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The uniform (nonordering) magnetization and heat capacity of FeC12 have been measured

simultaneously in the vicinity of the tricritical point. Using. the peak in the heat capacity in the
second-order region and the light scattering in the first-order region, we have determined the

phase diagram for this metamagnetic tricritical point. A technique is described which permits
simultaneous measurement of these properties using the ac calorimetric and Faraday rotation
techniques. Data were collected along isotherms as functions of external field and were then

corrected to internal field using the measured magnetization and demagnetizing factors. %e
demonstrate that the data for the magnetization and heat capacity do not satisfy scaling relations

with classical exponents, pe=2 and o., = —,but may be made to "collapse" in the predicted

manner only when o., is permitted to take an effective value o.,' =0.65. hen logarithmic

correction factors of the form L (r) = 1 —a6 ln(r) are included, however, the data collapse with

classical exponents. The constant a6 is a nonuniversal amplitude which we find to be

a6=0.S+0.2 and the field r is defined to vanish along the logarithmically corrected —and experi-

mentally observed —second-order line. Along the first-order line, the behavior of the step

change in magnetization is improved by logarithmic corrections, but the classical exponents are
not fully recovered. The logarithmic factors occur in the scaled free energy such that, over any

limited range of experimental data, they may be represented by power laws with effective ex-

ponents. The logarithmic factors appear to be more important for metamagnets suck as FeC12

and CsCoC13 ~ 2H20 (which behaves similarly) than for He-"He mixtures.

I. INTRODUCTION

Although the possibility of an end point on a line
of second-order transitions was explored first by Lan-
dau, ' Griffiths' pointed out only recently that this
should be considered the intersection of three critical
lines, and is thus properly termed a tricritical point.
The scaling analysis of this special point, developed
by Riedel, ' was generalized by Chang et al. 4 Riedel
and Wegner' employed the renormalization method
to obtain classical (mean-field) exponents and subse-
quently extended the treatment to include logarithmic
corrections to mean-field behavior. Using diagram-
matic analysis, Stephen, Abrahams, and Straley'
(SAS) examined the logarithmic corrections and ob-
tained a free energy which differs significantly from
that of Wegner and Riedel6 (WR). A number of
subsequent developments has substantiated the' pre-
diction that the tricritical point is characterized by
classical critical exponents, with a cross over to criti-
cal behavior governed by an exponent $ = 2, but with
fractional powers of logarithms as correction factors.

The experimental situation is far less clear. A de-
tailed analysis of the 'He- He tricritical point has
demonstrated the correctness of the scaling approach
and yielded the expected classical exponents.
Metamagnetic tricritical behavior, which has been re-

viewed recently by Stryjewski and Giordano,
presents a less clear picture. While the early work by
Giordano and Wolf' on DAG, along with certain
results for FeC12," support the classical values for the
tricritical exponents, other results show quite signifi-
cant deviations. Neutron data for FeCl2 (Ref. 12)
and a rather complete study of CsCoCl3 2H20 (Ref.
13) have exponents quite far from classical values.
No test for logarithmic corrections has been attempt-
ed previously for any metamagnetic tricritical point;
no such corrections could be detected in 3He-4He

mixtures. However, the nature of logarithmic correc-
tion factors is such that they are expected to be al-

ways present, but with nonuniversal amplitude.
Thus, unobservability in one system does not pre-
clude their detection in another. To set the stage for
this study, we have adapted Table I from Ref. 9, in
which the critical exponents without logarithmic
corrections are summarized.

In this paper, we report results of experiments on
the metamagnet FeC12 in the vicinity of the tricritical
point. Our data on the uniform (nonordering) mag-
netization and the heat capacity, measured simultane-
ously, are sufficiently precise to permit a careful test
of the predictions of scaling theory, including loga-
rithmic corrections. Our results for the metamagnetic
phase boundaries differ in detail from previous opti-
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TABLE I. Experimental and theoretical tricritical exponents (adapted from Ref. 9).

Material Author n P„—P(1 —n, )

Dy3A150) 2

(DAG)
Theory

Birgeneau et al.
Ref. 12

Griffin et al.
Ref. 11

Dillon, Jr., et al.
Ref. 11

Present work
(effective
exponents)

CsCoC13 2D20 Bongaarts et at.
Ref. 13

Giordano et al.
Ref. 10

Riedel et al.
Ref. 5

0.65
+0.05

1.03
+0.05

1.00
+0.02

0.36
+0.04

1.13
+0.14

1.00
+0.07

~ ~ ~

1.11 -2
+0.11

100
+0.08

0 63 -2
+0.05

0,19 0.36
+0.02 +0.04

—0.35
+0.05

1/2

2 0.3
+0.2 +0.1

95 ~ ~ ~

+0.11
2 1/2

0.15 0.36
+0.02 +0.05

1/4 1/2 —1/2

0.65 0.7 0.7 0.65
+0.05 +0.4 +0.4 +0.20

0.52 2 0.05 1 1 0.98
+0.05

1 1 1

0.07
+0.15

0.05
+0.32

cal determinations" but are in agreement with neu-
tron data. " As with CsCoC13 2H20, " FeC12 re-
quires a nonclassical value for the tricritical exponent
n„but a classical value of $, if scaling predictions
are to hold in the absence of logarithmic corrections.
All other exponents take on nonclassical values such
that scaling laws hold. Over limited ranges, classical
exponents can be employed, but significant devia-
tions occur. %e have no explanation for the
discrepancies among the various results in Table I,
but note that specific-heat results were essential to
the determination of the correct position of the criti-
cal line.

Inclusion of logarithmic corrections as predicted by
SAS results in a recovery of classical exponents in
the scaling of both the magnetization and the heat
capacity. A single adjustable parameter, the
nonuniversal amplitude of the logarithmic terms, is
required, but this replaces the adjustable critical ex-
ponent 0,, which now has its classical value —,. This

amplitude has a value within the range predicted by
SAS, but is significantly smaller than recently suggest-
ed by Stephen. ' Preliminary analysis of the magneti-
zation data, with and without logarithmic correction
terms, has appeared previously. " Our principal
results here include: the observation of logarithmic
corrections to scaling, the first scaling of the heat
capacity near a tricritical point, and a demonstration
that the nonclassical exponents are a result of ignor-
ing logarithmic factors which are, in fact, present.

In Sec. II we describe the theoretical results for tri-
critical scaling of the magnetization, including loga-
rithmic factors, and derive similar expressions for the
heat capacity. Following a description A the experi-
mental methods in Sec. III, we test the results of Sec.

II against our data. The approach is to demonstrate
the failure of classical scaling, the improvement of
data collapsing with nonclassical exponents, and final-

ly, the recovery of classical exponents when the loga-
rithmic factors are added. The analysis is separated
into an analysis of the critical line and then the more
difficult problem of the first-order line. Details of
the behavior of the specific heat along the first-order
line which have been reported previously, will not be
repeated here. "

II. SCALING AT THE TRICRITICAL POINT

A. Conventional scaling theory

The scaling approach to tricritical phenomena,
developed by Riedel, Griffiths, ' and Chang, Han-

key, and Stanley, assumes that the singular part of
the free energy is, asymptotically, a generalized
homogeneous function of a set of scaling variables

p, ), p, 2, and Ks'.

-(2-, )y
G (Hs, p, ), p2) = I ' G (I 'Hs, fag, (, Ip2), (2.1)

(2.2)

where @ is the crossover exponent. The tricritical ex-

where b, =P,S,. The quantities p, ~ and p2 are scaling
fields which are functions of K —K, and T —T„
where the tricritical point is at (T„H,). The p, 2 axis
(see Fig. 1) is asymptotically parallel to the critical
line at the tricritical point, while p, ~ points away from
the critical line (but not necessarily normal to P2). A
necessary condition on p, ~ is that the critical line L~
in the K, = 0 plane, be representable as

p, '=Ep,
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experimental analysis. We may choose the direction
of the hz=0 line (p& direction) arbitrarily, and there-
fore take

pz= T/T, —1 (2.6)

L
Now, at fixed T we have from Eqs. (2.4) and (2.2)

s

pi p[ H —H (T)
2' P.~2 Hlf 42

(2.7)

where H, ( T) is the actual critical field for tempera-
ture T. We need not specify p, i further except to re-
quire it to be of the form

L) pi = (H/H, —1) +f(T —T) (2.8)

FIG. 1. Tricritical phase diagram showing the definition
of the conventional scaling fields.

uz
' &(I i Vz) =&'(I i/I z) (2.3)

The scaling fields p, i and p, 2 are, in this case, analytic
functions of H and T. The scaling function 8'
depends only on the scale invariant quantity
Yz = p, ~/p, z and may be singular along the critical line
Yz=EC [cf. Eq. (2.2)]. In order to make a precise
scaling hypothesis about the critical line it is neces-
sary4 to define a new variable

Y2=Y2 —K (2.4)

The scaling function 8' now is expected to exhibit
the following asymptotic behavior:

ponents can be subdivided into two classes: (i) those
that describe the tricritical behavior by regarding the
tricritical point as a special point on the line of critical
points: n„P„y„g„nand (ii) those that describe
the tricritical behavior by regarding the tricritical
point as an "ordinary" critical point: n„, P„, y„, 8„,
P~. Sets (i) and (ii) are related through the crossover
exponent $. The exponents are predicted to have
classical values, as listed in Table I.

Tricritical scaling theory' predicts that the singular
part of any thermodynamic quantity 8 (p, ~, pz) with

critical exponent a, tricritical exponent a„and cross-
over exponent @ will satisfy

where f (T —T, ) can be any function which vanishes
at T, . Note that Y2 = 0 is the equation of the
second-order line.

The two quantities of interest here are the nonor-
dering magnetization and the specific heat, The mag-
netization relative to the tricritical point is defined as
m =M(T)/M, —1, and has the scaling form [which
may be derived from Eq. (2.1)]

(i-af )$
m(T, H) =pz ' m"(Y,') (2.9)

where m'( Yz ) is a scaling function which can be
derived from an approximate equation of state. ' A
particularly simple form which has the proper
behavior is

m"(Y,')=(const)„(z( )z+K)
' " dz . (2.10)

For the scaling of the heat capacity, we start from
the scaled free energy

(2-a )P
(2.11)

The singular part of the heat capacity in constant
internal field C~ is given by

$26Ca-—
~92

C"( Yz), (2.12)

where

C'( Y,) = A, (A. —I)G"( Y2) —(2l —$ —1)P Y,G"'( Yz)

+ P' YzG'"( Yz)

A. = (2 —n, )@, and prime means differentiation with

respect to Y2. The exponent for the specific heat in
constant field is then

Yz, critical region ( Yz (( 1)

Yz, tricritical region ( Yz » 1) . (2.5)
n=n, —2+2/$ (2.13)

as found previously by Reatto. '

The measured heat capacity is taken in constant ap-
plied field H„so that we must consider C~, which isa'The use of Y2 as the variable greatly simplifies the
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related to C~ through'

Cpg =Cpg+NT 1+N aM
BT 9H

(2.14)

9M 92G

8T
pg 8jx28P )

Using the scaling form for M, we can readily show
that

tion is raised to a small fractional power and is not
important except very close to the tricritical point.
The constant Io is nonuniversal which reflects the fact
that the logarithmic corrections are model dependent.

More recently, SAS' calculated the logarithmic
corrections by diagrammatic methods with quite dif-
ferent results. In their analysis the scaling axis p, ~ is
replaced by

(2.19)

and

= pp
' [G"( Y2) —$Y2G"'( Y2) ]

8Af 8G —,
G (Y)

2 P'2 2

so that p. vanishes along the uneorreeted critical line.
The logari'thmic correction factor is defined in terms
of a field r which vanishes along the logarithmically
corrected (and presumably experimentally observed)
critical line. The correction factor may be written in
terms of r as

L (r) =1—a6ln(r) (2.20)

so that the leading singularity of the second term also
scales with a. Therefore, the specific heat at con-
stant applied field has the same scaling form as the
internal field heat capacity; that is,

(2.16)

but with a complicated scaling function.

B. Logarithmic corrections

Because the fourth-order term in the Ginzburg-
Landau-Wilson free energy vanishes at the tricritical
point, classical (Gaussian-model) critical exponents,
given in Table I, are predicted. Sixth-order fields
are required for stability, and lead to logarithmic
corrections to scaling. To discuss these, it is con-
venient to let the scale factor I in Eq. (2.1) satisfy

I@)= I and t,ake H, =O. We then obtain

(2.17)

Wegner and Riedel6 first obtained the logarithmic
corrections to Eq. (2.17) by means of Wilson's ap-
proximate recursion relations. They found that p, 2 is
corrected in Eq. (2.17) by a factor

[I +In(p, , )1' 2 (2.18)

with p =2(n+4)/(3n+22). For an Ising (n =I)
metamagnet, p = 5, so that the logarithmic correc-

The most singular part of the second term in Eq.
(2.14) is

t 2

gM gM 4 ~2-t-2/4~

QT I QH

[G"'( Yg) —
Q YzG"'( Y2) ['T

G'"( Y,)

(2.15)

(2.21)

where n is the number of degrees of freedom of the
order parameter; n -1 here. As we shall see, a6 is of
order unity for FeC12, so that the difference between
r and p, is negligible except very close to the critical
line. We choose to use the empirical position of the
critical line and use r =—p. =—[H —H, (T) ]/H, in our
analysis.

The expression for the free energy analogous to
Eq. (2.17) is'

G(p, g) =p ' L' (r)g'(QL' (r)/II, '~) . (2.22)

A form more suitable to our purposes, similar to Eq.
(2.11) is

G (p„g ) = Q'L' "(r)G"(I /Q'L' "(r)), (2.23)

where we have used the classical values a, =
2

and

/=2. Note that Eqs. (2..22) and (2.23) are
equivalent to Eqs; (2.17) and (2.11), respectively,
when a6=0. From Eq. (2.23) it is not difficult to
derive the scaling forms of the nonordering rnagneti-
zation and the specific heat. They are

m(H, T) =QL' r(r)m"(p/Q L' r(r))

Cn (H, T) =QL (r)Cg (p/Q L' (r))

(2.24)

(2.25)

SAS also make an explicit prediction for the jump

The constant a6 is also nonuniversal and is propor-
tional to the amplitude of the sixth-order term in the
Hamiltonian. To remain consistent with SAS we also
use the notation Q = p, 2.

The Q direction is defined to be everywhere
tangent to the mean-field critical line, p, =0. The re-
lationship between r, and p, , given by SAS, is

+ 5 (n +2) (3n +22)g [L ~ 2r( ) I]
6 (6 —n) 4SOn a
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in the magnetization across the first-order line. This
expression is somewhat more complicated, but has
the form

LSl-l I Microcomputer
Line printer Floppy disk

(2.26)
BBX interface

Scope display

where r is now given by

r = (SQ'/8u6)L' (r) (2.27) ref. Phose

Interface Multichannel l2 bit AOC

SAS relate u6 to a6, finding u6= —,m a6 while Nicoll

and Chang give u6=
&

a6, a smaller value. The

second term in Eq. (2.26) turns out to be negligible
in both cases.

The major difference between SAS and WR is the
appearance of the logarithmic correction as a factor in
the free energy itself —not only in the scaling vari-
able. What is more, the fractional power of this fac-
tor is much larger. In Secs. III—V, we will analyze
the experimental magnetization and specific heat. in

three ways: first with classical exponents in the scal-
ing equations (2.9) and (2.16); second, allowing the
exponents to vary in these equations; and finally, ac-
cording to Eqs. (2.24) and (2.2S).

III. EXPERIMENT

A. Simultaneous heat-capacity and magneto-

optical rotation measurements

The heat-capacity measurement is based on the ac
calorimetric method as described by Gamier. ' The
chopping frequency was chosen to be 1.6 Hz, with

'

temperature oscillations of 10 mK rms.
The rotating-polarizer method was used to deter-

mine the magneto-optical rotation. This makes use
of a rotating plane polarizer to produce a linearly po-
larized beam, whose polarization direction rotates at
the angular velocity 0 of the rotating polaroid. Fol-
lowing an analyzer, a photodetector will detect a
sinusoidal signal of frequency 20. An optically ac-
tive sample between polarizer and analyzer causes an.
additional rotation in polarization direction, thereby
producing a phase shift in the 20 signal. That addi-

tional phase shift is detected by a phase-detecting
analog and digital circuit which communicates with an
LSI-11 microcomputer. Data acquisition is under
computer control and, with a 16-bit sealer, the
resolution is better than 0.01 deg with 0 = 50 Hz.
However, mechanical instability of the rotating po-
laroid limited the resolution to about 0.1 deg.

In order to make the heat-capacity and the
magneto-optical rotation measurements compatable, a
hot mirror and a He-Ne line spike filter were used.
The chopped ir light for the ac heat-capacity measure-
ment is transmitted through the hot mirror, but is

stopped by the spike filter. On the other hand, the

H

PAR l90
Low noise~~+Tra nsformer

L

PAR ll3
pre-amp

PAR-HR8

lock-in omp

"ref.

I I l
I 1

D C B

FIG. 2. Experimental setup for simultaneous heat-
capacity and optical measurement. A He-Ne laser; 8 neutral
density filter; C polarizer; D quarter-wave plate; E hot mir-
ror; F rotating polarizer; 6' sample; H spike filter; I analyzer;
J detector; K, L lamp and condenser; M chopper.

B. Sample preparation

Single crystals of ferrous chloride were grown in a
conical quartz tube by the Bridgman method. The
crystals as grown are 12-mm OD cylinders about 20
mm long with dark brown color. X-ray Laue diffrac-
tion shows a D3~ point-group symmetry, and chemi-
cal microanaiysis gives an impurity concentration of
less than 0.1% with atomic ratio Fe:Cl=1:1.98.

As ferrous chloride is very hygroscopic, great care
has to be taken during storage and handling. Thin
platelike pieces of single crystal were cleaved from
the bulk crystal in a glove bag. In order to hold the
sample crystalline c axis parallel to the optical axis,
the planar sample was sandwiched between two

punched pieces of Mylar sheet and mounted in the
sample holder. The temperature of the sample hold-
er block is measured by a carbon glass thermometer,
which is insensitive to the magnetic field. This car-
bon glass thermometer was calibrated against a
factory-calibrated germanium thermometer in zero

He-Ne laser beam is reflected by the hot mirror and
directed to the sample. The experimental arrange-
ment is sketched in Fig. 2. It is also possible to mon-
itor the intensity of the transmitted light and thereby
to locate the mixed phase through the onset of strong,
light scattering.
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field from 6 to 30 K.
The temperature oscillations of the sample are

detected by one of a pair of Chromel-Constantan
thermocouples (25 p, m diameter) held in thermal
contact with the sample by a small amount of
Apiezon N grease. The temperature of the sample
differs from the sample holder block temperature by
a small dc temperature rise which comes from the
constant part of the ac power input. This small dc
temperature difference, usually on the order of
0.1 deg, is measured by a microvoltmeter through the
other portion of the sample thermocouple. A small

aperture, 2 mm in diameter, immediately behind the
sample, assures that the laser beam passes through
the sample in the neighborhood of the thermocouple
junction; this ensures that both the heat-capacity and
optical-rotation measurements are done at the same
position on the sample, at the same temperature, and
in the same magnetic field.

Temperature of the sample block is maintained by
a temperature controller which uses a capacitance
thermometer as sensor and is totally insensitive to
magnetic field. The temperature of the outside
copper jacket was controlled by separate GaAs diode
sensor and heater system. By maintaining the copper
jacket only a few degrees below the sample block
temperature, we can stabilize the sample environ-
ment and achieve good long-term temperature stabili-

ty of the sample, -20 mK for each isothermal scan
of 30 min.

2.40—
.~ ~ ~~~ k k~

~ ~ ~ ~ ~ +
+ +
+ +

++ 0)
+ + )

+ —320.00 o
+ +
+ +
+ +

24000 o

0.00— 0 —160.00 M
0

C 0 I—
~ 75.0— 8000 cL

—70.0~ —000

O
~ 65.0

t-
i5 6p.p i

'1
i I ) I i I

0.00 4.40 8.80 I3.20 I7.60 22.00
MAGNETIC FIELD (k06)

~ I.80

U" l.20

(A

0*60
I-z'

FIG. 3. Typical sweep of applied field at 14.1 K.

we measured heat capacity CH and magneto-optical

rotation 8~ simultaneously. In the low-temperature
region, heat capacity and light scattering were mea-
sured simultaneously.

IV. RESULTS AND INTERPRETATION

As ferrous chloride is extremely hygroscopic and
fragile, it proved advisable to use a new sample for
each experiment. Each sample, after being mounted,
was cooled to liquid-helium temperature and not sub-
sequently cycled to temperatures far above the Neel
temperature (23 K). A typical path at 14.1 K is
shown in Fig. 3, in which the magnetic field was
swept at about 0.04 kOe/sec. The heat capacity,
magneto-optical rotation, and the ac amplitude of the
optical signal were recorded simultaneously and are
displayed as a function of the applied field. The two
mixed-phase boundaries show up consistantly in all
the three curves although least clearly in the heat
capacity. At this temperature the rotation data in the
mixed-phase region are not a linear function of field,
suggesting that our laser-detector arrangement, which
only looks at a very small region of the sample, fails
to measure the average magnetization in the mixed-
phase region. The strong scattering by the sample
when in the mixed-phase region was found to be the
most sensitive probe of the mixed-phase boundaries.
%e divide our investigation into two main regions:
T & T,—the second-order region —and ~T & T,—the
first-order region. In the high-temperature region,

A. Second-order region

8.00—

7.00—

I0.3K
4

15.0K

O~ 6.00—

x
I

+ ~5.00—

IS.

I9.0K

4.00 —+

300 ) I I
'

I I I I I l I I I I I

l80 200 220 240 260 280 300 320
eF -8F (degree)

FIG. 4. Applied field differences across the mixed phase
vs change in Faraday rotation angle.

The sample used in the high-temperature region
had dimensions 4 & 5 x 0.10 mm . In order to deter-
mine the proportionality constant V between magneti-
zation and rotation, several isothermal scans were
taken at temperatures below .T, . In this region, the
boundaries of H,+ and H, of the mixed phase region
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'(U

D

0
O'X

I 80
C'

I20—
0

60

Og 8
H (kOe)

I6'

can be easily determined and we have

H.+ H. =(N/V—) (e+-e;), —

FIG. 5. Specific-heat and Faraday rotation data above the
tricritical temperature.

I.8

O

0.8—
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~~ -0.2—
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o —I.Z
+ & +~gW™

h

h+

5K

89K

.l5K

22.40 K

22.59K

22.84K

since the internal field is constant throughout the
mixed phase. The proportionality constant (N/V) is
determined from a plot of (H,+ H, ) vs (—HF+ —HF )
for different isotherms below T„as in Fig. 4. For
this particular sample we determined that
N/V =0.0228+0.001 kOeldeg, independent of tem-
perature.

Ten isotherms were measured for temperatures
above T„several of which are shown in Fig. 5. Note
that the peaks in heat capacity correspond to the in-
flection points in rotation —these points determine
the critical line H, (T). From double logarithmic
plots of IHF —eF(P, )I vs IH —H, I (see Fig. 6) for
different isotherms and for both 8 & H, and

-2.2-5.0
I I

-2.0 —I.O 0.0 l.o
LoG,(IH-H, I iH, )

FIG. 6. Rotation data above T, . Lines have slopes 0.88
(critical) and 0.35 (tricritical) corresponding to e =0.12 and

~, «=0.65.

H & H„we find those data close to the critical line
to approach a limiting slope corresponding to
e = o, '=0.12+0.02. This asymptotic region is larger
the further the isotherm is above T, . Those data
away from the critical line tend to approach another
limiting slope corresponding to a,'«= a,"«=0.65

20-

IO-

FeCI2
Mean-field scaling 0

a~ v&~

O
I-

0
UJ

C9

~ -IO-
UJ

O

o 2).40 K

o 2I.49 K

+ 2I.75 K

U 21.89 K

x 22.15 K

~ 22.40 K

~ 22.59K
0 22.84 K

I
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~J I

qn
vV

0
++

-20— 00

I

-200
I I 1

-300 -IOO 0 100 200
SCALING VARIABLE Y

FIG. 7. Scaled magnetization data vs scaling variable using mean-field exponents [cf, Eq. (2.9)].
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+ 0.05 which is our effective tricritical exponent.
This crossover from critical to tricritical behavior is
smooth within the antiferromagnetic phase, but it has
an additional shoulderlike structure within the
paramagnetic phase (see Fig. 6).

Data from eight isotherms between T, and T~ were
used to test the scaling hypothesis (2.9). The mag-
netization was computed directly from the rotation
data as

10

E 5
C:
O

0

I
'

)
I ]

'
I

m l x lZrl X
I

(4.2)

r =—p, = lH —H, (T)]/H, (4.3)

The nonuniversal constant is found to bg.

a6=0.5+0.2 with T, =20.62 K. The fit is excellent,
but not significantly better than the use of a nonclas-
sical value of a„as in Fig. 8. This is easy to under-
stand. Examining Eq. (2.22) we find that it can be
placed in scaling form by ignoring the factor
L'r' ~(r), which deviates only slightly from unity
and replacing the factor p, 3~~I. ' ~(r) by a power of p, .
Over the experimentally accessible range, we find

cff
3/2L I —P( r) 1.35 ~g (4.4)

The fields p, ~ and F& were determined from Eqs.
(2.6) and (2.7), respectively. A test of Eq. (2.9) with
classical exponents is shown in Fig. 7 for the best
choice of H„T„and er(H„T, ). The failure of the
data to fall on a single curve violates the scaling hy-
pothesis. By varying a„however, good data collaps-
ing can be obtained with 0, =7.7 kOe, T, = 20.54 K„
er(H„T, )-125 deg, a,'"=0.65+0.05, and /=2. 0,
as shown in Fig. 8.

Finally, we test for the presence of logarithmic
corrections as predicted by Eq. (2.24) with results
shown in Fig. 9. 'e take

Il0, t, i I l, I

-280 —l40 0 I 40
Scaling Variable Yp

FIG. 8. Data of Fig. 7 scaled with the effective critical ex-
ponent e,' =0.65. The solid line is the prediction of the
model scaling function, Eq. (2.10).

280

Thus, the fact that the logarithmic correction rnimics
a power law over a restricted range of data makes it
difficult to detect unambiguously. The effective scal-
ing exponent simulates scaling in all respects. For
example, we have fitted the approximate scaling
function (2.10) to the data of Fig. 8 by adjusting only
K and the proportionality constant and using
n,'"=0.65 and 0, =0.12 with the result shown as a
solid line in Fig. 8. As may be seen, this function
reproduces even the asymmetry of the scaling func-
tion around the critical line.

According to Eq, (2.16) it should be possible to
scale the specific heat in a manner similar to the
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FIG. 9. Data of Fig. 7 scaled according to Eq. (2.24) with classical exponents and logarithmic corrections.
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FIG. 10. Heat-capacity data for T & T, scaled with classi-
cal exponents according to Eq. (2, 16),

CO

52-

O

CL

T(K)
+ 2I.40 ~ 22.I5
x 2I49 & 22.40
A 2I.75 0 22.59
o 2I.89 O 22.84

0-
I I I I I I

-280 -I40 0 140
Scaling Variable Y&'

FIG. 11. Heat-capacity data from Fig. 10 scaled with the
effective exponent a =-0.35,
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magnetization. The specific-heat data, however, con-
tain a lattice background term which cannot be ex-
pected to scale. Consequently, we have subtracted a
common background from all the data, which causes
them to approach zero at high values of the scaling
variable. This results in complete collapsing of all the
data to zero far above the critical line. However,
below and near the critical line, the specific heat pro-
vides a sensitive test of scaling. This may be seen in
Fig. 10 ~here the heat-capacity data have been scaled
with the classical value of the exponent cx = ——,, as

obtained from Eq. (2.13) with P =2 and a, = —,.
Very large deviations from scaling behavior are ap-
parent. A dramatic improvement occurs with the ef-
fective exponent o, ,'"=0.6S, for which u = —0.35, as
seen in Fig. 11. Inclusion of the logarithmic correc-
tion factor according to Eq. (2.25), with a6 fixed at
the value obtained from the previous analysis of the
magnetization (a6 = 0.5), along with a =——, also

greatly improves the scaling fit as shown in Fig. 12.
A remarkable feature of the logarithmically correct-

ed scaling of the heat-capacity data is the disappear-
ance of the peak in the scaling function at the critical
line. This is related, we believe, to the fact that the
specific heat at constant applied field is a constrained
quantity whose singular behavior is renormalized. '

This means that the correction term (2.15) tends to
cancel the singularity in C~.

The ability to scale both the heat capacity and the
nonordering magnetization with classical exponents
and the same logarithmic correction factors lends
strong support to our assertion that logarithmic
corrections are important. We have tabulated the ef-
fective exponents for FeC1~ in Table I, along with
values for other metamagnets. It appears that the
same corrections will be important, with similar coef-
ficients for CsCoC13 2H&O.

B. First-order region

The mixed-phase region has been studied by
means of light scattering, for which a thicker sample
of dimensions 4 x S x 0.16 mm' was used. The
transmitted intensity and the heat capacity of this
sample for a typical isotherm (19.14 K) are shown in
Fig. 13. The mixed-phase boundaries are clearly de-
lineated by the region of strong light scattering. Less
obvious, but noticeable, are the jumps in heat capaci-
ty at the limits of the mixed phase. These are the
result of the latent heat of the first-order transition
and have been discussed extensively elsewhere. '

The phase boundaries in the vicinity of the tricriti-
cal point have been determined for this sample and
are shown in Fig. 14. The points below the tricritical
temperature were determined from the onset and
disappearance of light scattering, while those above
T, are located from the peak in the heat capacity.
The data agree exactly with those obtained on the
thinner sample and reported above. The jump in
nonordering magnetization can be determined direct-
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FIG. 13. Typical data in the mixed-phase region at 19.14 K.

ly from the scattering data since

Am =N(H+ 0, )— (4.5)

l7.0-

due to the constancy of,the internal field in the
mixed phase. According to the usual scaling theory,
8 m should vanish with lQ l, corresponding to a criti-
cal exponent p„= l. In order to test this prediction,
we have plotted /Lm/lQ l vs lQ l in Fig. 15. Clearly,
there is a strong Q dependence remaining, rather
than the constant predicted by scaling theory. Loga-
rithmic corrections have been calculated by SAS and
were given in Eq. (2.26). However, the relationship
between our parameter a6 and the coefficient u6 is
not certain. Using the SAS result that u6= —, m a6
we find that the logarithmic corrections do not ex-
plain the deviations from mean-field behavior seen in
Fig. 15. However, the Nicoll and Chang result that
u6= —,a6 greatly improves the situation. In both

FIG. 15. Scaling of the magnetization jump across the
first-order line. Circles are for hm/~Q ~; triangles, for
hm/~Q iss3 —the effective exponent; and squares, for
hm/(Q iLas(4r) as predicted by Eq. (2.26).

cases we have solved Eq. (2.27) numerically for r at
each value of Q. The result is shown in Fig. 15,
where the squares are plots of d, m/lQ ILas(4r).
Some Q dependence remains. A better fit can be ob-
tained with effective exponents, as seen from the
constancy of dm/lQ lo, triangles in Fig. 15. The ef-
fective exponent P„=0.63 is consistent with
p„'"'= (1 —at'rr)iti when the exponent at'"=0.65,
determined above, is used (cf. Table I).

The results along the first-order line, therefore, are
better fitted with effective exponents than with logar-
ithmic correction factors. There is, however, consid-
erable latitude in the logarithmic factors. The defini-
tion of r along the critical line is determined by u6
which is in turn related to a6 through the logarithmic
correction factor. With some adjustment of the con-
stants, especially a decrease in u6 relative to a6,
better agreement could be obtained.

0
V. DISCUSSION
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FIG. 14. Phase diagram in the vicinity of the tricritical
point. Data below T, is from light scattering; above, from
heat-capacity peaks. -

Although the nature of the tricritical point in three
dimensions is, it is said, a solved problem, there are
serious discrepancies between theory and experiment
for metamagnets. In Table I, we have listed the ex-
perimental results available for several metamagnets,
along with the mean-field predictions. While some
exponents agree with theory, most do not. A com-
parison of our effective exponents with those obtained
by Bongaarts and de Jonge' shows a remarkable de-
gree of agreement. These values, although uncer-
tain, cannot be made to agree with theory simply by
adjusting the location of the tricritical point nor the
definitions of the scaling fields.

We have shown in this paper that the deviations of
the exponents from their classical values are the
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result of logarithmic correction factors which are
predicted to be present. Recent calculations by SAS, '
by Nicoll and Chang, ' and by Yamazaki and
Suzuki" have shown these corrections to be stronger
than originally predicted. The difference is the pres-
ence of a correction to the free energy itself, with a
larger power of the correction factor than for the scal-
ing fields. We have treated the coefficient which ap-
pears in the correction factor as an adjustable param-
eter, and have shown that once chosen, it suffices to
correct both the nonordering magnetization and the
specific heat in a way which recovers the classical ex-
ponents. Along, the first-order line, the correction
improves the agreement with classical exponents, but
does not completely remove the discrepancies.

Large deviations such as occur for metamagnetic
tricritical behavior do not appear to occur in 'He- He
mixtures. This indicates that the nonuniversal coef-
ficient a6, which we have found to be on the order of
0.5, must be considerably smaller for 'He- He mix-
tures. Our results seem to be strong evidence for the
nonuniversality of logarithmic corrections —an issue
clearly in need of further investigation.
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