weighted by the cell Hamiltonian BCO of the general
form

X g [I+a&'sgn(jth cell)}exp(—3Cp(a }//ksT)A (a }

(g) {~} J

X Q [I +a&'sgn(jth cell) }exp(-Kp(o }/ks T)
J

Taking the logarithm of Eq. (I) and expanding in powers of V one arrives at the cumulant expansion
r

3C'
( a '

}= —ks T X ln g —' [ I + a sgn (jth cell) }exp( —Kp {o. }/ks T)
J (~)

—( V)p —(( V )p —( V) p)/2Ks T —(( V )p —3( V)p( V )p+2( V)p3)/6ks2T2+

The new Hamiltonian is determined to the desired
order in J/ksT (J is the nearest-neighbor coupling)
by truncating this series and evaluating the required
averages. The cell spins are assigned by a majority
spin rule, modified so that if there is a net spin of
zero, the corifiguration is assigned half to a positive
cell spin and half to a negative cell spin. We found
that this majority spin rule gives better results for the
critical point and critical exponents than the spin as-
signment used by Niemeijer and Van Leeuwen. 3

With the cumulant expansion method, we have
choices in defining the size of the cell and the order
of the expansion. The effects of both of these fac-

I

tors will be studied by comparing the renormaliza-
tion-transformation results to exact results wherever
possible.

III. RENORMALIZATION EQUATIONS FOR
FERROMAGNETIC STRIPS AND SLABS

We consider a nearest-neighbor Ising model on a
square lattice [~ x (n —1)a ] and on a simple cubic
lattice [m x m && (n —I )a } with free-surface boun-
dary conditions. In this case the system simply stops
at the surface and the first and nth planes (or rows)
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of spins are coupled to only one adjacent layer. The
Hamiltonian is of the form

3.'( o }= —J X ~;o, —H X rr, +g,
&i.J)

where J is the coupling between nearest-neighbor
spins o.;, cr, of magnitude + 1, H is the external mag-
netic field, and g a constant. The first sum runs over
all nearest-neighbor pairs of lattice sites (ij ).

As discussed in the previous section, grouping the
spins into cells divides the Hamiltonian into interac-
tions within cells Xo and between cells V. The pres-
ence of a free surface alters the intercell potential V

and gives rise to a set of coupling constants different
from the bulk, describing spin interactions near the
surface. The number of planes of spins that are af-
fected by the surface depends on the dimensionality
and cell size, as well as the order of the cumulant ex-
pansion. In the Appendix we show how the number
of spins affected by the surface can be determined in
general. In this section we use the ferromagnetic .

strip (d = I ) as an example and show how the free-
surface boundary conditions can be introduced in the
first-order cumulant expansion with a cell of four
spins.

In this case the bulk spins begin in the third layer,
and a total of eight parameters are required to define
the new Hamiltonian: three nearest-neighbor cou-
pling parameters, three field parameters, and two
spin-independent parameterS. Figure 1 shows the
transformation for the first-order cumulant expansion
with four-spin cells on the square lattice. Each cell
spin experiences a renormalized field that depends on
the number and nature of the interactions involving
the spins constituting that cell. In the bulk (two or
more lattice bonds from the surface) the spins have a
coupling JB and a magnetic field HB, and give rise to
the same JB and HB for all bulk cells. Surface cells,
however, have fewer interactions and experience a
different renormalized field, Hl', than bulk cells, The
contributions to ( V)o from surface cells are therefore

I

X(o}=—,
'

X gs+ —,
'

X g, H, X rr, —H, X a-,
&i)S NS &i)B &i)S &i)NS
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FIG. 1. Coupling parameters for four-spin cell in first-
order cumulant expansion.

different than for bulk cells, and this results in a dif-
ferent renormalized field, H2, on the cells next to the
surface, as well as a different nearest-neighbor cou-
pling between surface cells Jl' and between surface
cells and next-to-surface cells J2. Furthermore, since
averages over each cell contribute a constant term to
the new Hamiltonian, there wi11 be one spin-indepen-
dent parameter, gB, arising from the bulk cells, and a
second, gs, arising from the surface cells. The Ham-
iltonian then takes the form

Hs X rrj J] X farl'OJJ2 X a';a, —Js X o;a; —Js g a;a, —Js X o;o;
&'~)l &'~) B &'~)j.NS &'~) NS

where (i )s denotes a summation over surface spins,
(i )~s over spins next to the surface, (i ) s over bulk
spins, (I,j) o over nearest neighbors on the surface,
(ij )q over nearest neighbors with one spin on the
surface and one spin next to the surface, (ij ) s over
nearest neighbors in the bulk, (ij )qNs over nearest
neighbors with one spin in the second and one in the
third layers, and (iJ ) ~s over nearest neighbors both
next to the surface. When we divide the Hamiltoni-
an into inter- and intracell parts we obtain

surface
cells

bulk
cells

with

&o( }s=ag Hsi X o, —H, X a., —Jl X o., o,.
& )Ns & J)((

o'( o'J Ja $ a ( o'g

&'J) NS

(9)

I

}= X ic( } +X~ ( } +I'( }, (&)
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and

3C0((r}a=gs —Hs Xo, —Js X o., o.i,
(/, g) B

where all sums are over spins within the cell, and

V(a j=—Jl X rr;a, Js —X o;(ri —Ja X o;~J —Js X rr;~i
(r J&(] &'J & B &V )NS ~'J )J NS

where all sums are restricted to pairs of spins between cells. With these definitions of V and Ho, Eq. (5) gives

,rise to terms in the new Hamiltonian 3." that represent new field and nearest-neighbor coupling terms. To first
order in J/ka T, with the summations now over the new spins (a '), we find

3C'(o.']= X [gs ——,(I+a)l.nZs —
2

(I —o)ln. Z s]+ X [gs —
2
(1+a ) InZs ——,(I —o. ) InZ a]

~ &S (' NSB

+ X [Jl(a 1+a. al)(a 1+aiai) +Js(a 2+a a2)(a 2+crj'a2)]
(i.)) []

where

+2Js X (a 2+rr ap)(a s+rrjas)+2Js X (a a+(r as)(a s+(rJ'as)
~ 'i)NS, j.NS, B

(12)

a+; = —,
'

(C;/Zs + C;/Z s), i = I, 2,
a+a = —,(Cs/Zs + C s/Z s )1

(13)

and

Z+s = exp[ (Jl + 2J2+ Js + 2H|+ 2H2)/ks T ] + 2 exp [ (—Jl +Js + 2H2)/ks T ] + 2 exp[ (Jl —Js + 2H|)/ks T ]

+ exp[(Ji —2J)+ Js)/k8 T]cosh[( + 2H|. + 2H))/ka T] + 2 exp[( —Jl —Js)/ka T ] cosh(2J2/ks T)

Z+s = exp[4(Js + Hs)/ka T] + 4 exp( + 2Ma/ks T) + 2+ exp( 4Js/ks T)—
C+; =+ ( exp[(J|+2J, +Js + 2M|+2M, )/kaT]+2exp[( —I )'(Js —J, )/ksT +2H /ksT]

+ (—I)'exp[(J, —2J2+ Js)/ksT] sinh[(+2H|+2H2)/ksT]], i =1, 2

C+s =+ (exp[4(Js + Hs)/ks T]+2exp(+2Hs/ksT) )

Rearranging Eq. (12) into the form of Eq. (7), we arrive at the following set of renormalization equations:

gs =2gs+2gs —2J|a'i —2Jsa'2 —4Jsa 2a s —6Jsa's —ln(ZsZ sZsZ s)

gB = 4gs —16Jaa a —21n(ZsZ s )

Hi' =2J|ala, +2Jsa2a 2+2Jsa2a s+ 2
In(Zs/Z s)

H2 =6Jsaaa s+2Jsasa 2+ —, In(Zs/Z s)

(14)

(15)

(16)

(17)

(18)

Hs=8Jsasa s+ —, In(zs/Z s)

J)' =J]a) +JBa2, Jp =2JBa2aB', JB=2JBaB

%hen we reach a thickness corresponding to four
rows, we have only surface cells and the bulk field
and spin-independent parameters do not appear in
the Hamiltonian. A further reduction of the thick-
ness produces only surface spins, and we obtain a
new set of renormalization equations,

I

gs =4gs 4J|a '1 —8Jsa, —2 ln(ZsZ-s)
A A

Hi =H2=2Jiaia i+4Jsa2a 2+ 2
In(Zs/Z s)

AJ i
= JB = J)a &

+JBa2
Jh

J2= 2JBa2

(19)



L G. DUNFIELD AND J. NOOLANDI 22

H' = 4J,a 1a 1+—,
'

ln(Zs/Z s )

J'=2J~a~2

(20)

where now

I

where a+;, Z+s are given by Eqs. (13) and (14). We
now have only four parameters describing a one-
dimensional array of cells. The final transformation
into the one-dimensional Ising model is given by

g'=is 2Jla-1 —,
' ln(ZSZ-s)

finite (d +1) dimensional system because numerical
techniques fail when the distance from the fixed
point becomes less than the size of the numerical in-
crement. As there are limits to the increment size,
due to computational round-off errors, it is necessary
to use the procedure outlined in the Appendix to
determine derivatives near the fixed point accurately.

IV. TRANSFER MATRIX TECHNIQUE
FOR THIN STRIPS

Z+s = exp[2( J1+J2 + 4H1)/kB T ]

+4exp(+ 2H, /kBT)

+ 2 cosh[2(J1 —J2)/kB T ]

+ exp[ —2(J1+J2)/kB T] (21)

For the application of the transfer matrix tech-
nique' we consider the strip to consist of in columns
of n spins each, such that a particular column, the
jth for example, interacts only with the ( j —1)th and
( j +1)th column. Following Newell and Montroll, '
we ~rite the energy of this system in the form

+ 2 exp( + 2H1/kB T) } (22)

To summarize, for a system of thickness a (b' 1), —
after t successive renormalizations we arrive at a
one-dimensional Ising model with parameters g'(r),
H'(r), and J'(r), where the asterisk denotes the
lower dimensionality. These parameters are defined
in terms of the parameters of the original system.
The free energy (per spin) of the collapsed system is
then related to that of the original system by repeated
use of Eq. (2), thus

F (b gB HB JB gs H1 H2 Jl J2)

=b 'F(1;g', H', J ) (23)

Usually gs=ga=o. 0& ——H2=H~, and J] =J2= JB ini-

tially but it is not necessary to restrict ourselves to
this case.

A similar procedure can be followed to derive
equations for the second-order cumulant expansion
with four spins per cell, and the first-order expansion
with nine spins per ceil. %'e have also derived the
renormalization equations for the first-order expan-
sion with eight spins per cell for the simple cubic lat-
tice.

In Sec. V we give the results of calculations of the
free energy, its derivative with respect to J/kB T, and
the heat capacity, as well as the magnetization as a
function of temperature, field strength, and thick-
ness. Also included in our calculations is the effect
of a surface coupling different from the bulk on the
heat capacity. In the Appendix we give general for-
mulas for relating the derivatives of the free energy
of the original system to derivatives, with respect to
renormalized parameters, of the free energy of the
collapsed system. The use of analytic derivatives is
essential near the fixed point corresponding to the in-

and a+1 are given by Eq. (13), with C+1 replaced by

C+1=+ { exp[2(J1+J2+4H, )/kBT]

m-1
V = X V(vj, vj+1) + X V(v~)

where V(v, , v, +1) is the interaction energy between
the jth and (j+1)th columns, and V(vj) is the
internal energy of the, jth column. The quantity vj
denotes the set of all internal coordinates of the jth
column.

Introducing periodic boundary conditions so that
the mth column is connected to the first, the parti-.

tion function of the system is given by

m

Z=x XfJP(vj, v, +1)
V]

(25)

where

P(v&, v, +1) =exp{ —[ V(v&, v&+1)+ V(v&)]/kBT }

(26)

is an element of a matrix P. Clearly

Z = trace(P ) = X h.,j
(27)

where {)1;} is the set of characteristic values of the
matrix P. Finally, for a very large system we get

lim m ln Z = in~max
m ~eo

(28)

and the problem reduces to finding the largest eigen-
value of the transfer matrix P. The numerical com-
putation of this eigenvalue was carried out for the
two-dimensional ferromagnetic strips using the
method of Lewis. In practice it appears that the
transfer matrix method becomes impractical for
n & 10, as the size of the matrix grows rapidly. The
results of the calculation for n = 8 are shown in Fig,
2.
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FIG. 2. Free energy per spin ( —F/AT) (—1—L—k —), 8(—F/kgT)/8(J/kg T) (—~—~—8—), and C„/Nk&( "0"0" ) vs

J/k& T for ferromagnetic strips of dimension [~ x (n —1)a ]. The lines and the various symbols represent the renormalization-

group calculations and the transfer matrix calculations, respectively. (a) I7 =2, H =0; second-order cumulant and four-spin cell.
(b) I7 =8, 8 =0; second-order cumulant and four-spin cell. (c) I7 =2, H =J„ first-order cumulant and four-spin cell. (d) I7 =8,
H =J; first-order cumulant and four-spin cell.

V. RESULTS AND DISCUSSION

A. Thin ferromagnetic strips {1~ n ~ 9)

For small n, we have obtained the free energy and
its derivatives using the transfer matrix technique
described in the previous section and we compare the
renormalization-group calculations to these exact
results as shown in Fig. 2. Figure 2(a) shows the
free energy, first derivative, and heat capacity for a
two-layer (thickness a) Ising strip in the absence of a
magnetic field. The agreement of the second-order
cumulant expansion and a four-spin cell with the ex-
act result is very good, although the heat capacity
peaks too soon and falls too rapidly. Figure 2(b)
shows the results for a strip of thickness 7a (n = 8).
Here there is good agreement with the exact free en-

ergy, but the first derivative demonstrates a severe
overshoot above the pseudocritical point, the heat-
capacity peak is too high and the heat capacity be-
comes negative over a wide range of J/ktt T.

The overshoot of the first derivative and the nega-
tive heat capacity can be understood as follows. Us-
ing Eq. (4), it can be shown that the cumulant aver-
ages in Eq. (5) all vanish in the limit T =0. Hence
we obtain the correct free eriergy in this limit for any
order of the cumulant expansion. As the expansion
is explicitly in powers of T ', and the cumulant aver-

ages, hence the coefficients of the series, are bound-
ed, we also obtain the correct high-temperature
behavior of the free energy. At intermediate tem-
peratures Fig. 2(b) indicates that the approximate
(negative) free energy falls too rapidly as the tem-
perature increases up to the pseudocritical point.
Beyond this point, in order to reach the correct high-
temperature limit, there is a resulting overshoot in.
the first derivative and a region of negative heat
capacity corresponding to the negative curvature in

the free energy.
Physically the initial rapid decrease of the free en-

ergy with increasing temperature arises from the
truncation of the cumulant expansion resulting in a
neglect of correlations in the renormalization
transformation. For example, close to T =0, use of
the majority spin rule leads upon transformation to
the loss of the few spin deviations (inverted spins)
which are present in the system, and thus to a sum
inside the free energy expression, Eq. (2), which is

greater than if the spin deviations were retained. This
overestimate persists until near the pseudocritical
point, when there is a large number of spin devia-
tions and the majority spin rule gives a better descrip-
tion of the spin correlations in the renormalization
transformation.

From the above discussion the overshoot effect
may be expected to be larger in two dimensions than
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in one dimension and this trend is evident from the
results for the thicker strip in a comparison of Figs.
2(a) and 2(b). Later we will see that for three di-
mensions the relative error in the approximate free
energy is even larger. The approximation is greatly
improved however by the presence of an external
magnetic field, as shown in Figs. 2(c) and 2(d). At
low temperatures and with an external magnetic field
the relative error in the approximate free energy
resulting from the neglect of spin deviations in the
renormalization transformation is smaller than be-
fore, and since the high-temperature limit of the free
energy is given correctly, the agreement with the ex-
act results is improved over. the whole temperature
range. The agreement between the renormalization
approximation and the exact free energy is excellent
in Fig. 2(c), and in Fig. 2(d) the approximation is

very good, sho~ing a smaller negative heat capacity
than in Fig. 2(b).

8. Thick ferromagnetic strips
and slabs (n ~)

Z

"2-

04

~ ~
~ ~

~ I
~ ~

I ~
~ ~ I Qq I

I
~

~'. 0.8 ~~ 1.2-
0

4

0
0

~ ~ ~0
~ ~ ~ q ~ ~

Because we are working with finite lattices, the re-
normalization produces a system composed of a dif-
ferent number of layers with each transformation,
and there is no true fixed point. However for n & 64
we rapidly approach the case of an infinite system.
In Fig. 3 we show the approximate heat capacity as a
function of the reciprocal temperature for very thick
ferromagnetic strips (n = 2~ for four-spin cells, n =36
for nine-spin cells), along with the exact Onsager
result for the two-dimensional Ising model. ' As in

the case of thin strips, a striking feature is the region
of negative heat capacity. The reason for this
behavior has been discussed in the previous subsec-
tion. Here we make the added observation that the
area under the specific-heat. curve can be related to
the entropy, which is given correctly in the high-
temperature limit in our calculations. From Fig. 3 we
see that the positive area, for a given expansion order
and cell size is in general greater than the area under
the curve corresponding to the exact result. Hence
the region of negative specific heat is necessary to
partly cancel the effect of the positive part, and to
give the entropy correctly in the high-temperature
limit.

As seen from Fig. 3 the second-order cumulant ex-
pansion with a four-spin cell gives the best results for
the specific heat on the high-temperature side of the
singularity, while on the low-temperature side the ap-
proximate specific heat falls too slowly and becomes
negative. Both first-order results (with four-spin and
nine-spin cells) give similar disagreement with respect
to the shape of the curve, and also show a larger shift
of the maximum from the two-dimensional critical
point.

FIG. 3. Heat capacity C„/Nk~ of ferromagnetic strips
[~ x (I~ —1)a ] vs J/k& T for first-order cumulant and four-
spin cell with i~ = 2 ( — — —), first-order cumulant and
nine-spin cell with n =36 (———), second-order cumulant
and four-spin cell with n =29 ( "), exact result for» = ~
( ).

TABLE I. Two-dimensional results for yT, yH, and

J,/k& T, for 2 & 2 and 3 x 3 cells on a square l ittice.

Order of
curn ulant

Cell Size expansion VH 1,/k~ T,

2x2

3x3
Exact

1.005 90 2.145 90
1.029 13 1.999 15
0.927 04 1.943 31
1.0 1.875

0.518 612
0.430 197
0.469 742
0.440 687

%e may check the numerical accuracy of our calcu-
lations by comparing with earlier results by Hsu and
Gunton" for an infinite two-dimensional square lat-
tice. Table I shows our results for the two-
dimensional system. %e have determined the fixed-
point solutions as well as the magnetic and thermal
eigenvalues to a greater degree of accuracy than pre-
viously. In particular, we have obtained the fixed-
point solution to six significant figures, and computed
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FIG. 4. Magnetization M (dimensionless) vs J/kBT for
various values of H/J.

FIG. 5. Magnetization M (dimensionless) vs H/J for con-
stant temperature and fixed values of J/k&T.

the eigenvalues from a matrix consisting of algebraic
expressions (given in the Appendix) for derivatives
with respect to the field and coupling parameters.
Except for the second-order four-spin cell results, the
values of Hsu and Gunton" are in agreement with

ours.
Figure 4 shows the magnetization

M = —Q(F/kq T)/Q(H/kq T) vs J/ks T at different
field strengths for a first-order cumulant expansion
with a four-spin cell. From the exact result,
M = sgnH for T 0, we see that the magnetization
is bounded by unity, whereas the calculated value
rises above this value as the temperature is increased,
and shows a large overshoot in the critical region be-
fore falling at high temperature. The explanation of
this effect is similar to that given in Sec. V A for the
anomalous behavior of the heat capacity. The neglect
of spin correlations in the renormalization transfor-
mation at low temperatures gives rise to an overesti-
mate of the magnitude of the free energy, which

however is given correctly in the high-temperature
limit. The anomalous behavior of the derivatives in

the critical region corresponds to the regime where
the free energy is changing towards its correct value.
As expected, the renormalization transformation
gives a better approximation at higher fields and the
overshoot effect is decreased. Comparing our results
with the cluster approximation of Nienhuis and
Nauenberg, ' we see that there is good agreemet over
the whole temperature range for H =J, and over the
high-temperature region for the other H values. It is

interesting to note that the cluster approximation
does not give rise to the overshoot effect.

In Fig. 5 the magnetization is shown as a function
of H/J for constant temperature and fixed values of
(J/ksT). For values less than the critical coupling

J,/ks T, the magnetization curves show the behavior
expected for a high-temperature expansion. For
greater values of the coupling parameter however,

the magnetization is too large for small values of H,
decaying to the correct value M =1 as H
Again, this effect arises from the overordering-of the
spins at low temperature, inherent in our renormali-
zation transformation.

Figure 6 shows the approximate heat capacity cal-
culated for a ferromagnetic slab [~ x ~ x (n —l)a]
with n =64 using a first-order cumulant expansion
and an eight-spin cell. The values shown are very
close to the results obtained with the first-order ex-
pansion for n = ~. Also shown is the extrapolation
from high- and low-temperature series expan-
sions. ' " It is evident that we do not obtain a good

4

Cl

x
O
0 p

ijl jl

jljgt

1

Qj
0.4

e
FIG. 6. Heat capacity C„/Nk~ of ferromagnetic slabs

[oo x oo & (n —1)a ] with first-order cumulant expansion and

eight-spin cell on a simple cubic lattice, n =64 (———),
and extrapolations of series expansions (high and low tem-
perature) ( ),
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C. Ferromagnetic strips and slabs of intermediate
thickness (10~ n ~ 1000)

The properties of the ferromagnetic strips and slabs
approach, with increasing thickness, the bulk proper-
ties. In this section we examine the rate at which the
bulk properties are approached. As an example, plots
of the heat capacity versus temperature for the Ising
strip show a distinct maximum (pseudocritical point)
which with increasing strip width becomes sharper
and is shifted closer to the critical point of the two-
dimensional Ising model. Similarly, for magnetic
slabs we see the singularity in the heat capacity occur-
ring, with increasing thickness, nearer to the critical
point of the three-dimensional Ising model.

The shift of the singularity for the magnetic slabs
can be expressed by a power-law dependence, from
the following argument. As the transformation equa-
tions for the Hamiltonian parameters are smooth and
continuous, any singularity in the (d +1)-dimension-
al system must arise from the singularity existing in
the d-dimensional system related to it by Eq. (13).
The value of the coupling for n = b' layers,
K, (n) = J/ka T„will then be related to K~(~) by t
successive applications of the renormalization
transform. Similarly K, (n —1) will be related to
K~(~) by t —1 transformations. Clearly

K, (n —I) =K'[K, (n)] (29)

For systems sufficiently thick, K, (n), K, (n —1)

approximation to the three-dimensional critical point
(J,/ks T, =0.2217) in this case. In addition to the
negative heat-capacity region found earlier for fer-
romagnetic strips, there are oscillations in the heat
capacity for the coupling parameter just above the
singularity. The oscillations arise because of the
coarse graining of the system by the grouping of
spins into cells, and they are more severe in the case
of a slab than for a strip because of the different
power-law dependence of the correlation length on
the deviation from the critical temperature in the two
cases. For a two-dimensional Ising model the corre-
lation length g varies as

~ T, —T
~

' near the critical
temperature, whereas for the three-dimensional case
we have g~ [T, —T~ 064 (Ref. 16). For a ferromag-
netic slab the correlation length grows more slowly
than in two dimensions, and is large but finite over a
wider temperature range. Hence in this case, changes
in the free energy are more sensitive to the coarse
graining in the renormalization transformation. The
effect is particularly noticeable in the ferromagnetic
phase, because the spins in the cells are almost en-
tirely aligned, and are included in the free energy as
discrete units, whereas in the paramagnetic phase the
average cell spin is much smaller, and the effect of
discretization is negligible.

[T,(~) —T, (n)]/T, (~)T, (n) ~ n (32)

For very large n, T, (n) approaches the constant
value T, (~) and we recover the usual scaling
result' "

~ T, (~) —T, (n) [/T, (~) = Cn " (33)

where X is the shifting exponent. Thus in the limit
n ~, X= I/v.

It is better to use Eq. (32) rather than Eq. (33) be-
cause the former will approach the power-law
behavior much more quickly as n increases. For this
reason Eq. (32) is used for the calculations shown in

Figs. 7 and 8.'

The derivation of Eqs. (29) to (32) for ferromag-
netic strips (d = I ) is similar, but not as rigorous due
to the occurrence of a maximum (instead of a singu-
larity) in the heat capacity for each thickness, and the
possibility that the position of the maximum in the
one-dimensional system does not correspond to the
value of the coupling reached after f transformations.
However Eq. (33) has been verified for ferromagnet-
ic strips by high-temperature series expansions, '

10
I I I I I I

0

10 10
I I ~ I I I ~ ~

0
I
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8 10
CJI-

005
05-
07

FIG. 7. Shift exponent A. for ferromagnetic strips
[~ x (f1 —1)a] on a square lattice, showing results of calcu-
lations using different cell sizes and orders in the cumulant
expansion.

will be near the fixed point of the infinite (d + I)-
dimensional lattice. This allows use of the linear re-
lationship

K„(n. —1) .= K'[K, (n) ]

=K +'(~) +b' "[K,(n) —K +'(~)]
(30)

thus

[K,(n) —K"+'( ) ]

= b ' "[K,(n —1) —K'+'(~) ] ~ b ' "= n ' " (31)

Since K = J/ksT—, we can write Eq. (31) in terms of
T, (n) and T, (~) = T,"+', rearranging to give
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methods have been used to study the collapsed sys-
tem. The difference in the calculated shift exponents
from the two methods is less than the error arising
from the fitting of the lines. The value of A. found
here (1.26) is less than predicted from scaling laws
(h. = 1.56), Monte Carlo calculations, 7 or high-
temperature series expansions. " However the first-
order cumulant expansion, with an eight-spin cell,
leads to too high a value of v (0.803) for the infinite
simple cubic lattice and in fact gives 1/v —1.246,
which verifies the scaling relation for our system.
We believe that the small difference between our
values of A. and 1/v is not numerical in origin, rather
it is due to insufficiently large n in Fig. 8. However
there are practical limits on how large a value of n

can be used„as the value of ln[T, (~)/T, (n) —1]
looses one significant figure for every increase of or-
der of magnitude in n. For n =1000, we require
seven significant figures in T, (~) and T, (n) in order
to maintain three significant figures in

l T, (~)/T, (~) —1 j.

FIG. 8. Shift exponent A. for ferromagnetic slabs

f 0o x 0o x (n —1)a] on a simple cubic lattice using eight-spin
cell and first-order cumulant expansion.

Monte Carlo calculations, ' e expansions, and by an
asymptotic (n ~) solution for d = l."

Systems with constraints have lo~er values of A. .
For example, A. =1 for a Bose gas film6 (where there
are constant particle density constraints) and X 1 for
a spherical model' (where a constant mean spin is re-
quired in a system that is not translationally invariant
due to the finite system). Systems with periodic
boundaries also differ from the free-surface case with
h, = d (d is the number of infinite dimensions) for
d ~ 2, but do agree with A. = 1 for one dimension in-
finite 6 "

Figure 7 shows a log-log plot of Eq. (32) for the
ferromagnetic strips. Results are shown for a first-
and second-order cumulant expansion with a four-
spin cell, and for a first-order expansion with a nine-
spin cell. All three calculations give highly linear
plots for n & 4, with regression correlation coeffi-
cients of better than 0.9999. This system has been
studied in the asymptotic limit by Au-Yang and Fish-
er, ' who arrived at A. =1 and C =0.892785. This
agrees with our estimates of A. =0.982+0.005,
1.053+ 0.005, 0.865+ 0.007, and C =0.724, 1.025,
0.788 for the first-order four-spin cell, second-order
four-spin cell, and first-order nine-spin cell cumulant
expansions, respectively.

When the renormalization-group approximation is
carried out on the ferromagnetic slabs, the resulting
collapsed two-dimensional Ising model can be
analyzed by either the Onsager method, or by a fur-
ther renormalization approximation. In Fig. 8 we

show the log-log plot of Eq. (32) where both

D. Surface anisotropy

We can also examine the effect of having nearest-
neighbor couplings on the surface different from
those in the bulk. ' Figure 9 shows the heat capacities
of eight-layer magnetic strips (thickness 7a) for J~/Js
ratios of 10, 5, 1, and 0.2, with Ji = J2. The results
of an exact transfer matrix calculation for Ji = J2
=5' are also shown. We see the appearance of a

t~~ ~~ ~

~ ~
~ ~
~ ~
~ ~

0

22

O.2 O.4 0.8-

JI/kg T

FIG. 9. Heat capacity C„/Nkz of a thin ferromagnetic
strip (~ && 8a) with enhanced surface couplings, The results
shown are for J& =J2=5J~(———), Ji =J2=0.2J&(» ), '

and J
~
-J2 J& ( "). The transfer matrix calculations for

J& J2 10J& ( ) are shown by (~).
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shoulder and then a second maximum as the relative
strength of the surface coupling increases. The exact
calculation shows that this effect is real and not an
artifact of the renormalization transformation.

Strong surface couplings on the surface of the strip
correspond to a one-dimensional cladding on a strip
of smaller dimensions. The free energy per spin is
higher than in the case of isotropic coupling, and the
maximum in the free energy is shifted to higher tem-
peratures. When the ratio of surface to bulk coupling
is sufficiently high, the heat capacity can pass
through a maximum for the one-dimensional Ising
systems on the surface, while the bulk spins are still
in a disordered state. As the temperature is lowered
further the bulk spins begin to order and the heat
capacity passes through a second maximum.

If the surface coupling is weak in comparison to
the bulk, the maximum in the heat capacity is re-
duced and shifted to lower temperatures, but is in-
sensitive to the actual ratio, the curves for J~ =0.1JB
(not shown) and J~ = 0.2Ja being almost identical.
With weak surface coupling the system behaves as if
the surface layers were missing, with new dimensions
[~ x (n —3)a], and the shift of the specific-heat
maximum to lower temperature corresponds to a
reduction of the free energy per spin'. At intermedi-
ate ratios of surface to bulk coupling there is no clear
distinction between the surface and bulk contribu-
tions to the specific heat.

Since the real-space renorrnalization transformation
does not give rise to fixed points for the finite Ising
strips, surface related exponents cannot be derived
for this case by our method. However the effect of
surface anisotropy on the critical behavior of semi-
infinite Ising models will be discussed in a forthcom-
ing paper. "

VI. CONCLUSIONS

The ferromagnetic strips and slabs studied in this
paper have served as good examples of the use and
power of the cumulant expansion renormalization
transformation for systems subject to boundary con-
ditions. A procedure has been outlined for perform-
ing such a transformation and some of the difficulties
encountered in practice for low-order cumulant ex-
pansions have been examined. A thorough discus-
sion of these difficulties was given, and their origin
in the approximate nature of the renormalization
transformation was identified.

For the thin ferromagnetic strips it was possible to
carry out exact calculations using the transfer matrix
method in order to check the accuracy of the
renormalization-group calculations. Both the Ising
strips and slabs could be transformed by repeated re-
normalization until the system collapsed to one of
lower dimensionality, where the exact temperature
dependence of the thermodynamic quantities was

known. Hence the results presented here in the limit
of very thick slabs represent the first real-space re-
normalization work over the entire temperature range
for three-dimensional Ising systems. These calcula-
tions have shown that the shifting exponent A. is
equal to the reciprocal of the bulk correlation ex-
ponent v as proposed by Fisher and Barber. 6

We found that the use of analytic derivatives is
essential for the calculation of the derivatives of the
free energy near the fixed point. We presented gen-
eral expressions for these derivatives and suggested
methods of systematizing their use for computer cal-
culations.

The method outlined in this paper allows one to in-
troduce free-surface boundary conditions into an
Ising-model renormalization-group analysis for any
order of the cumulant expansion and arbitrary cell
size. The method is easily extended to other systems
(Heisenberg model, Potts model, percolation and po-
lymer configuration problems), other types of sur-
faces (semi-infinite systems, systems finite in two or
more dimensions), and other types of boundary con-
ditions (periodic, reflecting, etc.).
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APPENDIX

(p —2)b+1 ~p+m —1 ~ (p —1)b (Al)

For a system of dimension d + 1 we determine, as
follows, the number of layers affected by the surface,
and hence the number of parameters required to
specify a renormalized Hamiltonian corresponding to
an mth-order cumulant expansion with cell size b +'.
Suppose the pth cell from the surface is the first cell
composed only of bulk spins, i.e., it is dependent
only on bulk spins in the renormalization transform.
We proceed to determine p in terms of m and b. In
the mth order of the cumu)ant expansion, each cell
interacts with cells up to m neighboring cells distant,
so that the (p + m) th cell is the first cell that does
not interact with any surface cells and transforms into
a bulk spin in the (p + m) th layer, this being the first
layer of bulk spins. The (p + m —1)th layer is the
last to be influenced by the surface and this layer
must be contained in the last surface-influenced cell,
(p —1). With a cell size of b~+' the (p —1)th cell
contains the layers (p —2)b+1 to (p —1)b. The
smallest integer p satisfying the inequality
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or

+1~@~ +2
b —1 b —1

(A2)

is the required value. In turn (p + m —I) layers of
spins are influenced by the surface. Knowing the
number of spins influenced by the surface we can
determine the number of unique parameters needed
for the description of the renormalized Hamiltonian.

When we start with a system of b' layers and
reduce the number of layers by a factor b with each
renormalization we arrive, after t transformations,
at a system with no bulk spins so that b' '

~ 2(p + m —I ). Different renormalization equa-
tions will be needed for the ((+I) th to (th transfor-
mations. If the (( —1)th renormalization results in
less than b (2p + m —2) layers, the mth-order term in
the cumulant expansion must contain interactions
between a cell influenced by one surface and a cell
influenced by the other surface. In this case the t th

renormalization also requires a separate set of equa-
tions. This occurs for m =1, b = ~4, with t = t;
m =2, b =3, with t =t —1; m =3, b =2 with
t = t —3; and m =4, b = 5, with t = t —1. In the
cases when there are b (2p + m —2) or more spin
layers, the same renormalizations as used in the 1st
to (( 1—)th renormalizations can be used in the t th
renormalization. This occurs for m =1, b =3,4;
m =2,3, b =4,5,6; m =4, b =4,6, a11 with t =t —1;
m =1, b =2; m =3,4, b =3, with t=t —2; m =2,
b =2, with t = t —3; and m =4, b = 2, with t = t —4.

Next we discuss the calculation of the derivatives
of the free energy of the original system with respect
to the starting parameters, in terms of the free ener-
gy of the collapsed system with respect to renormal-
ized parameters. For convenience we adopt a vector
notation and let p, (k) = [J(((k),h(((k), :,] be the
vector containing the bulk spin coupling parameters
after k renormalizations. In general p, (k) will con-
tain additional parameters such as diagonal and next-
to-nearest-neighbor couplings, etc. Let

7(k) = [J((k), . . . , J;(k), . . . , h((k), . . . , h;(k), . . . , ]

I

be the vector. containing the remaining parameters
that' describe interactions involving nonbulk spins.
Finally, g(k) = [g((k), . . . , g~ ((k)] contains the
nonbulk cell constants generated by the kth renor-
malization, and g(((k) is the corresponding bulk cell
constant.

Since the parameters for the surface do not appear
in the renormalization equations for the bulk parame-
ters, we have the following relations for k ~ t —1

and all (ij):
Bg(((k) Bg(((k) Bp&(k)

Bg, (k —I ) Br; (k —1) Bg, (k —1)

Bgs(k)
Bp;(0)

Bg(((k) Bg(((k —I)
Bg(((k —1) Bp, , (0)

+ Bg(((k) 8p ((k —I )

Bp((k —I ) Bp, , (0)

8 j(k) BTJ(k) Bp((k —I)
Bp,;(0) Bp((k —I) Bp;(0)

BTJ(k) Br((k —I )

Br((k —I ) Bp,;(0)

8 (k) 8 (k) 8,(k —I )

Br;(0) Br((k —I ) Br;(0)

(Asb)

(Asc)

(Asd)

Bpg(k)
Br;(k —I) (A3)

Bp)(k)
Bg(((k —I )

Br) (k)
Bg(((k —I )

Br) (k)
Bg, (k —I)

and since the cell constants do not appear in the
equations for the coupling parameters we also find

Bgi(k) Bg, (k) Bg(((k —I )

Bp,;(0) Bg(((k —I ) Bp, ;(0)
Bg&(k) Bp, , (k —1)

Bp((k —I) Bp, , (0)

+ Bg) (k) Bg((k —I )

Bg((k —I ) 8p, ; (0)

Bg,.(k) Br((k —I )
Br((k —1) Bp,;(0)

(ASe)

We can obtain recursion relations for the first par-
tial derivatives linking the parameters after k trans-
formation from the following chain rules, making use
of Eqs. (A3) and (A4), as well as the summation
convention over repeated indices,

Bg~(k)

Br;(0)
Bgj(k) Bg((k —1)

Bg((k —I ) Bv;(0)

Bgi(k) Br((k —I )
Br((k —1) Br;(0)

(Asf)

Bp~(k) Bp,,(k) Bp((k —1)
Bp,;(0) Bp((k —I ) Bp, ;(0)

(ASa) For the second derivatives we have the following
solutions, similar to Eqs. (A3) and (A4), where X is
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(A6)

for alii, X, Y. Making use of Eq. (A6) we find the following chain rules for the second derivatives:

an element of p, (k), r(k), g(k), or g(((k), and Y is an element of p, (k —1), r(k —1), g(k —1), or g(((k —1):
B g(((k) B'p(((k)

Bg(((k —1)B Y Bg;(k —1)B Y Br; (k —1)B Y Br;(k —1)B Y

B'p,, (k)
Bp,;(0)Bp,((0)

B'r, (k)
Bp ;(0), Bp ((0),

B p, „(k —1) Bp,, (k) Bp,„(k —1) Bp, , (k —1) B'p) (k)
Bp,;(0)Bp((0) Bp,, (k —1) Bp, ;(0) Bp((0) Bp,„(k —1)Bp,, (k —1)

B'p, , (k —1) Br)(k) B r„(k —1) Br, (k)
Bp ( (0)Bp((0) BpI (k 1 ) Bp ((0)Bp ((0) Br@( k 1 )

(A7a)

Bp„(k,
—1) Bp,, (k —1) B'r, (k) Bp,„(k —1) B~, (k —1) B'r, (k)

Bp, ;(0) Bp((0) Bp,„(k —1)Bp,, (k —1) Bp, ;(0) Bp((0) Bp,„(k —1)Br,(k —1)

Bp, , (k —1) Br, (k —1) B'rj(k) Br, (k —1) Br, (k —1) B'r, (k)
Bp((0) Bp, ;(0) Bp,„(k —1)Br,(k —1) Bp;(0), Bp((0) Br, (k —1)B7,(k —1)

(A7b)

B'r, (k) B'r, (k —1) Br&(k) Bp, (k , 1) Br, (—k —1) B'r J(k)

Bp,;(0)Br((0) Bp((0)Br((0) Br„(k —1) Bp, (0) , Br((0) Bp,, (k —1)Br,(k —1)

Br„(k —1) Br, (k —1) B'r, (k)
Bp;(0), Br((0) Br„(k —1)Br,(k —1)

B T (kJ) B'r(k —1) BT&(k) BT~(k 1) BTq(k 1) B T (k)
B (r0() B (r0() Br;(0)Br((0) Br, (k —1) Br;(0) Br((0) Br„(k —1)Br, (k —1)

B'g, (k)
Bp ;(0)Bp (,(0),

B'g, (k) B., (k —1) B., (k —1)
Br„(k —1)Br,(k —1) Bp, , (0) Bp, , (0)

B'g(((k) d+, B'g(((k —1) B'p, , (k —1) Bg(((k)

Bp, (0)B&,(O) Bp, (0)B»(0) B„,(0)B&((0) B&„(k—1)

Bp,„(k —1) Bp,, (k —1) B'g(((k)
Bp;(0) Bp((0) Bp,„(k —1)Bp,, (k —1)

B'g„(k —1) Bg, (k) B'g(((k —1) Bg, (k)
Bp,;(0)Bp,((0) Bg„(k —1) Bp, ;(0)Bp,((0) Bg(((k —1)

B'r„(k —1) Bgq(k) B'p, , (k —1) Bg)(k)
Bp,;(0)Bp((0) Br, (k —1) Bp;(0)Bp((,0) Bp,, (k —1)

Bp,, (k —1) Bp,, (k —1) B'g)(k)
Bp;(0) Bp((0) Bp,, (k —1)Bp,, (k —1)

B'g, (k) Bp, (k —1) B,r, (k —1) Bp,„(k —1) BT (k —1)
B„,(k —1)B., (k —1) Bp, (0) B»(0) B„(0) B,, (0)

(A7c)

(A7d)

(A7e)

(A7f)

B'g, (k)
B&,(0)BT((0)

B'g„(k —1) Bg, (k) B'r„(k —1) Bg, (k)
Bp,;(0)Br((0) Bg„(k —1) Bp,;(0)Br((0) Br, (k —1)

Bp,, (k —1) Br, (k —1) B g&(k) Br, (k —1) Br, (k —1) B g, (k)
Bp,;(0) Br((0) Bp„(k —1)Br,, (k —1) Bp,;(0) Bp((0) Bv, (k —1)Br,(k —1)

(A7g)

Now the free energy of the original system of 6' layers can be related to the free energy after t transformations
by

F(0) —= F1&',g(0), r(0), p, (0)] =6 " +"F(() (A8)
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The derivatives with respect to elements of 7(0) or p, (0) are given by

BF(0);&„„BF(i)Bg«) BF(t) Br «)
Brl (0) Bg; (t ) B~l(0) B&;(t )

(A9)

B., (t) B., (t) BF(i) B'g, (t) BF(i) B",(t)+
B„,(0)B,.(o) B,.(, )B,, (;) Bt.t(o) B..(o) Bg, (;) B„,(o)B..(o) B,, (t) B»(0)B..(0)

(Alo)

where Eqs. (ASa) —(ASf) and Eqs. (A7a) —(A7g) can be used to compute the partial derivatives, keeping in mind
the restriction that when b & b( 2p+m —2) the recursion relations for g(t), 7(t) and the partial derivatives
are altered from those used in the first to (t —1)th transformations.

t
For each of the t th to the t th transformations, we calculate the derivatives of the free energy for b' " layers,

~here 1+1(k'(t, using

BF(k' —1) „„,I BF(k') Bg, (k ) BF(k')
Br, (k' —1) Bg, (k') B., (k' 1)— B., (k') B., (k' —1)

BF(k' —1)
~ (d+, ) BF(k') Bgt(

Bg, (k' —1) Bg, (k') Bg;(k' —1)

B9'(k') = 0, where X = gt (k' —1) or r, (k' —1)
Bg, (k' —1)BX

B F(k' —1)
~ (d~, ) BF(k') B'gt(k ) BF(k') B'rt(k')

B&t(k —1)B&t(k —1) Bgt(k') Br;(k' —1)Brt(k' —1) Brt(k') Br;(k' —1)Bv,(k' —1)

B'F(k') Br (k') Br, (k')
Br, (k') Br, (k') B., (k'-1) B., (k'-1)

(A 1 1)

(A12)

(A13)

(A14)

The equations (A3) —(A14) are used in the follow-
ing manner to obtain the desired derivatives of F(0)
with the least amount of computation. Suppose the
calculation has been carried out for thickness
tt (tt' ' —1) and we have already evaluated gtt(t —.2),
7(t —2), t7, (t —2), g(t —2), Bgtt(t 2)/BX, e—tc. ,
where B/BX denotes differentiation with respect to
elements of p, (0) or r(0). We now compute
gtt (i 1), 7(t 1), p—, (t— 1), g (t —1), g (t ), 7(t )—,
Bgtt(t —1)/ Bg(ttt—2), Bg;(t)/Brt(t —l ), etc. , and
apply the chain rules (ASa) —(ASf) and (A7a) —(A7g)
to obtain Bgtt(t)/BX, etc. We now calculate, in turn,

I

g(k'), r (k'), Bgtt(k')/Bgtt(k' —1), etc. , for
t +1 ~ k' ~ t Finally we co. mpute F(t) and its
derivatives for the system of smaller dimensionality d
and with parameters g (t) and 7 (t) Equation. s

(Al 1)—(A14) then give the derivatives of F (t —1),
F(t —2), . . . , F(t) in turn. Equations (A9) and
(Alo) can now be used, together with the numerical
values of Br;(t)/BX, etc. Thus, we arrive at the
derivatives of F (0) in terms of the original parame-
ters p, (0) and 7(0). The entire procedure can be
easily programmed on a computer by using matrix
algebra.
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