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We have measured the critical behavior of the spontaneous magnetization as a function of
temperature for T «T, in the three-dimensional, uniaxial, dipolar-coupled ferromagnet LiHoF4

using elastic-laser-light-scattering techniques. In the reduced-temperature range 1,3 && 10 « t

«1.3 x 10 ', we find that the logarithmically corrected mean-field power law M(T)/M(0)
=Br'/ (ln(rrj/r((' ' fits the data with T =1.5383+0.0003 K, ro 0483=+0 406, and x =1.34.
We have also fitted the data to M(T)/M(0) = B fr [' finer (f' [1+C&(lnfln[r

ff/Infra')

+C2(1/Infra')]

in order to obtain explicitly the corrections to the leading singularities. We find

in this fit that T =1.5382+0.0003 K, C =0.07+0.3, C =0.287+0.07, and X2=1.26. Fits to a

simple power law M(T)/M(0) =Br~ yield T =1.5370+0.0002 K, P=0.355+0.005, and X2

=17.2. We also present measurements of the temperature and magnetic-field dependence of
the light scattering in LiHoF4, and the magnetic-field and wavelength dependence of the circular

birefringence.

I. INTRODUCTION

Critical phenomena in uniaxial, dipolar-coupled fer-
romagnets have been the topic of considerable in-

terest as a result of the concept of marginal dimen-
sionality, the spatial dimension at which classical
phenomena are separated from nonclassical behavior.
Although there are many well-studied examples of
critical phenomena, there are only a few known cases
in which the marginal dimensionality is experimental-
ly accessible. In magnetic cooperative phenomena
the tricritical point of a uniaxial antiferromagnet in an
external magnetic field and the critical point in a
three-dimensional, uniaxial, dipolar-coupled fer-
romagnet are the only known, accessible examples of
this concept.

Although in all real magnetic materials there is
'

some magnetic dipole-dipole interaction between the
magnetic ions, the mechanism which is usually
responsible for the long-range magnetic order is the
exchange or super-exchange interaction. In some Is-
ing ferromagnetic materials, however, it has recently
been found that dipolar interactions dominate the ex-
change forces, and these materials have been utilized
to investigate the experimental consequences of mar-
ginal dimensionality. . One of the materials on.which

--relatively little work has been completed is LiHoF4,

which is ferromagnetic below T, =1.53 K. Although
this material is similar to LiTbF4, on which a number
of detailed experiments have been completed, there
are several differences in the electronic and magnetic
structure that warrant investigation. Firstly, the
ground state of LiHoF4 is a true Ising doublet,
whereas the ground-state doublet in LiTbF4 is split by
1.2 K as a result of the crystal field. Secondly, the
previous measurements of the critical behavior of the
magnetic susceptibility in LiHoF4 have indicated little
quantitative distinction between the simple nonclassi-
cal power-law behavior and the logarithmically
corrected mean-field-theory power-law characteristic
of marginal dimensionality. Thirdly, the upper limit
of the critical region as observed by magnetic suscep-
tibility in LiHoF4 was 1.1 & 10, whereas similar
measurements in LiTbF4 determined an upper limit
of 1 x 10 ' in reduced temperature. Fourthly, the
critical temperature of LiHoF4 is in the superfluid
4He regime, which results in a temperature homo-
geneity which is substantially superior to that near
the critical temperature of LiTbF4.

In this paper we present the results of an experi-
mental study of the temperature dependence of the
spontaneous magnetization of the Ising, dipolar-
coupled ferromagnet LiHoF4. These results were ob-
tained by measurements of the temperature and mag-
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netic field dependence of the intensity of light elasti-
cally scattered by the uniaxial ferromagnetic domains
in the ordered phase. In Sec. II we present a sum-
mary of the concept of marginal dimensionality and a
summary of the magnetic and optical properties of
LiHoF4. In Sec. III we present a detailed analysis of
our results and in Sec. IV we present a discussion of
previous work and our conclusions.

II. THEORY

A. Marginal dimensionality in Ising dipolar ferromagnets

or by

=8 ft f't'/Inst/t, (Pt3,
M(T =0) (2)

where (1+ ) is now approximately incorporated
into the natural logarithm as tp. The behavior at
d & d' is given by

M(T)/M(T=0) =8(tj&

where 8 is the amplitude, t = ( T, —T)/T, is the re-

duced temperature, and P is the critical-point ex-

ponent.

The concept of marginal dimensionality and its re-
lation to critical phenomena have been discussed pre-
viously, and in this section we will briefly summarize
the results that are relevant to Ising, dipolar-coupled
ferromagnets. ' 4 The marginal dimensionality d' is
the spatial dimension which separates mean-field
theory, classical critical behavior from nonclassical
behavior. At spatial dimensions d ) d' simple
power-law behavior occurs with mean-field critical-
point exponents. At d & d' simple power-law
behavior occurs with nonclassical critical-point ex-
ponents, and a, I/n, or series expansions may be
used to calculate the numerical values of these ex-
ponents. However, the convergence properties of
such expansions are not well characterized. At d =d'
the renormalization-group equations can be solved
without e or I/n expansions and the resultant critical
phenomena are described by mean-field power laws

that are modified by logarithmic factors.
The numerical value of d' is determined by the

specific details of the'system, such as anisotropy and

type and range of coupling. A method of determin-
ing d', apart from the renormalization-group equa-
tions, is the Ginzburg criterion, which provides a

technique for estimating the importance of fluctua-
tions in the order parameter ((SM)') compared to
the value of the order parameter (M') in the neigh-
borhood of the phase transition. This criterion in-

volves the correlation volume, which is g~ in an iso-
tropic exchange-coupled system and g~+' in an Ising,
dipolar-coupled system, where d is the spatial dimen-
sion and g is the correlation length. These argu-
ments lead to d'=4 in the isotropic short-range case
and d'=3 in the Ising, dipolar-coupled one. The ex-
plicit behavior of the spontaneous magnetization
M(T) at d = d' has been calculated using renormal-
ization-group techniques, and is given by'

B. Optical properties of LiHoF4

The optical properties of LiHoF4 have been investi-
gated by several techniques. The crystal structure of
LiHoF4 is the same as the mineral scheelite CaWO4
with a space group C4t, —l4~/a and a body-centered
tetragonal unit cell having a = 5.20 A and c = 10.90
A. There are four Ho3+ ions per unit cell each hav-

ing site symmetry S4 with the local fourfold axis
parallel to (001). The density is 5.72 g/cm3, there are
four formula units per unit cell, and the crystal is op-
tically uniaxial.

The crystal-field splittings and optical properties of
the Ho'+ ion in LiHoF4 have been investigated by
Christenson' and in LiYp 98Hop p2F4 by Karayianis
et al. 8 The atomic configuration of Ho'+ is 4f'
which has a Hund's rule ground term of 'Is that is
followed by 'l7, 'I6, 'l&, 'l4, 'F5, 'F4, 'S2, etc. , in
increasing energy. The 4f95d atomic configuration
starts at approximately 90000 cm '. The ls ground
term is split into five levels of I ~ symmetry, four lev-
els of I 2 symmetry, and four levels of I 3 and I 4

symmetry. The ground state is a Kramer's doublet of
r, and I 4 symmetry, the first excited state is a I"2

singlet at 8 cm '=10.3 K, and the remaining levels
are considerably higher in energy. There are optical
transitions throughout the near-infrared and visible
spectrum, as a result of the 'l8 to l7, . . . , transi-
tions and strong-parity-allowed transitions from the
4 f'0 to the 4f95d starting at 90000 cm '.

The magneto-optical features of LiHoF4 have been
investigated by Griffin et al. and by Battison et al. '

Figures 1 and 2 depict the specific Faraday rotation
.versus external magnetic field for 1.5 & T & 77 K
and A, =514.S nm and the wavelength dependence of
the Verdet constant, respectively. The Faraday rota-
tion in a material of thickness d at a wavelength A. in

a magnetic field H iy given by

=8(t f'"fin/t ff'"
M(T =0)

e= VdH, (4a)

lnfinft ff C I

lnft/
'

Inltl 4 = tt/d = 7r(llacp IlLcp)/h. (4b)

where 8 is the Faraday rotation and V is the Verdet
constant. The specific Faraday. rotation is defined by
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where nRcp and ni.cp are in the indices of refraction for right circularly polarized and left circularly polarized light,
respectively. The circular birefringence nRgp nt cp is given by the equation"

CV

~Rcp —~icp=&i Xpg X(l&g I VRcplf &I'-l&g I Vicplf &I')
f CiOgf

—OJ

where X& is a sum over final optical states, X is a sum over the ground I'3 and I'4 states, pg is the occupation
probability of the ground states, and Vacp( Vtcp) is the electric dipole operator for right circularly polarized (left
circularly polarized) light, bc'~ is the energy difference between the ground states lg & and the excited states
lf &, hem is the energy of the incident radiation, and lt.'~ is a constant. In the case of widely separated levels lf &

and lg & this expression can be expanded to yield

t

Q)
2

~acp —~ t cp = )t2 Xp. . . X (I&g I Vacpl f &I I&g I Vpcplf &I')
g ~o —~ (6)

which is the "paramagnetic" contribution to the
Faraday rotation. Equation (6), as a result of the fac-
tor X pg, indicates that the circular birefringence is

proportional to the difference in occupation numbers
between the I"3 and I'4 ground-state doublet that
splits in the ferromagnetic phase. The temperature
dependence illustrated in Fig. 1 also results from this
factor. Equation (6) also yields the wavelength
dependence of the Faraday rotation illustrated in Fig.
2, as a result of the frequency-dependent factor

2/(~2 ~2)
In addition to illustrating the above features, Figs.

1 and 2 illustrate the large magnitude of the circular
birefringence in LiHoF4. This circular birefringence
is also responsible for the elastic light scattering in
the ordered phase. ""The ordered magnetic phase
in LiHoF4 consists. of Ising ferromagnetic domains
aligned parallel or antiparallel to the tetragonal c axis.
In each domain the occupation-number difference
between the I'3 and I 4 levels, which are split by the
ferromagnetic order, produces a large circular bire-

fringence. In the "up" domains that are parallel to
the c axis nRcp )) nI cp, in the "down" domains that
are antiParallel to the c axis nI gp )0' ngcp', in zero
external magnetic field ll1acp l1p pclz

=plll pep
/1 acpldo+„. An electromagnetic wave propagating

parallel to the c axis encounters a transmission dif-
fraction grating in which the periodicity is determined
by the domain diameter and the phase modulation is
determined by the circular birefringence
Inacp —nqcpl. At constant T ( T„an external mag-
netic field applied parallel to the easy axis modifies
the ratio of parallel to antiparallel domains in that the
parallel domains grow in volume as the antiparallel
domains shrink. At the ferromagnetic-to-paramag-
netic phase boundary there are only parallel domains,
the crystal is optically homogeneous, and elastic
scattering ceases. In zero magnetic field, as the tem-
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FIG. 1. Specific Faraday rotation vs external magnetic
field at A =514.5 nm in LiHoF4 at several temperatures.

FIG. 2. Verdet constant vs wavelength at T =4.38 K in
LiHoF4.
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perature is increased, the circular birefringence within
a domain is decreased by the thermal disorder until it
is zero at and above T, and again the light scattering
ceases. Figures 3 and 4 illustrate the dramatic interac-
tion between the magnetic order and the optical prop-
erties of LiHoF4. Figure 3 illustrates the zero-field
intensity of scattered light as a function of tempera-
ture. The scattered intensity at T =1.25 K is—100%, at T =1.45 K is 94%, at T =1.50 K is
85%, and only in the last 4 mK does the scattering
intensity drop precipitously to zero. Figure 4 illus-
trates the magnetic field dependence of the scattered
intensity at T =1.515 K. The intensity of scattered
light which is -75% at zero field drops to zero at a
field of 2875 G. This elastic scattering can, there-
fore, be used as a sensitive probe of the ferromag-
netic-paramagnetic coexistence curve by locating
H, (T), the critical external magnetic field on the
coexistence curve, as a function of temperature in

the H,„,vs T plane. Examples of this are depicted in

Figs. 5 and 6. Figure 5 illustrates the scattering in-

tensity in a constant-temperature, magnetic field
scan. The phase boundary at T =1.5148+0.0002 K
is located at H, =2870+ 10 G. Figure 6 illustrates a
constant magnetic field, temperature scan. The phase
boundary at H, = 3207 G occurs at T = 1.5060
+ 0.0006 K.
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FIG. 4. Scattering intensity vs magnetic field at
T =1.515 K in LiHoF4.

Weiss temperature has been measured between 2.5
and 4.0 K to be 0=+0.002+0.04 K. Beauvillain
et al. used this value of 0 in order to determine that
the ratio of total exchange to dipolar interaction is
—(11.1+0.4)/33.46= —0.332." Cooke et a/; have
measured a saturation magnetic moment of 892 + 5

C. Magnetic properties of LiHoF4 LiH0Fq DOMAIN SCATTERING

The magnetic properties and critical behavior of
LiHoF4 have been discussed by Cooke et al. ' and
Beauvillain et al. , " respectively. LiHoF4 orders fer-
romagnetically at T, = 1.53 K. The Ising behavior
results from the Kramer's degeneracy of the I 3 and
I 4 ground-state levels which then form an effective
S = —for which the tetragonal C axis is the easy axis

of magnetization. The g factors have been measured
to be gII = 13.95 + 0.15 and gq = 0.0 and the Curie-
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FIG. 3. Zero-field scattering intensity versus temperature

in LiHoF4.

FIG. 5. Scattering intensity near the ferromagnetic-
paramagnetic coexistence curve at T =1.5148 K and

H, = 2870 G (constant-temperature scan).
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tical cryostat used in this experiment was constructed
such that the sample was immersed in the superfluid
helium. This direct immersion improves the thermal
homogeneity of the crystal. Temperature control of
the cryogenic fluid was obtained by a combination of
a manostat, which typically resulted in'+0. 5-mK sta-
bility, and electronic feedback from an ac resistance
bridge. The resistance sensor in this bridge was a
100-0 carbon resistor wrapped in superconducting
lead foil that was located in the liquid 4He but outside
the region of the magnetic field in order to avoid
magnetoresistance. The sample was mounted on an
OFHC copper mount to which an independent, cali-
brated germanium resistance thermometer was at-
tached. During a typical field scan the temperature
stability was +0.2 mK.

T = I.5058+00003 K

FIG. 6. Scattering intensity near the ferromagnetic-
paramagnetic coexistence curve at 8, = 3207 G and
T = I.5060+ 0.0006 K (constant-field scan).

emu/cm'. '4 The critical behavior of LiHoF4 has been
investigated by Beauvillain et al. using ac magnetic
susceptibility. " The observed magnetic susceptibility
was compared to both a simf&le power law

XM = I'It
I

"and to the logarithmically modified
mean-field-theory behavior XM = I'

I t I 'Iln
I t II't' in the

temperature range 3 x 10 ( t ( 1.1 && 10 . The
power law yielded I'= (6.2+ 0.09) x 10-',
T, =1.5270 K, y=1.05+0.01, and X =0.64, whereas
using the logarithmic form resulted in
I'=(4.2+0.07) x10 ', T, =1.5299 K, to 7+3, a=nd

X'=0.70. Although both forms were found to be
adequate fits to the data, it was not possible to elim-
inate either form based on the magnetic susceptibili-
ty. Unlike LiTbF4, measurements of critical behavior
of the other thermodynamic functions in LiHoF4
have not yet been completed.

III. EXPERIMENTAL RESULTS AND ANALYSIS

A. Crystal preparation and experimental techniques

The crystal used in this experiment was grown by
the Czochralski top-seeded solution technique at
Sanders Corporation. It measured 1.3 & 1.2 x 0.46
cm' with the C axis parallel to the 0.46-cm thickness.

The experimental apparatus utilized in this work is
similar to that described by Griffin and Litster, "with
the exception of the optical cryostat and the method
of temperature control. Because LiHoF4 orders at a
temperature at which liquid 4He is superfluid, the op-

B. Experimental results

and

H, (T) =NM(T)

M ( T)/M ( T = 0) = H, ( T)/H, ( T = 0)

In this crystal we could not reach a sufficiently low
temperature to extrapolate to the T =0 value of H„
nor could we accurately determine the demagnetiza-
tion factor. Thus we were unable to determine the
amplitude, B. However, we could still fit Eqs.
(1)—(3) directly by defining Ho= H, (T =0)B.

The data in Table I have been quantitatively com-
pared to Eqs. (2) and (3) in order to ascertain the in-
fluence of marginal dimensionality, and the results of
the nonlinear least-squares fits are summarized in

Table I enumerates and Fig. 7 illustrates the results
of the onset of light scattering in LiHoF4 between
1.338 and 1.537 K. As was discussed in Sec. II B,
these data represent the location of the ferromagne-
tic-paramagnetic phase boundary in the H, „, vs T
plane. There are 24 points between 10 ' & t ( 10 ',
40 points between 10 ' ( t & 10 ', and 5 points
between 10 ' ( t & 1.3 x 10 '. In the last two mil-
lidegrees below T„H,(T) drops precipitously to zero
as the circular birefringence in each domain vanishes.
The points for T & 1.523 K were taken by isothermal
magnetic field scans, and in the range 1.523 ( T( 1.537 K some of the points were taken by scanning
temperature while keeping the field constant. In this
range the points from the two types of scans were
consistent, and no hysteresis was detected. At most
points H, (T) could be determined to +0.5%.

In order to analyze the data H, (T) vs T in Table I,
we utilize the fact that in a ferromagnet below T, the
critical magnetic field H, (T) on the ferromagnetic-
paramagnetic phase boundary is related to the spon-
taneous magnetization M ( T) by the equations
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TABLE I. Phase-boundary magnetic field (proportional to the spontaneous magnetization) and temperature data pairs. The
uncertainties in temperature have been converted to equivalent uncertainties in magnetic field.

1.3385
1.3464
1.3542
1.3676
1.3787
1.3911
1.3971
1.4027
1.4054
1.4137
1.4204
1.4228
1.4301
1.4386
1.4449
1.4546
1.4615
1.4652
1.4682
1.4727
1.4765
1.4797
1.4910
1.4980
1.4990
1.5016
1.5071
1.5084
1.5095
1.5109
1,5122
1.5126
1.5143
1,5148
1 ~ 5158

H, (G)

6050
5987
5921
5820
5708
5576
5476
5422
5376
5265
5171
5132
5039
4916
4804
4620
4501
4416
4369
4242
4175
4058
3743
3540
3489
3423
3198
3157
3101
3041
2977
2965
2852
2875
2818

aH, (G)

15
16
21
11
11
11
11
16
11
11
11
11
11
11
11
12

12
10
12
11
13
11
8

10
8

10
10
10
13
10
10
23
13
12

1.5163
1.5164
1.5182
1.5183
1.5200
1.5202
1.5216
1.5216
1.5217
1.5230
1.5244
1.5251
1.5260
1.5272
1.5274
1.5278
1.52&6
1.5291
1.5297
1.5304
1.5310
1.5310
1.5319
1,5326
1.5330
1.5332
1.5337
1.5340
1.5348
1.5350
1.5355
1.5360
1.5362
1.5363

H, (G)

2783
2784
2718
2685
2564
2585
2464
2495
2511
2404
2327
2251
2179
2082
2041
2029
1973
1932
1880
1838
1754
1748
1646
1564
1531
1502
1431
1421
1268
1237
1166
1033
1021
997

bHc (G

13
16
12
9

19
12
17

7

14
11
10
9
9
9

20
21
13
21
14
20
16
14
14
16
27
24
28
24
31
31
22
34
35
18
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FIG. 7. Phase diagram of LiHoF4. The spontaneous
magnetizatiori phase diagram is obtained by the relation
M(T)/M(T 0) =H (T)/H (T =0).
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Table II and the best fits are plotted in Figs. 8 and 9.
The comparisons between the two possible forms
were made over several different ranges in reduced
temperature. In the full range given by 1.3 x 10
& t (1.3 x10 ' the logarithmic power law fits the
data with x'=1.34, whereas the nonclassical power
law fits the data with X'=17.2 with the same number
of adjustable parameters in the fit. In this range we
obtain T, = 1.5383 + 0.0003 K, Ho = 15 300 + 230 G,
and to=0.48+0.05 using the logarithmically correct-
ed Eq. (2). This value of r, is not far from
to= 0.568+ 0.014 obtained in LiTbF4 by Griffin and
Litster. " In this same range we obtain T, = 1.5370
+0.0002 K, Ho=12880+180 G, and P =0.355
+0.005, using the simple power-law equation (3).
Figures 8 and 9 illustrate the results of these least-
squares fits as a function of reduced temperature.
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Figures 10 and 11 dramatically illustrate the differ-
ence between these two fits. In these figures the er-
ror, the difference between the data and the best fit,
is plotted versus reduced temperature. Figure 10 in-

dicates that there is a distribution of error evenly dis-
tributed between -+30 6 between 10 ' ( t & 10 '

in the fit to equation (2), whereas Fig. I I indicates
that there is a systematic error as a function of tem-
perature in this temperature range in the fit to Eq.
(3). Table II also lists the results over other ranges
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best fit and the data in Fig. 9, as a function of reduced tem-
perature.

in reduced temperature. Table II indicates that
1.12 & g' & 1.34 for fits of Eq. (2) and that 2. 1 & X'

& 17.2 for fits of Eq. (3). The logarithmically
corrected power law, therefore, not only fits the ob-
served behavior with a substantially smaller X than
the nonclassical power law, but it also results in a fit
that is relatively insensitive to the range of reduced
temperature selected for the fit. Moreover, the
parameters obtained in the fits of the logarithmic
forms are relatively insensitive to the range in fit,
whereas the opposite is true in the fits to the nonclas-
sical power law.

The above analysis clearly demonstrates that Eq.
(2) presents an accurate representation of the spon-
taneous magnetization in the critical region of
LiHoF4. Equation (2), however, contains the param-
eter to that is used to represent the collective effect
of the higher-order correction terms in Eq. (1).
Brezin and Zinn-Justin have calculated CI for the
susceptibility and specific heat above T„but neither
C~ nor C2 has been calculated for the magnetization
below I,'. We have fitted our results to Eq. (1) in or-
der to obtain explicitly numerical values for C~ and

C~, and the results of this fit are also listed in Table
II. We obtain C~ =0.07+0.30 and C2=0.29+0.07
in the range 1.3 x 10 ( t ~ 1.3 x 10 ' with g'= 1.2.
It is interesting to note that we have determined that
C~ is very small and poorly determined, but that C2
is large and accounts for most of the contribution to

to. These results represent the first experimental
determination of the logarithmic corrections to the
leading logarithmic singularities at marginal dimen-
sionality.

IV. DISCUSSION

The concept of marginal dimensionality and its ef-
fect on critical phenomena have received considerable
theoretical and experimental interest, and there have
been numerous experimental studies of the conse-
quences of this effect. In most cases, however, it has
been difficult to differentiate quantitatively between
the predicted logarithmically corrected mean-field
behavior and simple nonclassical power-law behavior.
Beauvillain et al. , using magnetic susceptibility in the
range 2 x 10 & t ~ 1.1 x 10, found g =0.70 for
the logarithmic form and X =0.65 for the nonclassi-
cal power law in LiTbF4 (Ref. 16) and in the range
3 x10 "& t & 1.1 x10 ', g =0.70 for the logarith-
mic form and X'=0.64 for the nonclassical po~er law

in LiHoF4. '5 Ahlers et al. measured the specific heat
in LiTbF4 above and below T„but agreement with

logarithmic behavior was found only over one decade
in reduced temperature. " Als-Nielsen et al. , using
neutron scattering, have measured the temperature
dependence of the magnetic susceptibility, ' the spon-
taneous magnetization, ' and the correlation length
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in LiTbF4. In measurements of the susceptibility and
magnetization they were not able to detect logarithm-
ic factors, but in measurements of the correlation
length, when coupled with the specific-heat data of
Ahlers et al. , they were able to obtain agreement with

two nontrivial universal amplitude relationships
predicted by renormalization-group theory. They
could not, however, see logarithmic corrections to the
correlation range. Frowein et al. ," using a supercon-
ducting quantum interference device (SQUID) mag-
netometer, carefully measured the equation of state
in LiTbF4 near T, . They found that for an Ising, di-

polar equation of state X'= l.l, for a short-range, Is-
ing equation of state X'= 2.5, and for a mean-field
equation of state X =4.8.

In the experiment described in this paper we have
obtained the temperature dependence of the spon-
taneous magnetization in the neighborhood of the
critical point in LiHoF4 using elastic light scattering
from the ferromagnetic domains. In the reduced-
temperature range 1.3 x 10 ' & t ( 1.3 x 10 ' we
have fitted our data to a nonclassical power law with

an exponent P =0.355 + 0.005 and a resultant
X'= 17,2. Over the same reduced-temperature range
we have fitted our data to a logarithmically corrected
mean-field power law with X2=1.34 and

to = 0.483 + 0.046. Moreover, we have quantitatively
determined the amplitudes Ci and C2 that occur in

the correction to the leading singularity to be
Ci =0.07+0.3 and C2=0.29+0.07. %e believe that
this experiment represents one of the most con-
clusive, quantitative verifications of the existence of
marginal dimensionality.
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