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One-dimensional transverse-field Ising model in a complex longitudinal field from
a real-space renormalization-group method at T = 0
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The ground state of the quantum one-dimensional transverse-field Ising model in a longitudi-

nal field is studied using a real-space renormalization-group method. The longitudinal magneti-

zation in the ground state is calculated. Considering a real longitudinal field, this study provides

an indirect investigation of the equation of state of the equivalent classical two-dimensional Ising

model. Considering then the case of a purely imaginary longitudinal field, a new critical

behavior is found which corresponds to the Yang-Lee edge singularity of the classical equivalent.
In this last case the details of calculations and results are given, published earlier in a letter

form.

I. INTROD UCTION

A. One-dimensional transverse-field Ising model

The purpose of this paper is to study the ground-
state properties of the one-dimensiona1 quantum
Hamiltonian

3C = —X (JS"S" + I S;+hS")

where

are a set of Pauli matrices on each site i of an infinite
chain. The interaction constant J and the transverse
field I" are real parameters, while the longitudinal
field h will be considered either real or purely ima-

ginary (h ih). In this later case a short account of
the results has been already published. ' While Ham-
iltonian (I) has been exactly solved for h =0, ' there
is no exact solution available in the case h & 0.

For h =0, exact results' show that the one-dimen-
sional (I D) transverse-field Ising model (I D TFI)
undergoes a second-order transition at T = 0, by in-
creasing I'. For I"/J ( (I'/J), = I the ground state is

twice degenerate, and there exists a nonzero longitu-
dinal magnetization M„( O~S,"~0 ) A 0( ~0 ) denotes
the ground state). For I"/J ) (I /J ), = 1, the ground
state is a singlet and there is no longitudinal magneti-
zation. In a recent paper3 a newly developed real-
space renormalization-group method has been applied
successfully to this model (with h =0). The location
of the transition, the components of the magnetiza-
tion, the spin-correlation functions, and the critical

exponents characterizing the transition have been cal-
culated and checked against the exact results. The
present study can be considered as an extension of
this earlier work in the presence of an extra longitu-.
dinal field.

An important motivation of the present study
comes from the correspondence which exists between
the 1D TFI and the classical 2D Ising model at finite
temperature. Suzuki4 has shown that the ground-
state energy of the quantum TFI in D dimensions is
equivalent to the free energy of a classical Ising
model in (8 + I) dimensions with an interaction go-
ing to zero in D dimensions and to infinity in the
(D+1)th. Thus, the transition in the ground state
by increasing I at h = 0 of Eq. (1) has exactly the
same critical properties as the transition in tempera-
ture of the classical Ising model in 2D solved by On-
sager. Then by introducing a longitudinal field in the
I D TFI (playing the role of an externai field in the
classical equivalent) one can, indirectly investigate
the equation of state of the classical 2D Ising model,
which is not known exactly. But, even more interest-
ing is the case of a purely imaginary longitudinal field
which provides an indirect study of the so-called
"Yang-Lee edge singularity" in two dimensions.

B. Yang-Lee edge singularity

In 1952, Yang and Lee'6 have first shown that the
theory of phase transition is closely connected with
the study of the distribution of zeros of the partition
function for a given system. The knowledge of this
distribution determines completely the equation of
state. They have proved that, under a class of gen-
eral conditions, this distribution g (0) lies on the unit
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circle z = e." in the complex plane z = exp( —h/kT )
(or "activity" plane). This theorem is, in particular,
verified for ferromagnetic spin ——, Ising systems in

1D and 2D, and g (8) has been analytically deter-
mined in the one-dimensional case.

Below the critical temperature (T & T, ) the zeros
are distributed on the whole unit circle. Above the
critical temperature ( T ) T, ) a gap of width 28g ( T),
containing the positive real axis, is opened. The
edges of this gap, which correspond to given purely
imaginary values of the field h =

+ ihg( T) are now
known as the "Yang-Lee edge singularities. " By
crossing the circle, the real part of the magnetization
M(h, T) jumps by a quantity proportional to g (8),
which vanishes at the edge. The absence of zeros on
the positive real axis for T ) T, corresponds to the
absence of spontaneous magnetization when h =0.

A recent increasing interest has been provided to
this original way of investigating the equation of
states. Efforts were developed in the calculation of
g(8) which is not generally a trivial problem in more
than 1D. g (8) has been determined exactly only for
some simple or limiting cases: the Ising model with
infinite range interactions where mean-field theory is

exact, the Ising model on a Bethe lattice, the spher-
ical model, and the hierarchical model. ' Numerical
investigations, based on series-expansion calculations,
have been performed in 2D and 3D for Ising, ""
classical n-vector models, " and quantum Heisenberg
model. '3 The properties of g (8) and the connection
with thermodynamics has been the subject of many
studies. ' Fisher" recently emphasized that the
edge h =i'( T) can be viewed as a new critical point
and that the concept of scaling and renormalization
group could be applied. Using a field-theoretical re-
normalization group, he pointed out some general
properties of this transition. The upper critical
dimensionality appears to be D = 6 and his study is
done in e expansion near D =6. All the usual scaling
laws are valid. The universality is even larger since
the exponents do not depend on the number of spin
components. Only one exponent' is sufficient to
deduce all the others. The exponent describing the
critical behavior of the density of zeros near the edge
is defined as

g (8) —ReM —[h —ih, ( T) ) (2)

This exponent a is different from the exponent 1/g
characterizing the transition in a real field.

In the present study we investigate the Yang-Lee
edge singularity of the 2D Ising model indirectly by
introducing a purely imaginary longitudinal field in
the 1D quantum equivalent. The real part of the
longitudinal magnetization calculated in the ground
state of the 1D TFI for imaginary longitudinal field
will reflect the properties of the function g (8) for the
2D Ising model

II. RENORMALIZATION-GROUP METHOD

A. Real longitudinal field

To investigate the ground-state properties of Eq.
(1), we use a real-space renormalization-group pro-
cedure introduced recently to study quantum sys-
tems. "' We will follow closely the same procedure
as in the case h =0,' and we will share the same no-
tations, except that here, the transverse field is noted
I . The method is an iterative method in which, if we

drop a constant, the Hamiltonian takes the same
form [Eq. (1)] at each step. At step (n) we deal with

~(n)
spins S; and constants J'n', I'"', and h("'.

We divide the chain into adjacent blocks of n, sites.
The Hamiltonian is then the sum over the block in-

dex j of an intrablock Hamiltonian

n -1
S

n n

and of an interblock Hamiltonian

H (n) J(n)Sx(n)Sx(n)
J,J+ [ J,n J+1, 1 (4)

First we solve H&'"' exactly in the space of dimen-

sionality 2 ' generated by the basis vectors
Ia), . . . , an, . . . , a„), where an takes the values of

S

+1 or —1 corresponding to the eigenstates of SJ'p"'.

The approximation consists in retaining only the two
lowest-energy states: the ground state and the first
excited state that we call, respectively, ! + ) '"+" and

) (n+1).

!+)'"+"= X&n+',".', n, . . . , n I~(, . . . , ~, , . . . , ~. &

!
i (n+1) f f 6]f ~ ~ ~ j

S
S

The corresponding eigenvalues E+"+"and F. '"+" as

well as the coordinates A. "', , are evaluated
S

by standard computer diagonalization at each step.
We then introduce a new set of spin operators

SJ '"+"(a =x,y, z) attached to each block j, the
eigenstates of SJ*("+"being precisely ! + ) '"+" and

!—) '"+". Using these new block-spin operators,

HJ can be rewritten as

H (n) ( (p(n+)) p(n+() )S (n+ n))
J 2 - — +

(g(n+() +E(n+() )I (n+()
2 + J

where IJ'n+" is an identity matrix.
Taking the matrix elements of the old spin operators

into the new block states we obtain spin-recursion rela-

g (n) J(n) ~ Sx(n)Sx(n) h(n) ~ Sx(n) p(n) ~ S2(n)
J ~ J.p J.p+& ~ J.p ~ J.p

p~] p~] p~]
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tions which have the following form:

Sx(n) A XXSx(n+1) + A xzSz(n+1) + Bxi (n+1)
JP P J P J P J

$2(n) A zxSx(n+1) + A zzSz(n+1) + Bz( (n+1)
JP P J P J P J

where the coefficients Ap ] and Bp are functions of the coordinates

XX W +
P

S S

P 2 ~ 4]& & 4 & 4 c]& ~ ~ ~ & 4 6 4]&
S S S S

B"= ()i' — x' +) -
)
-

)2 ~ ~ ~ & c & ~ ~ ~ & cn 4]& ~ ~ ~ & 4 & ~ &
~ & cn C]& ~ I ~ 0 & ~ ~ ~ C 4]& ~ ~ ~ & 4 & ~ ~ ~ ~

S S S S

A =+a A.
+

A,p ~ p 4]& ~ o ~ & 4 & ~ ~ ~ & cn c]& ~ ~ ~ & 4 & ~ ~ ~

S S

p 2 ~ p ~], . . . , 4, . . . , 4 ~], . . . , ~, . . . , ~ tl'
S S S S

8' = — e ()I.+ )).
+ + )). h, )P 2 ~ P 0] ~ &C» f 4]» E

S S
n

S S

To rewrite the Hamiltonian in terms of the new

spin operators, we insert the expressions for SJ"&"'

and SJ"„(") into the expression (4) for the interblock

interaction (note that A I
S =A„p due to block sym-

metry). Doing so, we generate a new Hamiltonian
which contains many more parameters than Eq. (1).
In fact these parameters are not independent, and
their number can be reduced by an adequate spin-
rotation transformation

A XX A xz
SX(n+1) Sx(n+1) + Sz(n+1)
J g J J

A xz A xx
SZ(n+1) 1 Sx(n+1) + 1 Sz(n+1)

J g J J

s = [(w")'+ (w" )']' '

(9)

A xx
(p(n+I) p(n+I) ) ZS(n )+I

+ I (p (n+I ) + p (n+I ) ) ( (n+I )

2 + J t

H (n) (nJ) ( (XIt(Sn+ )yIg3x/ (n+I ) )j,j+1 J 1 J

X (gSX(n+ )+ BIxi (n+I ) )j+1 1 j+1

This transformation can be inverted, and reporting
the expressions into H,'"' and H, ',"+1 we get

A xz

H (n) I (p (n+I ) p (n+I) )SX(n+I)

by

J(n+1) g2J(n)

1.(n+I) (gxx/2g) (p(n+I) p (n+I) )

h(n+I) (gx /2&g)(P( + n) IP(n+I) )+2J( )gII,

these expressions define a renormalization-group
transformation. They can be integrated by machine
up to a fixed-point Hamiltonian. In fact there are
only two dimensionless parameters (h/I')'"' and
(I /J)'"', the recursion relations of which can be
directly obtained from Eq. (11). The results for the
fixed point depend only on the initial values of I'/J
and h/I . They will be presented and discussed in the
following section.

The constant which has' been dropped in the map-
ping can be kept at each step to construct the
ground-state energy per site

X[ (p n+I +F &I+ ) J n (Bx) ]/»n
N n-~

n

(12)

Also, the magnetization components (S,") and (S )
in the ground state can be evaluated through the
spin-recursion relations for the central spin of the
blocks, in order to avoid edge effects,

A xxA xx + A xz A x2

Sx(n) Pp 1 Pp SX(n+1)
J.p p J

A xxA xz + A xz A xx
p 1 p 10 SZ(n+1) + Bx I (n+1)

J '
- PpJ

The Hamiltonian at step (»+I ) is obtained by ad-
ding these two contributions and by summing over j.
If we drop a constant term (which contributes to the
ground-state energy) the Hamiltonian takes exactly
form (1) but with the new Ising axis X (instead of x)
with new constants J'"+", I'"+", and h'"+" given

S2 (n)
J&P 0

A zxA xx + A zz A xz
p 1 p 10 SX(n+1)

J

—
Ap A ]' + A pz A ~]

SZ(n+1) + Bz I (n+1)
J Pp J

(13)
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where po= n,—if n, is even, —(n, + I) if n, is odd.

These recursion relations can be integrated up to the
fixed point to give (S,"to') and (S o') as a function
of (Sg'"') and (Sf '"') in the fixed point which are
known. They are either 1 or 0 depending on the
fixed point (see the results) and consequently,
(S,"'o') and (S,*'0') can be evaluated through the
iterative procedure.

simple product preserves the commutation rules.
In the general cases, where II = h'+ih", all the

parameters become generally complex through the re-
cursion scheme. Two interesting limiting cases are
h" =0 where all the parameters remain real and
h' = 0, where I and J remain real, while h = ih"
remains purely imaginary.

B. Complex longitudinal field III. RESULTS AND DISCUSSION

$ )Ek)tk = 0 1f I A J
k

(14)

So, it is convenient to normalize each eigenvector i

by dividing the coordinates by the square root of the
norm

iv;= $(xk)'
k

Note that this norm is generally complex. This was

already the case in Ref. 16.
Another problem is the choice of the two levels we

retain, since now, their energies are generally com-
plex. By analytic continuation from the real case
where h'=0, we choose the two levels which have
the lowest real parts. Then all the following calcula-
tions remain strictly the same. Note that also the
spin-rotation formulas remain unchanged since the

All the preceding calculations can be extended to
the case of a complex field h = A'+ih". Here the
first difficulty arises from the non-Hermiticity of the
Hamiltonian. The same problem has been encoun-
tered when applying a similar method to the Reggeon
field theory. '7 Like there, one takes the advantage
that the matrix representing the block Hamiltonian
remains symmetric. Thus, the right eigenvectors
have the same coordinates as the left eigenvectors
(and they are not complex conjugate as in the Hermi-
tian case). Also, the different eigenvectors are
orthogonal in the sense of the regular product

A. Real longitudinal field

The procedure described in the preceding section
allows us to determine the renormalization-group tra-
jectories in the parameter space. Let us choose here
the two independent parameters I'/J and h/I'; in the
2D classical analog they correspond, respectively, to
T/J and h/T.

Fixed points

%hen we start with h = 0, we end up either to the
stable fixed point I /J = 0, h /I' = 0 or to the other
stable fixed point I /J = ~, h/I = 0, depending on
the initial value of I'/J. In presence of a finite h W 0,
we always end up to the stable fixed point h/I" = ~
whatever the inital value of I./J is. In other words,
the longitudinal field is always relevant. These three
trivial stable fixed points: (I /J =h/I" =0), (I'/J
= ~,h/I'=0), and (h/I'= ~) correspond, respec-
tively, to an Ising chain without field, a set of in-

dependent spins in an applied z field, and a set of in-

dependent spins in an applied x field.
The only nontrivial fixed point is thus the unstable

fixed point, h = 0, I'/J = (I /J ), already studied in

Ref. 3. This point becomes now twice unstable in the
presence of a longitudinal field. The values of
(I'/J ), already obtained for different block sizes' are
reported in Table i. They asymptotically converge to-
wards the exact value (I'/J), = I when n, increases.

TABLE I. Our results for the location of the transition, different exponents, and the period x of
the oscillation of the real part of the magnetization for n, =2, 3, 4, and 5.

]ls Exact

(r/J),
p

1.27675

0.40

5.

0.28

0.08

2.2

1.15470

0.19

10.2
—0.30
—1.0

1.7

1.10568

0.195

10.0
—0.24
—0.96

1.0

1.07971

0.155

—0.29

3.1

0.125

15
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2. Magnetization

The calculation of the magnetization components is

performed as explained in the preceding section by
expressing (S,"'o') and (S 0') as functions of
(SJ". '"') and (Sf'"') in the fixed point. The fixed-
point values of (Sg'"') and (Sf '"') are

1

+1, 0 for I /J =h =0,
(SJ"'"')„=0, (SJ'"')„='+I for I'/J =~, h =0,

0 for h/I' = ~.

The average M„= (S,"'o') and M, = (S,"0') can then
be evaluated. %e give an example of the results for

M„ in Fig. 1 where we have plotted M„as a function
of I'/J for different h/J values for n, =3. As expect-
ed the transition observed for h =0 disappears when

h ~0.
The critical exponents directly related to the mag-

netization are P and 5 defined as

[I'/J —(I/J), I~ for h/I'=0,
(h/I')'~a for (I'/J) = (I'/J), .

The exponent p was already calculated in Ref. 3. We
present the results together with the values of 5 in
Table I, for different i~, values. %hen n, increases 5
converges slowly, with oscillations (due to the odd or
even numbers of sites in the block) to the exact
value 5= 15.

C2+ //M„'I,

„, (2n —l)! xa for x &0

C„h /M„~I',
( —r

„~ (» —I)!, (—x)~ for x (0

h"
20.-

homogeneity properties, i.e., that the curves for h/I
between 10 and 10 coincide. The error for 5 is
similar to that for the other exponents, of order 10%.

On Fig. 2, our results are compared with the equa-
tion of state for the 2D classical Ising model previ-
ously obtained by Gaunt and Domb'8 by series ex-
pansion calculation. The difference between our
results and their results can be attributed to the dif-
ferent approximations used in the two cases. Howev-
er, the slope of the two curves in the large field re-

gion are quite the same, because despite the errors of
the method, our exponent y is near the exact value.

An alternative (but not independent) more quanti-
tative way to compare with series expansion results is

to estimate the coefficients C„+-as defined by Essam
and Hunter. ' In terms of these coefficients the
equation of state of Fig. 2 can be represented by the
following series:

3. Equation of state

The results for the equation of state, obtained for
~~, =3 are represented in Fig. 2. The reduced longitu-
dinal field h = (/t/M~)/(h/Ma)r r has been Plotted

as a function of the reduced transverse field I = x/
C, where x = (I /I, —I )/M„' ~ and

C~ =limr r (—x). The accuracy of the determina-
C

tion of P and 5 (within the approximations of the
method) was tested from the condition of validity of

10.-

M„

0 2 4

FIG. 1, Longitudinal magnetization. M„as a function of
I /J for different real longitudinal fields, calculated for
JI, = 3. The curves 1,2,3,4 correspond, respectively, to
h/J =0 10 10 10 '

FIG. 2. Equation of states as a plot of h as a function of
I (h and I are defined in text). Crosses and dots corre-
spond, respectively, to h/I = 10 8 and 10 4. The results of
Gaunt and Bomb (Ref. 18) are represented by the continu-
ous line.
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TABLE II. Our estimates of the coefficient C„- (upper line) for», = 3 compared with series-
expansion results of Essam and Hunter (Ref. 19) for the square lattice in 2D (lower line).

C2+/2! C,'/4! C6+/6! C;/I! C2 /2! C3 /3!

0.480 —0,08 0.013 1.192 0.00& ——6&& 10 5

Series

+ 0.01

0.4812

+ 0.0007

+ 0.01

—0.1821

+ 0,0021

+ 0.005

0.1761

+ 0.0027

+ 0.01

1.222 41

+ 0.000 46

+ 0.005

0.012 84

+ 0.000 06

—0.002 91

+ 0.000 03

with x = (I'/I, —1)/M, ' ~. Taking our exponents
P, 8, and 8 we have estimated the first three coeffi-
cients above and below the transition by a least-
squares fit of our results. Our estimates, obtained
for n, = 3, are reported in Table II and compared with
the series expansion results for the 2D square lat-
tice. ' The agreement obtained is quite good for the
first coefficient Ci and C2+ while it is less good for
the following. This is not surprising since it is
known' that these coefficients are related with the
n-points correlation functions which are certainly bad-

ly described for large n by our truncative scheme. A

better agreement would have been certainly obtained
for n, = 5. However, our purpose here was not to ob-
tain more precise results on the 2D Ising model than
those previously obtained by other methods. We just
wanted to show on an example that renorrnalization-
group calculation on a quantum model is able to
reproduce the equation of state of the classical
equivalent" quite well and also to provide a test of
our calculations in the case of a real longitudinal field
before studying the case of a purely imaginary field.

B. Purely imaginary longitudinal field

end up to the fixed point h/I' = ~, I"/J =0 (with
h/J = ~) which corresponds to free spins in a purely
imaginary field. If we start from region II we end up
to the fixed point h/I =0, I'/J = ~, the same stable
fixed point as that reached, with h = 0, by starting
with I'/J & (I'/J), . There are 'now two nontrivial
fixed points Pi and P2 with the critical line joining
them. P~(h/I =0, I'/J = (I'/J), ) is the zero-field un-
stable fixed point. P2(h/I" = 1, I'/J = ~) is a new
fixed point unstable everywhere except when it is

reached just on the critical line.
The two lowest-energy levels become rapidly com-

plex conjugate when we start from phase I, leading to
a purely imaginary gap for the whole chains, while

they are real and nondegenerate when we start from
phase II, leading to a real gap, as for h =0,
r/J & (r/J), .

In the equivalence with the 2D classical system the
critical line (h/I')r =,f (I'/J ) should be analyzed as
the edge value hg funtion of the temperature T above
T, The critical cu. rve (h/I )g= f(I'/J) goes to zero
near Pi with a power law

(h/I')r —[I'/J —(I /J ),14,

As mentioned in the introduction this case should
be related to the classical 2D Ising model in an exter-
nal imaginary field, where the critical behavior is
known as the Yang-Lee edge singularity. In this sec-
tion A will denote the imaginary part of the longitudi-
nal field ih.

1. Fixed points

The results of the study in the parameter space
I'/J, h/I' are summarized in Fig. 3 for n, = 3. We ob-
serve a completely different behavior than in the real
field case. We obtain a phase diagram with a critical
line (h/I )g =,f (I'/J ) separating two phases
h/F & (h/I'), (region I on Fig. 3) and h/I" ( (h/I')',
(region II on Fig. 3). The trajectories are represented
on Fig. 3. If we start from region I, with h W 0, we

05

P,

0 10 20 r
J

FIG. 3. Trajectories in the plane I /J, h/1 where h is the
imaginary part of the purely imaginary applied field plotted
for n, = 3. Ending of the trajectories are sketched by arrows.
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where 5 must be equal to P5. 5 can be directly
evaluated from the critical curve and then compared
with P and 5, calculated independently, and reported
in Table I. We find that the scaling law 5 =P5 is

well satisfied within the error bars. For example, for
n =3 we find 5 =1.8+0.1 while P5= 1.8+0.2 from
Table I (exact result is 5 = 1.875).

Re jM„)

3 2

2. Magnetization and critical exponents

When crossing the critical line, there is a phase
transition (when the gap becomes zero) which can be
analyzed by looking at the magnetization. The longi-
tudinal magnetization M is now a complex quantity,
Figures 4 and 5 show ReM„and ImM„plotted as a
function of /r/I for different values of I /1, as they
have been obtained by calculation for n, =3. ReM„as
a function of h/I, for a given I /1, corresponds to
g(H) for a given temperature. As expected we find
that ReM„ is zero, in region I [for h/I' ( (h/I')g].
Near (h/I')~, ReM„has a divergency characterized
by an exponent a- defined by

00
l

0.1

10

I

0.2 h I

I

ReM„—[h/I' —(h/I') ] (19)

We have checked the universality of o-.by observ-
ing that it does not vary when crossing the critical
line at different points. This is related to the fact
that transitions on the critical line are all described by
the unique fixed point P2. Similarly, it does not
depend on the direction of crossing. So, if we fix
h/I' and vary I'/J, the corresponding critical ex-
ponent, that we call P, in the analogy with the ex-
ponent P in the usual h =0 phase transition, is equal
to o-. The exponent 0- is negative and equal to
—0.25+0.05 for n, =3. The larger uncertainty is due
to the oscillations in the curve which are still present
near the transition. These oscillations will be dis-
cussed in the following. It is more easy to extract o-

from the divergency of the imaginary part of M„,
which does not show any oscillations when approach-
ing the critical line from h/I ( (h/I')g. The values
of a- reported in Table I are obtained from ImM„.

When comparing the three curves of Fig. 4, one
can see the competition between the two fixed points
P~ and P, which becomes more pronounced as I'/J
diminishes. When I"/I is close enough to (I /1), one
can observe a crossover. As /r/I diminishes, ReM„
first decreases with a positive exponent I/5 and then
increases with a negative exponent a. . 1/5 is the
h =0 exponent characteristic of P~ while o- is the new
exponent characteristic of P2.

The second critical exponent h„which gives the
variation of the magnetization by applying a small
real field from the critical curve, comes out trivially.
Namely, within a scaling approach, in the vicinity of
the critical curve, real and imaginary perturbations in
h will have the same scaling behavior, so that 0- must

3 2

00 0.1 Q2 hl
[ J

FIG. 5. Imaginary part of the magnetization as a function
of h/I for different I"/J values, calculated for n, = 3.
Curves (1), (2), (3) correspond to the same I /J values as in

Fig. 4.

FIG. 4. Real part of the magnetization as a function of
h/I for different I /J values, calculated for /I, =3. Curves

(1), (2), (3) correspond, respectively, to I/J = I'.7, 1.3,
(I /1), +10 3. Vertical arrows show the location of the edge
value (h/I )g in each case. In the insert part of curve (1) is

enlarged to show that oscillations are still present near the
edge.
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be equal to I/8, . This is consistent with the fact that
ReM„and ImM„should have the same singularities
at the edge value (h/I )~. This result leads to the
exact value 6, = P,s, = l.

We have also extracted the exponent q„defined
on the critical line, which describes the power-law
behavior with distance of the x-x spin-correlation
function. This exponent has been evaluated from the
renormalization of ReM„ for a trajectory along the
critical line up to P2

to know if these oscillations are due to the method or
are characteristic of the real feature of the unknown
function g (8). These oscillations are present in the
real part of the magnetization for all values of n, that
we have considered here. Figure 6 shows two exam-
ples of curve for n, =4 and n, =5. These oscillations
also exist in the imaginary part of M„ in region I
while they are absent in region II. We have observed
that the oscillations are periodic in In[h/I —(h/I')g]
so that formula (19) can be made more precise as

ReM„'"' = g'"' ReM„'"+"

When one approaches P2, g'"' tends to a constant
value g. Then

(20)
h h 2n h hReM„———— 3 +8 cos ln ———
r r, r r,

ri, = 2 In'/ Inn, (21)

This exponent q, is related with a- through the
scaling law

1+z —2+q,
1+z+2 —z,

(22)

This formula is directly transposed from the scaling
law relating P and q except that the dimensionality of
the ciassical equivalent system (0 =2) has been re-

placed by 1+z where z is the "dynamical" exponent
describing the scaling of the energy for the 1D quan-
tum model. z was defined precisely in Ref. 3. By
calculating z at the edge, as already done without
field in Ref. 3, it appears that the scaiing law (22) is

well satisfied within the error bars.
The results for the various exponents a-, q, are

summarized in Table I for n, =2, 3, 4, and 5. For
n, = 2, the results are close to the mean-field results
as already observed without longitudinal field: for a-

we find a positive value o. =0.28 (the mean-field
value is 0.5'). When n, increases, o. becomes nega-
tive and shows some odd-even oscillations with n„as
P. One can expect an asymptotic value for o close to
—0.27. This result for a- is definitively different than
the exact 1D result for classical Ising systems
=-0.5.'

However, our result is greater in absolute value

than the estimations by high-temperature series for
the susceptibility: a- = —0.12 + 0.05, " and asymptotic
high-temperature limit a- = —0.163 + 0,03."

Re[vip,

n =4 n =5

The period of the oscillations x depends on n, . The
results for x are reported in Table I. The fact that
the oscillations are periodic in In[h/I" —(h/I ), ] sug-
gests an artifact of the method. Real-space renormal-
ization-group methods produce in general errors each
time the correlation length, which diverges as
[h/I —(h/I')g]", is equal to n~ (where p is an in-
teger). This leads to oscillations periodic in
In[h/I' —(h/I")~] with period equal to Ink. „
= (I/v) inn, .22 Direct comparison with our results
is difficult due to the fact that the way we calculate
the magnetization creates another artifact: the odd-
even oscillations in n, . For this reason, we exclude
the n, =4 case which shows an anomalously small
period and we compare the results for two odd values
of n, : n, = 3 and n, = 5. The periods of the oscilla-
tions reported in Table I for these cases are not equal
to Ink. „: ink. „(n, =3) —3, Ink. „(i~,=5) —4.7, but

3. Oseiflations of the magnetization

An advantage of the method presented here is that
the whole curve ReM„as the function of h/I, which
corresponds to the distribution of zeros g (8) of the
2D Ising model, is obtained and not only its critical
behavior near the edge characterized by the new ex-
ponent a-. A striking feature of the curves reported
in Fig. 4 for n, =3 is the oscillations in h which are
still present near the edge (as shown by the enlarge-
ment of a part of one curve). It would be interesting

Q.2

FIG. 6. Real part of the magnetization as a function of
h/I for ii, =4, 1/J =1.65 and for ii, =5, I /J =1.7.
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they seem to be proportional to ink. „: x(5)/x(3)
=1.8 while ink„(5)/ink„(3) —1.6. To conclude we

can say that an artifact of the method cannot be
excluded.

IV. CONCLUSION

In conclusion, this study of the quantum 1D
transverse-field Ising model in a longitudinal field
was powerful to investigate the critical behavior of

the equivalent 2D classical Ising model in tempera-
ture. We have been able to evaluate the equation of
state and we have given a calculation of the density
of zeros of the partition function. We have found an
edge exponent 0- in reasonable agreement with previ-
ous estimations. Moreover, we have found a striking
oscillatory behavior of the density of zeros which is

probably due to the approximations of our renormal-
ization-group method. It would be useful to extend
the same study in higher dimensionalities as was al-

ready done without longitudinal field.
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Zagreb, Croatia, Yugoslavia.
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