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Spatial distribution of vortices and metastable states in rotating He II
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Accurate measurements of the attenuation of second sound in rotating rectangular cavities are

reported. By driving different resonant modes of the cavity, we obtained information about the

spatial distribution of vortices. I'he theory of stable and metastable states in deformed rotating

cylinders is developed in the limit of many vortices, then tested by experiment in the high-

velocity range. Metastability and hysteresis phenomena are observed in the whole investigated

range of angular velocities {0 —10 to 10 sec '). At a given 0, the observed vortex number

N can fluctuate around the equilibrium value No. AN/No & 10"/o for 0 +1 sec ', hN/No —1

for 0 & 10 ' sec '. Primarily, thanks to a good temperature stabilization, we were able to dis-

tinguish and systematically reproduce three vortex states for any value of 0: the thermo-

dynamic equilibrium No state, and two limiting metastable states containing, respectively, the

minimum number N~ and the maximum number N& of vortices. In the high-velocity range,

hN can be related to a variation of the thickness d of the vortex-free strip occurring near the

walls; d varies between two extremal values &ft, and d2, which turn out to be independent of the

boundary geometry. The role of mechanical vibrations is discussed, and the hyrdodynamic pre-

dictions concerning the barrier energy are reconsidered in relation to these experiments. From

the low-velocity results, it emerges that the experimental value of the critical angular velocity is

in substantial disagreement with theory.

I. INTRODUCTION

The motion of He II in a rotating vessel according
to the two-fluid model is well known. ' The normal
fluid is carried along with the walls of the container
like a classical fluid, whereas the superfluid only
mimics solid-body rotation thanks to a system of
quantized vortex lines parallel to the axis of rotation.
Simply to detect vortices, then to investigate their
spatial distribution, two phenomena associated with
vortices have been extensively exploited: electron
trapping, 2 ' and attenuation of second sound. '

The electron-trapping method consists in decorat-
ing the vortex axes with electrons produced by a ra-
dioactive source. This ingenious experiment permits
single vortex lines to be detected, and, by extracting
the trapped electrons through the liquid meniscus,
the spatial positions of vortices can be directly visual-
ized. Unfortunately, numerous difficulties arose in

improving this technique. As pointed out by the au-

thors, a number of vortex lines may not be record-
ed, perhaps because they do not terminate at the free
surface. Furthermore, in order to produce photo-
graphs4 of films, ' it is necessary to work at tempera-
tures lower than 0.3 K, where it seems difficult to get
a stable array of vortices. Ho~ever, very recently,
stable and complete patterns of a small number of
vortices (N —I —10) have been recorded. '

The second-sound method, which is the one we

used in the present work, utilizes the fact that vor-

tices give rise to an extra attenuation of the second
sound. A closed cavity serves both as rotating vessel

and second-sound resonator. Each vortex in the cav-

ity contributes to the damping of the second-sound
wave proportional to the squared wave field. There-
fore, a vortex will act differently if it is located near a

node or near an antinode of the standing wave. So,
by studying various modes of the cavity, we clearly

gain information about the spatial distribution of vor-

tices. Although not as spectacular as the electron-

trapping method, the second-sound method provides
more easily stable and reproducible measurements, at
least in the present state of progress. Moreover, the
second sound still appears to be the probe best suited

to investigating states with a large number of vor-

tices.
We report here accurate measurements of the vari-

ation of second-sound amplitude in a rotating cavity

as a function of the angular velocity 0 (Sec. IV).
Contrary to early experiments dealing with the spatial

distribution of vortices, where circular or annular

containers have been used, we systematically experi-

mented on rectangular cavities. At relatively high

values of 0, we also found that a narrow vortex-free
region exists near the walls of the cavity. We con-
firm that the width of this vortex-free region, at
equilibrium, is independent of the geometry of the
boundaries as expected from theory (Sec. II). But
what is to be emphasized in our results is the ex-

istence of metastable states in the whole explored
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range of rotation velocities (10 ' ( 0/2m ( 1 rps).
Metastability in rotating helium was sometimes ob-
served, "' sometimes not, ' and reliable data do not
exist in literature relating to this subject. The new
important fact here is that the metastable states ob-
served by slowly decreasing or increasing 0 are well-

defined vortex states, quite reproducible and stable
against small mechanical vibrations. Understanding
the formation of such states ought to shed some light
on the unsolved problem of how vortices appear and
disappear in a rotating vessel.

Section II deals with the theory of stable and meta-
stable equilibrium of vortices in cylindrical rotating
containers of any arbitrary cross section. In particu-
lar, it is shown that the irrotational motion induced
by the rotation of the walls (in noncircular cylinders)
may be ignored in dealing with any equilibrium prob-
lem concerning vortices, such as determining, for in-

stance, the value of the critical velocity 0„the
equilibrium positions of vortices, or the width d of
the vortex-free region at high O.

In Sec. III, while describing the experimental ar-
rangement, we detail the principle of using a second-
sound wave to detect vortices. Any variation, due to
rotation, of the second-sound amplitude in a rotating
cavity will be conveniently expressed in terms of a
variation of the total number of vortices N in the
cavity, or more precisely of the weighted number N
as defined in Sec. III.

The experimental results reported in Sec. IV sug-
gest the existence of a free-energy barrier opposed to
incoming or outgoing vortices. But the well-known
barrier, as calculated from classical hydrodynamics
following the same outlines as in Sec. II, obviously
does not account for the metastable states observed.
This point is discussed at the end of Sec. IV.

ism.
The superfluid velocity field v, ( r ), and the corre-

sponding stream function P, appear as the sum of
two terms:

Vs = Vl + V2, Q = $1 + Q2

The first term v, (or P~) represents the irrotational
flow arising from the rotation of the walls, whether
or not vortices are present. P& is defined by the fol-
lowing condition:

'7'p~ ——0, P~ = —, Qr2 on C1

(2)

The second term v2 is the velocity field induced by
the vortices and their images. If N vortices are
present at points r;, each having a quantum of circu-
lation K = h/m, Pq is such that

'72/2= $~8(r —r;), $2=0 on C (3)

and can be expressed as

L=p, I (r'7$)d r (6)

(4)
where G is the Green's function vanishing on C.
The regular harmonic function g (r

~ r;) may be in-

terpreted as that part of P2 due to the images of the
ith vortex.

Knowing P, the kinetic energy E and the angular
momentum L of the superfluid are readily calculated:

E = —,
'

p, J ('7y)'d'r

II. EQUILIBRIUM AND METASTABLE STATES
IN A DEFORMED CYLINDER

We consider here the motion of He II in a cylindri-
cal container of any cross section. The container ro-
tates at angular velocity A about a vertical z axis
parallel to the generators. Without loss of generality,
the cylinder will be taken of unit thickness. The ro-
tating helium is threaded by a system of vortices,
which are supposed to behave like classical vortex
lines, except that their circulation is quantized. The
superfluid flow is regarded as the motion of an ideal
incompressible fluid with density p, . The two-
dimensional motion of an incompressible fluid in a
simply connected region R bounded externally by a
rotating solid contour C, when a number of isolated
vortices are present in the fluid, is a well-known
problem in classical hydrodynamics. This question,
in connection with He II, has been studied in detail
by Fetter. ' So we recall briefly the basic formal-

Strictly, the integral (5) is divergent because of the
logarithmic singularities of P2 at the vortex cores r;.
To exclude the singularities, we can draw small
streamlines pq = const around each vortex core,
which are very like small circles c; of radius a. In-
tegrating over the multiply connected domain D
bounded externally by C and internally by the small
circles e;, and since '7'Q =0 in D, we obtain

(7)

where n is the outward normal. Substituting the
sum /~+ $2 for P, it follows from the properties (2)
and (3) of P~ and P, that the cross terms in Eq. (7)
vanish. In other words, the kinetic energy F. is the
direct sum of the kinetic energies of each motion v&

and v2 considered independently. This result, unno-
ticed in Refs. 9 and 10, greatly simplifies further cal-
culations.

At equilibrium, for a given 0, both the number
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and the positions r; of the vortices are such as to
minimize the kinetic "free energy" F, =F. —L Q.
From the additivity of the kinetic energies and angu-
lar momenta, it follows at once that F, splits into two
terms F~ and F2. The first term F~, related to the ir-
rotational motion v ~, is a constant term. Therefore,
the second term F2 relating to the vortex field v2,
must be minimum in the equilibrium state. Accord-
ing to Eqs. (3), (6), and (7), the free energy F2 can
be rewritten in terms of P2 as

F2=E2 L20 —= — ' xpq(c;)+2IIp, $2d r
i

duced velocity v„,including v&.

When dealing with a large number of vortices, we
may consider the vortex system as a continuous dis-
tribution with density n ( r ). This continuum ap-
proximation becomes relevant when nl' )& 1, where
I is a typical size of the container. We may introduce
the averaged velocity field, (v, ) = v, + (vq), and a
stream function (g2), which are related to n ( r ) by

curl (v, ) =curl (v2) =n ( r )~='7'(Q2)

(12)

(lfl2) =K n(r )G(r ~
r ) d'r'

Here, $2(c;) is the constant value of gq on c; at dis-
tance a of the vortex center r;:

$2(c;) XKG(r;~ rk) +ng( r
~
r ) + "

lna . (9)
kWi 2m

gH
/xi

, H = F2/p, n. (10)

Whether the number of vortices is fixed or not, the
equilibrium requires F2 to be stationary with respect
to any displacement hx, hy of the vortices. If so,
Eq. (10) implies that v,'; must be zero, whence

v„=0 x r; = v„(r;) (equilibrium).

According to common ideas on mutual friction, it
results from the condition (11) that the vortex line
velocity vq; = v„.Thus, in equilibrium, the vortices
follow the normal fluid and rotate rigidly with the
container. As noted above, one may ignore the irro-
tational flow v~ when considering any question about
the equilibrium of vortices, because of the additivity
of the free energies F~ and F2. Nevertheless, some
intricate relation must exist between the fields g~ and

P~, evident in particular from Eq. (10), since, dif-
ferentiating the function F2, we obtain the total in-

In Eq. (7) we have omitted the small model-
dependent contributions of the cores. An effective
core radius a —I —10 A. can be defined in Eq. (9)
precisely so as to include each core contribution in
the term lna.

Tne Hamiltonian formalism, worked out by Hess"
in the special case of circular geometry, can be ex-
tended to deformed cylinders. Let v„bethe super-
fluid velocity induced at the core of the ith vortex by
the other vortices, including all the images, as well as
by the irrotational flow v~. Denoting by prime sym-
bols all quantities relative to the rotating frame of the

I

container, the components of v,i can be written as

9H
By

and Eq. (8) becomes

F2= —
&p, K J &

n(r)n(r )G(r~r )d'rd r'

+2Qp, „„n(r)G(r~r)d2rd2r' (13)

If the free energy F2, as given by Eq. (13), is minim-
ized with respect to the vortex density, it is found
that n ( r ) = 2II/~ = const throughout the whole re-
gion A. This is not surprising. It means that the
liquid -has a solid-body rotation, a well-known result
for an ordinary fluid. " In Ref. 9, Fetter, using the
total free energy FR+F2, arrived at the same conclu-
sion. Our purpose here is to reconsider the same
variational calculus, but after correcting the expres-
sion (13), to allow for the discrete structure of the
vorticity

Equation (13) is strictly valid only for a vortex
continuum, where the vorticity should be subdivided
ad infinitum, that is in the limiting case where K 0
and n ~ (keeping n K constant). In the vortex
continuum equivalent to the actual vortex distribu-
tion, suppose that a circular cell of radius b, carrying
the vorticity K, is replaced by a single quantized vor-
tex at the center of the cell. An elementary calcula-
tion yields the resulting variation of the free energy:

AF2 = AE2 —OAL2
t

ln
P K b 1 0

7r b'+ 0 ( I ) . (14)
4m a 4 K

b ( r ) is connected with the local vortex density by
the obvious relation:

nmb2=1

AF2 represents the free-energy correction for one
vortex located where the vortex density is n ( r ).
The same correction is repeated for each vortex.
Thus we obtain a better continuum approximation for
Fq by including in Eq. (13) the following additional
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FIG. l. Schematic of the model vortex distribution in an
arbitrary cylinder viewed along rotation axis. The dotted re-
gion V bounded by the contour I represents the domain oc-
cupied by vortices with density n ( r ). The annular region
R —& between the solid boundary C and the contour I is
free of vortices.

term:

Jl n ( r )AFq(r ) d r

As suggested by experiments, let us now consider
vortex states where only part V of the region R is oc-
cupied by vortices. The annular region R —V sur-
rounding the vortex domain is free of vortices. (See
Fig. 1). Formulas (12) and (13) apply in this case by
taking n = 0 in the vortex-free region, while the con-
dition n && I ' still holds within the domain V. Thus
we express that F~ is stationary against any variation
gn (r ) of the vortex density in V, subject to the con-
dition that the total number of vortices remains con-
stant:

N = n(r) d~r =const
V

wherever they are, must be uniformly distributed
with the equilibrium density n 0=20/~. This result
already underlies the equilibrium requirement (11).
If the induced superfluid velocity v„and the mean
velocity (v, ) are identified as equal, Eq. (17) follows
at once from Eqs. (11) and (12). With n = no and
b~ = (non ) ', the free-energy correction per vortex
(14) can be rewritten as

2

QF =Ps
4n a

t

(19)
b" =e 6 =0.27s =0.27(z/20)'

where s = no
' ' is the mean vortex spacing. This is

exactly the correction derived by Tkachenko' for an
infinite triangular lattice. As the free energy seems
to be insensitive to the precise lattice structure, ' this
coincidence is not so surprising, and the isotropic cell
model must be reasonably realistic.

The second condition (18) implicitly characterizes
the domain V. The function of r in the left member
of Eq. (18) may be interpreted as the superfluid
stream function in the rotating frame, namely,

(0') =Ai+ &A~)
——,

' 0" ~

and Eq. (18) states that (P') has a constant value
throughout the vortex domain. From this and from
the general properties of P~ and (P&), it results that

0 (in V)
—20 (in R —V),

This is equivalent to seeking an extremum, without
constraint, of the function Fq/p, ~+).N, where h. is a
constant Lagrange multiplier. Thus we get

—K n ( r )G( r
~

r ) d'r'+20 G( r
~
r ) d'r'

,

'0 (on C)
(e') =

ln +h. (on and inside I'),
!

(20)

t

+ In ———+X=0 (for r in V) . (16)K b 3
4m a 4

Taking the Laplacian of both sides of Eq. (16), and
disregarding fluctuations of n ( r ) of wavelength
comparable to the vortex spacing, as they are not
physically significant in the continuum approxima-
tion, we deduce that

n ( r ) = 20/~ = const (for r in V)

Equation (16) then reduces to

(17)

(for r in V) . (18)

The first condition (17) signifies that N vortices,

—20 ' G(r ~r ) d~r'= ln ———+A. =const~ Rv 4m a 4

where I is the frontier of the domain V. In practical
cases where the approximation holds, that is when
b (( I (or 0 » ~/I'), the vortex-free region is ex-
pected to be confined to a narrow strip along the
boundary. Assuming that the radius. of curvature of
the boundary is large compared to the width d of the
vortex-free strip, and using the above properties of
(Q'), we can write

(V') —&V') = —&e')r= —«' (21)

From Eqs. (20) and (21), we conclude that the vor-
tex domain V must be such that the surrounding
vortex-free strip is of constant width d, as given by

4' 0 a
(22)

If the constraint (15) is released, allowing the vortex
number to vary, the calculations can be repeated by
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simply setting X=0. The corresponding result refers
to the thermodynamic equilibrium of the rotating sys-
tem. In particular, the equilibrium vortex-free region
should have the uniform width

(a)

I r r
'

]/2 r

b b'
do= ln b2

W2 a
K

2mB
(23) X

which is independent of the shape of the boundary.
Formula (23) has been proved'4 and experimentally
tested" only for circular geometries, then presumed
valid in more general cases. '4 Nevertheless, it was by
no means obvious that the vortex-free strip should
be of constant width in deformed cylinders. The irro-
tational flow v~, induced in this case by the rotating
walls, is not of constant intensity along the bound-
ary, ' and so the flow v~, interfering with the vortex
flow v2, could have altered the interaction between
the vortices and their images, changing the width d
accordingly.

Negative or positive values of the constant X corre-
spond to possible metastable states, that we shall
refer to as N states, where the number of vortices N
should be, respectively, larger (d ( de) or smaller
(d ) do) than the equilibrium number Nrr (d =do).
Metastable states are expected to arise if a free-
energy barrier is opposed to incoming or outgoing
vortices. In fact, a well-known consequence of the
hydrodynamic equations is that a superfluid free-
energy barrier should exist near the walls. '" In the
Appendix, we make use of the basic hydrodynamic
relation (S) to calculate for an N state, the shape of
the barrier opposed to an (N +1)th vortex. But, as
we shall see in Sec. IV, this barrier model fails to ex-
plain our experimental results.

III. SECOND-SOUND METHOD AND

EXPERIMENTAL PRINCIPLES

I.IG. 2. (a) Cross-sectional sketch of 'i rectangul;ir reso-
nator driven it its fundament il x mode. A given vortex will

contribute to d imping according to its position ilong the
velocity profile of the stinding w ive. In the weighted
number of vortices N as defined in the text, a vortex it the

1

antinode x =
&

L is counted is 2, ;ind;i vortex near the

nodes x =0;ind x =L as zero. (b) At large;ingular veloci-

ties, vortices ire expected to be uniformly distributed with

density 20/~ up to i dist ince d from the w ills. As com-

pared to;i cavity filled wi'. h vortices, the presence of the
vortex-free region wi(l have the effect of reducing the at-

tenuation is though the mutu il-friction par'imeter 8 were

smaller by a fictor y =1 —2~l/L.

T~ (x,y, z ) e '"'. The temperature amplitude T~ (x,y, z )
can be expanded as a series of normal modes. ' As co

is varied, the response of the cavity appears as a suc-
cession of resonant peaks. If ro approaches one of
the eigenfrequencies, the corresponding resonant
term predominates. Thus, one mode at a time can be
observed, provided it is nondegenerate. For instance,
suppose we are operating at the fundamental mode in

the x direction or its ni th harmonic:

Tt(x) =C e(or) cos(rrtrrx/L ) (24)

Except for the geometry of the resonator, the ex-
perimental arrangement is very similar to that
described in a previous paper. ' The cavities
designed for the present work are parallelepipedic
boxes machined from slabs of epoxy resine Araldite.

They have a long rectangular cross section l x L as
shown in Fig. 2. The representative data presented
in Figs. 3—5 all refer to the same cavity; its dimen-

sions are l =6 mm, L =49 mm, and h =23 mm

(vertical height). In Sec. IV, we shall refer to results
obtained with four other resonators used, whose di-

mensions I x L x h are as follows: 6 && 23 && 19,
6X54X45, 5&46&18, and 3&49X23 mm. For
the following discussion, we shall take the xy coordi-
nate axes as indicated in Fig. 2, which are now to be
viewed as fixed in the rotating frame.

A carbon transmitter painted on the wall of the
cavity and heated by an ac current at frequency —,co,

generates a second-sound wave at frequency ~,

Tt(0) = C o(or) =3 I +iQ
~~0

(25)

Here Q is the quality factor defined as the ratio of
resonance frequency co 0 to the half-width of the
common response curve. The resonant amplitude A

by setting the driving frequency close to the charac-
teristic frequency or p= lit rruz/L, where u2 is the
second-sound velocity. A receiving bolometer on the
wall x = 0 (or x = L) measures both modulus and

phase of the maximum temperature amplitude
T~(0) = C o(ra). The bolometric signal is fed into a

lockin amplifier (LIA) PAR 129A. The two out-of-
phase outputs of the LIA drive the two channels of
an XV recorder, so that the complex amplitude T~ is

directly plotted on the Argand diagram. ' %hen
varying the exciting frequency ~, the response locus

T~ vs ao is a circle:
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FIG. 4. Hysteresis loop showing the variation of the
weighted vortex number, N = (20/K)Lly, when quasistati-
cally increasing then decreasing 0 around some mean value

O~ (T =1.9 K, O~ =1.3 sec ', cavity I x L =6 x 49 mm,
x fundamental mode). The equilibrium No state, achieved
after any strong perturbation, is taken as a reference state
(No = 6970, y„=0.92). Along the quasiparallel branches of
the loop b, N is associated with a variation of the vortex den-

sity 20/K (y = const). At O~, hysteresis variations

Ni Np, N2 Np are interpreted as variations of the width

d of the vortex-free strip (y =1 —2d/I): d& =0.39,
do = 0.25, d2 = 0.15 mm, for the N&, No, and N2 state,
respectively.

0 1 2 4 5 6

9 ( Sec )

FIG. 3 ~ Second-sound attenuation does not yield the
mutual-friction parameter 8 directly, but instead the product

By, where y is a filling factor, depending on both the vor-
tex state and the excited mode. y would be unity, for all

modes, if vortices filled the cavity. This figure shows data
obtained at 1.9 K in the rectangular cavity I && L =6 x 49
rnm as a function of the angular velocity O. (a) 8 y~ vs

0 ', x fundamental mode (194 Hz), equilibrium state
(solid circles). In nonequilibrium states, the variation
domain of By„is bounded by the dashed lines, which corre-

spond to the limiting Ni and N2 states. (b) By~ vs 0 'I, y
fundamental mode (1593 Hz), equilibrium state. The two

last points (open circles) strictly speaking are beyond the
domain of validity of the continuum approximation. Note
that the extrapolated values of B are different in (a) and
(b)'„this is-related to the frequency dependence of B in ac-
cordance with the Hall-Vinen model (Ref. 17).

is related to Q by

Q
' is proportional to the average dissipated power.

In a nonrotating cavity, at working frequencies and
temperatures, energy dissipation mainly arises from
surface losses, owing to the friction of the normal
fluid against the sides of the resonator. When rotat-
ing, each vortex present causes an additional dissipa-
tion through mutual friction. As the viscous penetra-
tion depth of the normal fluid is small compared to
the width d of the vortex-free region, the two
mechanisms of loss do not interfere. Thus, we may
write

1 1 1

Q Qo Q.
(27)

where Qo refers to the stationary resonator. Q„is

the quality factor which could result if the only-
source of damping was the mutual friction. Accord-
ing to the definition of the first mutual-friction
parameter B (or strictly speaking of its real part B~
(Ref. 17), the energy dissipation per unit time and per
unit length of vortex line is

A = (Z„/m7r)qg (26)

where Z is the characteristic impedance of helium,
and q the averaged heat input, taking into account
the geometry of the transmitter. ' It should be re-
called that the quality factor is a property of a given
mode in a given cavity, and is independent of the lo-
cation and size of the transmitter. Typically, in our
experiments q —10 4 mW/cm2, Q —103—104,

A —10 ~K.

(p„p,/p) 2 BK(U, —v„).

p is the helium density, and p„=p —p, . Here,
v, —v„stands for the velocity field of the second-
sound wave. Neglecting small quantities of the order
of 0/ru, '6 v, —v„~V T, . A vortex contributes to
energy dissipation according to its position in the
standing wave. Vortices close to the walls x =0 or L,
which are nodes of the velocity field (for the con-
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tion, we have

200-
»0

n(r) sin' d2r (30)

Since we are only considering states where the local
equilibrium condition, n = np, holds, Eq. (30) may be
put in the form

1

Q.
BO 2 ) . 2 mmx d2 BQsin -- d r=
2(o Ll "~ L 2o)

(31)

)00—
where y is a filling factor smaller than unity and re-
lated to N by

N

LI 2ALl
(32)

2 3 4

0 t10 sic ')

In a metastable N state, as expected from theory
(Sec. 11), the vortex domain V is surrounded by a
vortex-free strip of constant width d [Fig. 2(b)1.
Then

y, -—1 —2d/I (x modes) (33)

sidered modes), are undetected. For a system of N
vortices located at points r;(x;,y;), the quantity Q„'
can be written in the form

N m 71'XI
Bn Xsin.

L

where A. is a constant factor independent of the vor-
tex properties. In the case of a large number of vor-
tices uniformly distributed throughout the cavity, the
sum in (28) is equal to , N. Assuming fu—rther the

vortex density to be np=20/K, and thus W =npLI,
we must retrieve the known result derived from the
hydrodynamic equations of rotating He II, namely,
Q„=2'/B0,'6 whence we obtain X = (2coLI) '.
Equation (28) can then be rewritten as

1 BK . p
maxi 8~ N

sinQ„2cuLI, L 2cuLI 2
(29)

defining, for any vortex distribution, N as the
number of vortices which, evenly distributed, would
give rise to the. same attenuation.

At large 0, applying the continuum approxima-

F16. 5. Low-velocity results (cavity I && L =6 & 49 mrn,
T =1.9 K). N is given as a function of 0 for different vor-
tex states and for both directions of propagation (fundamen-
tal modes). Circles, slowly increasing 0: , N t (x ); 0,
N&(y). Squares, slowly decreasing 0'. ~, N2(x). 1'rian-

gles, equilibrium state: k, No(x). The N2(y ) and No(y )
points, which mingle with the N2(x) and No(x) points, are
omitted for clarity. The lines are an aid to the eye; the
dashed line is deduced from the lower full line by multiplica-
tion by a factor of 2. The arrow on the 0 axis shows the
predicted value of the critical velocity 0, from Eq. (A5),

The subscript x recalls that this value of y is relative
to any one of the modes (24). lf, instead, the y fun-
damental mode or one of its harmonics was ob-
served, we should have

y» = 1 —2d/L (y modes) (34)

1 1 A (0)
Q„Qp A (0) (3S)

One may ask whether the fluid flow near the sharp
corners of the cavity is likely to give rise to any diffi-
culties. Note that the arguments and results of Sec.
11, up to and including Eq. (20), hold in a rectangular
resonator. In particular, it should be emphasized
again that the resulting superfluid flow vi+ v2 ap-
proaches solid-body rotation, so that, near the
corners as well, the relative velocity v, remains very
small (u,' —Qd). Of course, Eq. (21) and com-
ments about the constant width of the vortex-free
strip do not apply near an angle, ~here the frontier I
of the vortex domain, as defined by Eq. (20), is in-
stead expected to be smoothly shaped. Corner ef-
fects can affect the vortex distribution over distances
again of the order of d. But, whatever the resonant
mode used, vortices near the corners will be un-
detected. So the detailed vortex distribution in the
corners is clearly unimportant, and Eqs. (33) and
(34) need no correcting

The principle of the measurements is quite simple.
The heat input q being maintained constant, changes
in the resonant amplitude A connected to changes in
the quality factor are measured. By comparing the
amplitude in rotation A (0) with the rest amplitude
A (0), and knowing Qp, Q„canbe calculated from the
relation
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Then Eq. (29) or Eq. (31) yields either the weighted
vortex number N or the filling factor y, which
describe the spatial distribution of vortices in the cav-

ity�.

First of all, we check the perfect circular shape of
the r 'sponse curve, plotted in the complex plane as
indicated above, ensuring that we actually observe a

single mode and not some mixing of overlapping
modes. '

Qo is determined from the response curve
of the stationary resonator. Then, setting the genera-
tor to the resonant frequency, the phase control of
the L IA is adjusted for the X channel to be in phase
with the resonant signal. A variation AL due to a
change in the phase of the signal obviously should
not be confused with a variation b,A. Phase shifts
may result from fluctuations of the driving frequency
or of the bath temperature (because ru o as well as u2

is temperature dependent). Although the phase can
be checked on the Y channel, a strict control of both
frequency and temperature is indispensable. The
second-sound transmitter was driven by a very-low-
frequency synthesizer A DR ET 303, with frequency
stabilization better than one part in 108. An auxiliary
second-sound resonator of large Q was included in a
feedback loop to control the temperature. This
second-sound controller, that we have used previous-
ly,

' has shown itself to be more efficient than a con-
ventional bridge controller. Optimum performances
are obtained about 1 .9 K; without rotation, fluctua-
tions are reduced to less than 10 K in the range
0—3 Hz, during 1 h. Moreover, in order that record-
ed variations AA /A as small as 5 x 10 4 be regarded
as significant, we ascertained that the ac input power
to the transmitter was stable during a run to better
than 1 0 4.

To increase the sensitivity of the method, it is clear
from Eq. (35) that Qo should be as large as possible.
The theoretical limit prescribed by surface losses can
be approached, and values of Qo as large as 10000
and greater are attainable if great care is used in the
construction of the cavities. In the rectangular cavity
6 x 49 mm' mentioned above, we obtained, respec-
tively, Qo = 1250 and 12 700 for the fundamental
mode in the x direction and in the y direction.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

As a preliminary remark, we will point out that, in
the whole investigated range of angular velocities
( 0 —10 ~—10 sec '), the state of the rotating heli-
um sample was found to be dependent on its past
history. This was noted by other authors, using the
electron-. trapping method, in situations where the
number of vortices is small (N —1 —10).~ 5 We do,
in fact, observe a well-marked metastability in the
low-velocity range ( 0 & 10 ' sec ', Fig. 5), but we
shall detect relative variations hN/N & 10% for angu-

lar velocities ranging from 1 to 10 sec at which hys-
teresis phenomena are generally not reported. '

Figure 4 shows a typical recording of the small
variations of the second-sound amplitude A (0) ex-
pressed in terms of 4N, when slowly sweeping the
angular velocity around some mean value 0
( f1 + d 0 ). We shall return below to the experi-
mental conditions in which such a hysteresis loop can
be observed. The state obtained at 0 by slowly in-

creasing 0, denoted as the N
~

state in the figure, is
clearly distinct from the N2 state obtained by decreas-
ing 0 . In the N2 state, there are about 600 more
"averaged" vortices than in the N

~ state, N ~ and N2
being of the order of 7000 (at 0 = 1.3 sec '). lf,
on the contrary, the rotation is rapidly set to 0, ei-
ther starting from zero or from some high value
above 0, we obtained an intermediate state,
marked as Np in Fig. 4, which we have reason to
identify with the state of thermodynamic equilibrium.
As a matter of fact, this Np state inevitably occurs
after any strong perturbation of the rotating system.
%hatever the initial state may be, jarring the cryostat
brings the system by steps to the Np state. The same
result is obtained by momentarily feeding a large dc
heat flux into the cavity.

Equilibrium states (high-velocity range)

By„ry= B ( 1 —c„gy0 'r ) (36)

This approximate formula well accounts for the ex-
perimental results. Figure 3 shows experimental
values of 8y„and 8 y~ obtained at 1 .9 K in the
6 x 49 mm' cavity. For the fundamental x mode
(o)~0/2n = 194 Hz) the data By„vs0 ' 2 are well fit-

In reproducing systematically the Np state, thus de-
fined experimentally, we first investigated the varia-
tions of the second-sound amplitude A (0 ) as a
function of the angular velocity for relatively large
values of 0 ranging from 10 ' to 10 sec '. In this
range the conti nu u rn approximation holds, i.e.,
b « I —1 cm, or equivalently 0 )) x/i' —0, ,

Taking for granted that n = 20/K in the vortex
domain, we can calculate the filling factor y from the
experimental data using Eqs. (31) and (35), provided
that 8 is known. But 8 itself has to be deduced from
such amplitude measurements. In fact, what is pre-
cisely measured as a function of 0 is the global
quantity By appearing in Eq. (31). Theoretically, y
should be given by Eq. (33) or (34) according to the
excited mode, substituting, for equilibrium, d = dp as
given by Eq. (23). The logarithmic factor in Eq. (23)
only varies by a few percent in the interval of angular
velocities studied, so that it may be approximately re-
garded as constant, and dp ~ Q ' '. Thus we expect
8.y has the simple dependence:
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ted by the straight line:

By„=0.855(1 —0.0930 'I') (37)

By» = 0.952(1 —0.0120 'I') (38)

We immediately note the difference between the two
values of B in (37) and (38), which must be attribut-
ed to the dependence of 8 on the sound frequency in
accordance with the Hall-Vinen model, as shown by
Mehl. " Such an effect cannot be ignored in our ex-
periments. Taking B as a constant in Eq. (31) would
alter our conclusions on the spatial distribution of
vortices. Conversely, the correcting factor y should
be taken into consideration, when determining this
slight dependence of 8 on cu, our own results on this
question will be published elsewhere.

While 8 is determined to better than 1%, the
slopes of the fitting lines, i.e., c, and c~, cannot be
given to better than a few percent. The experimental
ratio c»/c„=0.13, as deduced from Eqs. (37) and
(38), is close to the predicted value c»/e„=I/L
=0.122 within better than 10%. This confirms that
the vortex-free strip has the same width along the
small and the large sides of the cavity. By measuring
the attenuation of the third and fifth harmonics ~3Q

and ~5o we detected no change in c within the accu-
racy of measurments, indicating that the vortex-free
strip is of uniform width d along the large sides L.
From the study of four cavities of different dimen-
sions I and L (6 x 49, 6 && 23, 5 x 46, 3 x 49 mm'), it

appears again that c is proportional to L ' or I '. All

these results corroborate the existence, at equilibri-
um, of a vortex-free strip having a constant width do
independent of the shape and size of the container.

As said above, the logarithmic factor (1nb'/a ) 'I'

involved in the expression of do or c has a variation
of a few percent over the experimental velocity
range. For example, assuming a =10 A, the mean
of the extremal values of this factor is 3.27 in Fig.
3(a), and 3.39 in Fig. 3(b). Whence we obtain the
theoretical values c„=0.09'7, c~ =0.012, in fair agree-
ment with the experimental ones in (37) and (38).
Changing a by a factor 2 affects c„and c~ by + 3%, so
we may only hope to get an order of magnitude of
the effective core radius a. Although a may be
chosen to fit the experimental data (provided that
c„/c»= L/I), the fact remains that for plausible values
of a from 1 to 100 A, dp or c„,c» remain within a nar-
row range. Consequently, it can be stated that, not
only its variation as 0 ' ' but also the predicted
value of do have proven correct. In passing, we may
wonder at the success of a continuum model, when

do is comparable to the vortex spacing.
If, instead of looking at the so-called No states, we

had systematically used, for instance, the data rela-

while for the y fundamental mode (ruo~/2rr = 1593 Hz)
the best fit is

tive to the metastable N ~ or N~ states, we should
have obtained lines By„vs0 'I~ [dashed lines in
Fig. 3(a) j well apart from the No line. While the ex-
trapolated value of 8 would be the same, the corre-
sponding values of c„would be quite different. To
account for these slopes through the formula
c„O 'I'= 2d /oI we should have to allow for absurd
values of a such as 10 4 or 104 A. This gives another
argument in favor of the No state being actually the
thermodynamic equilibrium state.

Having determined B (at a given frequency co)

from high-velocity results, all amplitudes measured,
at any 0 (Figs. 4 and 5), can be expressed in terms
of the weighted number of vortices N, as defined by
Eq. (29). When necessary, the direction of propaga-
tion will be specified by noting N (x) or N (y).

Metastable states

Let us now specify the experimental conditions for
observing a hysteresis loop such as shown in Fig. 4:

(i) The loop is obtained by points by slowly in-

creasing and decreasing 0 from one point to the
next, and waiting for (metastable) equilibrium at
each point. This loop is unchanged as long as the an-

gular acceleration lies below some critical threshold.
So it represents a quasistatic cyclic process of the ro-
tating system. The loop in Fig. 4 was observed when
~df1/dt

~
( 10 4 sec ~, corresponding to a total run

time greater than 2 h. If ~d 0/dr ) rose above this
critical value, the loop shrank. At the other extreme,
when the angular velocity 0 was reached after large
angular accelerations, the system systematically
comes to the No state, taken as reference state in Fig.
4.

(ii) Too large a dc heat flux fed into the cavity also
makes the loop shrink. But a dc heat flux necessarily
accompanies the ac heat flux from the second-sound
transmitter. For the vortex state to be unaffected,
we were forced to operate with an ac input power

q & 0.2 mW/cm'. This may explain why hysteresis
phenomena can escape detection in second-sound ex-
periments. '

(iii) The values N~ and Nq measured at the mean
angular velocity 0 are independent of the sweep
amplitude + 50, provided that 50 is not too small

(in Fig. 4, EQ & 0.1 sec ').
Thus for each value of the angular velocity we ex-

perimentally define three vortex states perfectly
reproducible within the accuracy of measurments:
the No state observed after any strong perturbation of
the system, which we have interpreted as the thermo-
dynamic equilibrium state; then the metastable N~

and N~ states obtained when respectively increasing
and decreasing 0 quasistatically. If the rotational
velocity has been settled following any process, we

may obtain any intermediate metastable state
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= —[Np(y) —N((y ) j
I

(39)

In the conditions of Fig. 4, by exciting the funda-
mental mode a&~o we found N2(x) —N~(x) = 590
+20. Within this accuracy, the harmonics GJ3p N5p

yield the same result, as it should be. In the y direc-
tion, we expect from (39) a hysteresis effect AN =—
& 590= 72 "averaged" vortices; experimentally we
found N~(y ) —N

~ (y ) = 70+ 5, bearing out that the
vortex-free strip has the same extent all round the
walls as in the equilibrium state.

Incidentally, we infer from these results that the
pinning of vortex lines, if it exists, does not prevent
N vortices (N being fixed) from finding their equili-
brium distribution.

Surface irregularities were introduced on the hor-
izontal faces of the 6 && 49 mm cavity to enhance the
pinning. Each horizontal face was spotted
throughout with specks of silver paint, forming asper-
ities of the order of 0.1 rnm. No resulting change in
the hysteresis loop of Fig. 4 was observed. We have
not tried testing vertical faces similarly, since a large
part of them was occupied by transmitting and receiv-
ing films.

All measurements obtained with diversely dimen-
sioned resonators (dimensions quoted at the begin-
ning of Sec. II) consistently show that d~ and d, are
independent of the cavity dimensions, including its
vertical height. At a given temperature, the hys-
teresis difference d1 —d2 only depends on the angular
velocity. At 1.9 K, our results in the range 10 ' to
10 sec ' are well fitted by the empirical law.

d, —d, =0.26II '~'(mm) (T=1.9 K) (40)

The question is now what restricts the variation inter-
val (N&, N2) of the vortex number. At a given 0,
N~ and N2 are, respectively, the minimum and max-
irnum observable. We wish to emphasize that the N1
and N2 states are well-defined states, recoverable
from day to day. We could verify the stability of any
metastable state along the cyclic process of Fig. 4
during periods larger than 2 h. Only strong perturba-
tions were able to alter the vortex state.

between the N~ state and the N2 state, i.e.,
N, & N ( N2. We never observed that N & N2 or
N &Ni.

The reproducibility of the two limiting states N~

and N2 allows us to test the conclusions of Sec. II
concerning the metastable states in the high velocity
range. A variation of the vortex number around Np

should result in a variation around dp of the still uni-
form width d of the vortex-free strip. Let d =d~ and

d2 in the N~ and N2 state, respectively. According to
Eqs. (32), (33), and (34), we thus expect that

40
N2(x) —N)(x)= L (d( —d2)

K

Free-energy barrier
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FIG. 6. Calculated free-energy barrier AF, (y) associated
with the entrance of an (N + 1)th vortex according to Eqs.
(A4) and (A7), taking I =6 mm, p, =0.083 gcm (1.9 K),

0
a =10 A. Curve I: penetration of a first vortex (N =0).
Curve II: vortex state near equilibrium; d =0,29 mm
(—dp) in Eq. (A7). Curve III: vanishing barrier energy for
outgoing vortices; d =d2 =0.11 mm. These curves lose
their meaning when y approaches the core radius a. On the
other hand, the vortex domain has been assumed to be un-

perturbed, making the curves II and III unrealistic when y
tends to d.

These features strongly suggest the existence of a
free-energy barrier for vortices entering or leaving
the cavity. To be consistent with experiment, the
barrier height should vanish for outgoing vortices
when N ~ N2, and for incoming vortices when
N ~ N&. As a matter of fact, a well-known conse-
quence of the hydrodynamic model is that an energy
barrier should exist next to the boundary, whether
the cavity is free of vortices or not (see Appendix).
The calculated free-energy profile AF, (y) associated
with the appearance of an (N + 1)th vortex at dis-
tance y from the wall, changes shape as N is in-

creased from zero, as shown in Fig. 6. From Eqs.
(A4) or (A7) it is seen that a strong barrier
EF, (y ) —10'ka T cm ' is always opposed to incom-
ing vortices, except perhaps at extremely high
0 —10" sec ', so that in any practical case N~ ought
to be zero. Moreover, the same calculation predicts
that the outgoing barrier disappears for N exceeding
some value N2 ) No (d2 ( do). For example, at
II =1.3 sec ' we found d2=0. 11 mm (curve III in

Fig. 6), roughly agreeing with the experimental
value d2=0. 15 + 0.01 (y„=0.95 for the N2 state in

, Fig. 4). Concerning d~, we did not expect a better
estimate, not so much because the N state is regarded
as a vortex continuum, as because it is supposed to
be unperturbed as y tends to d. Yet we can hardly
consider this quasiagreement as significant, since, on
the other hand, the same model fails to explain the
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observed N~ state. For the sake of simplicity we
have made the usual assumption that vortices remain
straight and penetrate by a simple lateral displace-
ment. The vortices are more likely to enter the fluid
in a complicated manner, for instance, by progres-
sively growing from a first-line element. This is sup-
ported by the fact that the hysteresis amplitude
d~ —d~ is found to be independent of the vertical di-
mension of the rotating cavity. However, if we think
of a first vortex element as having a vertical height
comparable with the barrier thickness, i.e., about a
few micrometers, the effective barrier height would
be still of the order of 10 kq T. Clearly vortices can-
not overcome the barrier by thermal fluctuations.

To explain that, in spite of this barrier, vortices ac-
tually enter the fluid, it is generally believed that ran-
dom mechanical vibrations supply the necessary ener-
gy. " Indeed, strong mechanical disturbances bring
the system to the No state. So, it may be argued that
the ambient vibrations, unable though they are to
achieve the No state, cause the vortices to enter up to
some filling level corresponding to the N& state. But
this argument is incompatible with the fact the N~

and N2 states are quite reproducible states which are
stable against small mechanical vibrations. Further-
more, improvements in the elements of the speed
control system or transmission coupling (electronics,
servomotor, flywheel, ball-bearings) have reduced
the small spurious accelerations of the rotating ap-
paratus, but no change in the positions of the N

~
and

N2 states was observed. Furthermore, artificially
enhanced floor vibrations did not alter the results ei-
ther. Therefore, we are brought back to the conclu-
sion that the occurrence of limiting states N~ and N2
is connected to some fundamental effect such as the
existence of a free-energy barrier, whose correct
analysis ought to lead to simple laws such as Eq.
(40).

The hydrodynamic model and experimental facts
might perhaps be reconciled in two ways, on which
we shall briefly comment. By assuming that the
free-energy barrier reduces to the superfluid barrier
AF, (y), we have implicitly allowed only for perturba-
tions of the superfluid velocity field. Now, a vortex
penetrating along a real path necessarily has a line
velocity v L W 0 x r and consequently drags the
normal fluid in its vicinity. Any change in the nor-
mal velocity field is a perturbation of the equilibrium
distribution v„=O x r, involving an increase in the
normal free energy F„,so that the effective barrier
should be the total free-energy barrier AF„+AF,
«LLF, . At the maximum y of the superfluid barrier
the induced velocity v, is precisely equal to 0 x r ac-
cording to Eq. (10), so that vt = 0 x r and LLF„=O.
On the contrary, for a vortex next to the wall, e„
and hence vL, is very large compared with Or be-
cause of the proximity of the image vortex. In this
region (say, y ) 10a ) a rough estimate of EF„will

be inferred by adopting the naive model of a solid
wire moving with a velocity vL and dragging an ordi-
nary fluid otherwise at rest. Let us refer to the
relevant classical problem of the low-Reynolds-
number flow past a cylinder". The normal fluid,
with a viscosity p„is dragged over distances from the
core of the order of 5= p, /p„vL, and the resulting in-

crease in free energy is hF„—p„uL25' = p, '/p„—10'k&T cm. ' It would be a considerable task to
calculate the exact shape of the barrier b, F, + 5 F„,
but the effect of the additional term AF„is clearly to
broaden the barrier and possibly level up the free-
energy profile, so that a vortex produced at the wall

should not be driven back. Of course, the barrier has
not disappeared, but it has shifted closer to the wall

at a distance comparable to the core radius. If so, ap-
proximately the same energy per unit length must be
supplied for a vortex to be created, but this energy
should be supplied in the process of vortex formation
at the wall, thermal fluctuations now playing a dom-
inant role. Nevertheless, if we persist in considering
F, as the effective potential, another imaginable pro-
cess may be a collective penetration of a vortex bun-
dle, taking advantage of the interaction free energy
stored during the formation —a possible event —of
such a bundle on the wall. Anyway, we are faced,
beyond the field of hydrodynamics, with the difficult
problem of vortex nucleation and formation of pre-
existing vortices on the wall. Still the above argu-
ments may remain unconvincing and, in a sense, this
discussion rather reveals the inadequacy of the semic-
lassical model of vortex lines, when dealing with
surface-barrier phenomena.

Low-velocity range

%e shall end this discussion by some comments on
the results obtained in the low-velocity range
(0 & 10 ' sec', Fig. 5). When dealing with a small

number of vortices, the quantity N, unlike y,
remains meaningful and follows at once from ampli-
tude measurements through Eqs. (29) and (35). Re-
call that N vortices evenly distributed throughout the
cavity would give the same attenuation as that actual-

ly observed. For a given vortex state, N depends on
the mode used to probe the vortex distribution.

The W~ states (lower lines in Fig. 5) are reached by
quasistatically increasing 0 from zero (df1/dt & 10 '
sec '). The N2 curve (upper line in Fig. 5) is

described by starting from high velocities, then slowly
decreasing O down to zero. %e retrieved all the
features stated above: stability and reproducibility of
the No, NI, , and N2 states, and also the limiting prop-
erty, i.e., N~ & N & N2, whatever the past history of
the helium sample may be. However, it is to be not-
ed that in the low-velocity range, the equilibrium No
state is comparitively much closer to the N2 state.
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The pronounced hysteresis of the N
~ state is compati-

ble with recent results by electron trapping. '
Up to 0 =5 x 10 ' sec ', we note a factor of 2

between the values of N
~

when observed in the two
directions of propagation. This is most simply inter-
preted by granting that the vortices in the N~ state
are everily distributed on the median line of the cavi-

ty, y = —,l. N~ being the true number of vortices, we

thus have

Nt(x) =N~, N~(y) =2N~ (0 & 5 x 10 ' sec ')

This clearly shows that, even in situations where
vortices have become scarce, the prevailing factor in

determining their spatial distribution still remains the
interaction between vortices and their images. Nei-
ther pinning effects nor fluctuations can blur the vor-
tex pattern of minimum free energy (N being fixed). '
In contradistinction to N ~, no significant difference
was detected between N2(x) and N2(y), neither
between No(x) and No(y). This suggests that vor-
tices in the N p and N2 states keep spreading
throughout the cavity down to the lowest ~orked
velocities.

When Q was decreased to zero, we were unable to
detect a single vortex line, and we never observed
any steplike variation of N associated with the
discrete nature of the vorticity. Nevertheless, the
sensitivity at very slow rotation could attain three to
five vortices, permitting a good determination of the
critical velocity 0, in extrapolating the Np curve.
For the rectangular cavity 6 & 49 mm, ' we find from
Fig. 5, 0, (expt. ) = 6.0+ 0.6 x 10 ' sec. ' To com-
pare with the theoretical value, we may use Eq. (A5)
which gives the correct result to better than O.S'/o as
soon as L/I ) 4. 'o Substituting I =6 mm, a —10 A,
we obtain O, (theory) =13 x 10 3 sec ', which is
more than twice the experimental value. The fact
that O, (theory) roughly corresponds to the beginning
of the N

~
curve is no doubt a pure coincidence,

which should not obscure this discordance between
theory and experiment. In other words, referring to
Fig. 5, let us suppose we set 0 =10 ' sec ', for in-
stance. At such an angular velocity thermodynamics
unambiguously indicate that the irrotational motion
(N =0) should be the state of minimum free energy,
and yet we observe that the most stable state contains
about 20 vortices. We have no explanation for this
discrepancy that we have clearly retrieved from run
to run. Results obtained with other available resona-
tors seem to indicate that 0, decreases with increas-
ing I more rapidly than l . For instance, in the cavi-
ty 3 x 49 mm, ' we found Q, (expt) = 34 + 2 x 10 '
sec ', to be compared with O, (theory) =51 x 10 '
sec '. Further experiments are required to clear up
this point.

Summary

In the high-velocity range (0 )) 0, ), where the
vortex state may be regarded as a continuum, we
have shown, both by theory and experiment, that, in-

dependently of the geometry of the boundaries:
(i) The equilibrium state of a given number N of

vortices appears as a uniform distribution leaving
along the walls a narrow vortex-free strip of constant
thickness d (Fig. 2).

(ii) in the thermodynamic equilibrium (N uncon-
strained), d = do in accordance with Eq. (23).

In circular cylinders, whereas the first point obvi-
ously follows from symmetry, the second point was
established theoretically by Stauffer and Fetter, '4 and
experimentally in an annulus by Shenk and Mehl. '
Note, however, that the condition 0 )& 0, was not
satisfied for most of the data used in Ref. 7 to test
the theoretical expression of dp. On the other hand,
Northby and Donnelly, 2 working with an annulus at
angular velocities well above O„had measured a
vortex-free thickness about double the predicted
value.

In the low-velocity range, we pointed out that the
critical angular velocity 0, was found to be roughly
half the theoretical value. This disagreement with
theory cannot be resolved by a reasonable choice for
the core radius parameter a.

In the whole range of angular velocities, we have
demonstrated the existence of two limiting meta-
stable states, we have called the N~ and N2 states.
The observed number of vortices, at a given 0, is

history dependent, but lies between two experimen-
tally well-defined values N~ and N2, which are unaf-
fected by mechanical vibrations. At high 0, N~ and

N2 correspond to extremal values d& and d~ of the
vortex-free thickness. Like dp, d~ and d2 are in-
dependent of the shape of the boundaries. Hysteresis
indicates the presence of some barrier energy. Con-
sidering the possible role of mechanical vibrations,
the hydrodynamic barrier energy might explain that N
varies throughout a somewhat undefined interval„
depending on the vibration level in the apparatus.
However, the existence of definite limits N~ and N2
contradicts this scheme. The present data may be
useful in reexamining the barrier-energy problem on
quantitative grounds.

From all these experiments, we are tempted to
conclude that the semiclassical model of vortex lines
leads to correct quantitative results as far as vortex
states with a large number of vortices are concerned.
But, for undetermined reasons, this model fails to
explain processes involving a single vortex or a few
vortices, such as the processes of appearance and
disappearance of vortices (barrier problem) and the
formation of the first vortex states in the low-velocity
range (0, problem).
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APPENDIX

AF, (r) =F,(N, r) —F,(N)

= —p, K&g(r)+F)(0, r)

(Ai)

Here P, is the stream function solely due to the N
vortices in the domain K The last term Fq(0, r ) is

just the barrier opposed to a first penetrating vortex
(N =0) and can be written as

psK
Fz(0, r) = — * g(rlr)+ Ina

2 2K

I

+20p, K G(rlr )d'r' (A2)

When a vortex moves from the walls of the cavity
into the fluid, it must overcome a superfluid free-
energy barrier b, F, ( r ), whether vortices are already
present in the cavity or not. In this appendix, the
classical hydrodynamic model of Sec. II is used to
derive the shape of this barrier.

Let F, (N) be the superfluid free energy of the ro-
tating system for an N state, that is a metastable
equilibrium state with N vortices such as described in
Sec. II. Starting from an N state, suppose an addi-
tional vortex to be located at r in the vortex-free re-
gion R —V. So, we obtain a second state, the free
energy of which is denoted by F, (N, r ). Again, the
constant term Fi may be omitted, so that AF, (r ) is
equal to the corresponding change in the free energy
Fq Maki.ng use of Eqs. (4) and (8) we find that

Fq(0, r ) has a minimum aty = —,I. As 0 is raised

from zero, the value of Fq(0, r ) at the central
minimum decreases, and becomes negative above
some critical velocity 0, . For 0„it becomes ther-
modynamically favorable to introduce vortices mid-

way between the walls. Below 0, the purely irrota-
tional motion is the preferred state. 0, is deter-
mined by expressing that Fz(0, r ) =0 aty = —, I:

' 2l
A, = ln

m(2 era i

(A5)

Figure 6 (curve I) shows a plot of Fq(0, r ) near the
wall y =0, for some value of 0 large compared with

0, (0/2' =0.2 sec ', I =6 mm, a =10 A, ). Typi-
cally, for 0 —1, Fq(0, r ) has a maximum at a dis-

tance of about 1 p, m from the wall. Although
vortex-free states are never observed in this range of
angular velocities, it is interesting to note that the
height of the free-energy barrier for a first penetrat-
ing vortex would be still of the order of 10 kaT cm '.

Consider at large angular velocity (0 )& 0, ) an
N state near the equilibrium state (N —No). Vor-
tices are uniformly distributed with density no=20/K
except in two narrow strips of width d along the
walls. The resulting Pq is readily expressed by means
of linear and quadratic functions. For instance, let
there be a (N+1)th vortex near the wally =0. To
calcuiate hF, ( r ) according to (A I) we need to expli-
cit Pq in the region y & d:

g( r l r ) = — ln —sin(my/I)
1 '2t

2 vT vp
t

f(r ) = —'y(y —I) (0 &y & I)
(A3)

whence

2

Fq(0, r ) = ln sin + p, K0y(y —I)Ps K 2l . cry

4m ma I

(A4)

The integral in Eq. (A2) is the function f ( r )
which solves the equation V2 f =1 and vanishes on
the boundary C.

Now, as a simple application, let us consider the

limiting case of a parallel-plate cavity which approxi-
mates the long rectangular resonators we used in our
experiments. Taking the ~alls as the planes y =0
and y = /, a straightforward calculation yields

Qz = —0 (I —2d )y (0 & y & d ) (A6)

Then assuming d &( I we obtain from Eqs. (A 1),
(A4), and (A6)

2

AF, (r) = — In-pgK 2y
4m a,

+p, K0(y —2d)y (0&y (d) . (A7)

Note that the barrier profile no longer depends on
I. Insofar as d is small compared with the dimensions
of the container, the last expression (A7) is certainly
valid for any shape of the boundary, y standing in

any case for the distance from the additional vortex
to the wall.

The barrier profile (A7) is shown in Fig. 6, for
d = d, , i.e., at thermodynamic equilibrium (curve II),
and for the value dz (dg ( do) at which the max-
imum of the barrier disappears (curve III).
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