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Upper critical fields in granular superconductors
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We have measured the upper critical field in granular Al-Ge samples, as a function of tem-

perature and for different metal concentrations. For small metal concentrations, we find that

the upper critical field of the sample is that of the isolated grains at all temperatures. For high

metal concentrations, the upper critical field is that of i bulk dirty superconductor. For intermedi-

ate metal concentrations, one observes a crossover from the bulk type-II behavior at high tem-

peratures to the isolated grain behavior at low temperatures, with an upturn of the critical field

at the crossover temperature. We present a Landau-Ginzburg model for the critic il fields in a

granular system and show that it explains the experimental data.

I. INTRODUCTION

The upper critical fields of granular superconduc-
tors were first measured by Abeles et al. ' and Cohen
and Abeles' who interpreted their results with a
model treating the granular superconductor as a dirty
type-II material. Latter data obtained on higher resis-
tivity samples by Deutscher and Dodds' showed a
behavior similar to that of isolated layers or grains.
From the available data' 4 it therefore appears that
three regimes can be distinguished in the behavior of
H, 2. (a) At high values of the resistivity p„, the mea-
sured critical field is that of the isolated grains
(weak-coupling regime). (b) At low values of p„ the
grains are strongly coupled and the system can. be-
described as a dirty bulk superconductor. (c) At in-

termediate values of p„ the temperature dependence
of H, 2 exhibits an upturn point at a temperature
belo~ which the grains become weakly coupled. The
behavior of H, 2, as a function of temperature and
grain size, can be complicated by paramagnetic effects
in the isolated grain limit (case a) or effects due to
the small thickness of the specimen.

While the assumption" that the granular system
can be considered as a dirty superconductor may be
adequate when the grains are strongly coupled, it is
certainly unsuitable for the description of weakly cou-
pled or almost isolated grains. In the last case, one
should consider clean superconducting grains separat-
ed by barriers, and it is conceivable to expect a type
of "clean" behavior: This was pointed out in Refs. 3
and 5, where the results were interpreted qualitatively
in terms of a layered superconducting system.

In this article we present a Landau-Ginzburg (LG)
theory for H, 2 of a granular system, together with

H, 2 measurements taken on granular Al embedded in
a Ge matrix. This experimental system was chosen
because the Al grains are fairly large (100—150 A for
the metal concentrations studied here), so that the

isolated grains are not in the paramagnetic limit. As-
suming that the coupling between the grains is

through the Josephson interaction, we were able to
extract from our theory expressions for H, 2 in the
different regimes described above and to fit them
well with the experimental data. In case (a) (isolated
grain limit) the theoretical H, q gives the measured
H, 2 without any adjustable parameter. Moreover, it
is'observed that in this regime the value of H, 2

depends only on the grain size, for different values of
p„. This is a novel result which proves that the mea-
sured H, 2 is indeed that of an isolated grain. In case
(b), the theoretical H, 2 fits the experimental value up
to a factor of 2. In the crossover region, our model
describes well the qualitative behavior of H, 2 as a
function of the temperature, but the value of H, & at
the crossover point is off from that of the measured
H, 2..

Sample preparation, measuring techniques and
specimen characterizatio'n are detailed in Sec. II, and
the experimental results are presented in Sec. III,
The theoretical model is developed in Sec. IV. Sec-
tion V contains an extensive comparison of the
theorical results with the experimental data reported
,here and by other authors. Corrections due to the
small thickness of the samples are presented, and the
numerical differences between the theoretical and the
measured results, as well as the question of observing
an isolated grain's property through an electrical mea-
surement are discussed.

II. EXPERIMENTAL DETAILS

Samples were prepared by a simultaneous evap-
oration of Al and Ge from two electron-beam guns,
onto a glass substrate, in vacuum of 10 Torr. The
total deposition rate was 40—50 A/sec, and the
thicknesses of the films were 1500—2000 A. The
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thickness was measured during deposition by two
separate quartz crystal oscillators.

The substrate was mounted on a holder positioned
along the line between the two guns. Because of this
geometrical arrangement, the metal concentration
varies along the substrate. Using a suitable mask, we
could produce nine samples at the same evaporation,
each sample being 2&8 mm'. Calibration of the nine
stations was done by an optical interferometer, and
the metal concentration varied by 1—2% from sample
to sample. This procedure allowed scanning of dif-
ferent metal concentrations, keeping the relative ex-
perimental error small. Contacts of 3000 A thickness
were evaporated after depositions, to which indium
contacts were pressed.

Resistance measurements were taken by the con-
ventional four-terminal technique, using currents of
1 —100 p, A. During the measurement, the samples
were attached to a copper block and the temperature
was monitored by a Ge thermometer. The parallel
magnetic field was applied from a small supercon-
ducting magnet, immersed in the liquid He bath.
The field was applied perpendicular to the measuring
current.

The critical temperature and the critical field were
defined as the point at which the resistance reached
half its value. However, except for small changes in
temperature scale, other choices for T, made no
difference.

Electron microscopy pictures were taken for about
half of the measured samples. This was accom-
plished by mounting nine microscope grids coated
with 300 A of SIO along the glass substrate. In this
way, the metal concentrations on the grids reflected
those in the samples. Diffraction patterns, as well as
microscope pictures with enlargement of 100000
-were studied for most grids. In some cases, bright
field microscopy was found to be unsuitable, for rea-
sons described in Ref. 6. In these cases dark-field

' microscopy was utilized.

$0-
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FIG. i. Grain size distribution of sample 1 obtained by
dark field electron microscopy with an enlargement of
100000. The dashed line represents a histogram measured
from the microscope pictures. The full line is a best fit nor-
mal distribution curve for the histogram. The standard de-

0
viation was found to be 20 A.

to —150+10 A. Throughout the computations, we
have chosen 100 and 150 A to represent the grain
size in the low- and high-concentration regimes,
respectively.

In Table I we have listed the characteristics of the
samples for which the H, 2(T) data are depicted in
Figs. 2 and 3. We have used the ratio p„(3'00 K)/p„
(77 K), where p„ is the normal-state resistivity, to
characterize the metallic or semiconductor nature of
the samples, thus avoiding complications due to
paraconductivity at 4.2 K. The curves of H, 2(T)
shown in Fig. 2 are typical for dirty Al films; decreas-
ing the metal concentration by 2% from that of sam-
ple 1 in Fig. 2, caused a semiconducting behavior

III. RESULTS

Electron-microscopy pictures reveal that the sam-
ples consist of small grains separated by barriers.
The diffraction patterns show and confirm (see Ref. ~

7), that these are polycrystalline Al grains, embedded
in an amorphous Ge matrix. In each picture we have
measured the grain size and constructed a histogram.
Typical example is shown in Fig. 1. It was found that
for low metal concentrations (—55—75%), the sizes
of the grains roughly obey a normal distribution, with
a standard deviation less than 15% of the mean
value. At higher concentrations, the grain size is dis-
tributed over a broad range, but then, close to the
pure metal limit, the grain size is not well defined in

any case. In the range of concentrations studied here
(60—88%), the grain size varies from —100+10 A

H„(ke)

I L I ~I
l3 135 l5

FIG. 2. H, 2 vs temperature for dirty Al films with metal
concentrations 64—'74% (experimental).
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TABLE L Characteristics of samples for which H, 2(T) data are presented in Figs. 2 and 3. d is

the sample's thickness.

Sample [metal] (%) p4, x(p, Item) P300 K.~P77 w

1

2

3
4
5

6
-7

8

9
10

2130
2170
2220
2260
2300
2160
2220
2290
2350
2420

65.5
67.5
69.5
71.3
73.1

83.5
84.9
86.0
87. 1

88.1

50 700
J6000
6 600
3 540
2 090

140
100
80
70
60

0.488
0.600
0.716
0.792
0.882
1.035
1.049
1.071
1.096
1.1 1 1

down to 0.6 K. The most prominent feature of these
results is that H, q(T) hardly changes from sample to
sample, although the normal-state resistivity varies
by more than two orders of magnitude.

Figure 3 exhibits the results of H, 2(T) measured
on samples with metal concentrations 88—80%. Here
the temperature dependence of the upper critical field
changes from that of a dirty bulk superconductor
(sample 10) to that of a dirty film, or an isolated
grain (sample 6). There is a clear-cut crossover
between the clean and dirty behaviors.

IV. THEORETICAL MODEL

The system studid is a stack of superconducting
grains, embedded in a semiconducting or insulating
matrix. It is assumed that the grains are coupled to-
gether to their nearest neighbors by the Josephson
interaction.

The free energy, in the Landau-Ginzburg (LG)
context, consists of two parts. The first is the free
energy of an isolated grain and the second arises
from the coupling of the grain to its nearest neigh-
bors. Here we shall be interested in the LG equa-
tion, which reads

up, i — V'Q,i+ h '7Q;, ——A
2m

'
2m

' c
t

+vl( —Q;+~J —Q; ~J +2/v)

+ r) (
—p;,"+~exp[i (2e/hc) HxS] —p..

x exp[ —i (2e/he)HxSj+2P& } =0 . (I)

H (kG)
In writing down Eq. (I), the following notations have
been introduced: the external magnetic field H is in

the y direction and we consider a plane of grains per-
pendicular to it, in which the vector potential A is in
the z direction, having the gauge

A= (0, 0,Hx)

I

I.O I.I I2 I.3 I.4 I.5 1.6 I7 IB

FIG. 3. H, 2 vs temperature for metal concentrations
80—88% (experimental).

It should be noted that when H is close to the upper
critical field H, 2, the order parameter is small.
Therefore, the local value of A can be taken as the
external value, and the cubic term (in the order
parameter) in the LG equation is neglected. In Eq.
(I), P;, and $„", denote the amplitude and the phase
of the order parameter in the ij grain (in the xy
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plane), respectively, and n is given by in which wt: have introduced a "coupling length" t by

h2

2m(i( T)

A2 Tc

2m g'(0)
(3)

h2t2=
2ff1 'g

(8)

in which g(T) is the coherence length of the isolated
grain. The last two terms in Eq. (1) are the coupling
terms; q is the coupling energy and S is the "lattice
constant" of the stack and is equal to the sum of the
grain's diameter 2R and the thickness of the junction
b. The exponents in the last term arise from the

term i (2e/hc) Adz, which describes the phase
difference between two successive grains. The form
of Eq. (1) is analogous to the LG equation appearing
in the Lawrence-Doniach' theory for layered super-
conductors, and to its modification which includes
the finite size of the superconducting material. '
Similar equation was used to analyze H, 2 of a fila-

mentary superconductor, ' neglecting the finite size
of the filaments.

To simplify Eq. (1), the following approximations
are inserted in it: (i) It is assumed that the grain is

small enough such that the order parameter across it
is almost constant, thus the second term in Eq. (1)
may be neglected. (ii) The third term in Eq. (1) (this
is the kinetic energy term") can be written as

HSx =—8, i[f(x) = f(8)tc (9)

Eq. (7) is cast into the form of a Mathieu equation, '~

the lowest eigenvalue of it giving the expression
for H, 2. This can be easily found in two extreme
limits:

A. Strong field

When the inequality

Equation (7) is similar to the one used by Turkevich
and Klemm'0 [Eq. (32) in their paper] to investigate
the upper critical field of a filamentary superconduc-
tor, when the field is applied parallel to the filaments.
This is not surprising, as in this geometry the fila-
mentary stack resembles the granular superconductor.
However, we did take into account the finite size of
the superconducting material [second term in Eq.
(7)], thus we avoid the unphysical divergence of H, q

found in Ref. 10.
Introducing the transformation

1 - 2e- h'
h '7$,J ——A

2 pl c 2 pp1

H —R Q,J
2e 23
hc

(4)

S eH
Ac

(10)

holds, the lowest eigenvalue of Eq. (7) is given by

the expansion"

This results from the fact that in the geometry used
here, h8@,i/Bz = (2e/cHx), and hence 11$,,/ax
=(2e/lcHr), where r denotes the distance from the
grain's center to some point inside, the grain; assum-

ing a spherical shape with radius R, we average over
the grain's volume, and obtain Eq. (4). (iii) It is as-

sumed that the amplitude of the order parameter
varies slowly from grain to grain; therefore, the first
coupling term [fourth term in Eq. (1)], may be ap-

proximated by

defi+ 1l lfi —fj + 2$ig) rlS
& pig

8
gx

(5)

and the second coupling term [last term in Eq. (1)] is
f f

1 —cos HSx-2e
hc

Using Eqs. (3)—(6) in Eq. (1) we obtain the fol-
lowing form for the LG equation

(6)

——Q+ — HiR ~Q—1 2e
hc

i

f 'I f

+ —I —cos HxS /=0, (7)—s 'ri'0 2 2e
Qx t Ac

a= ——q+ q
— q+1 2 7 4 29

2 128 2304

in which

hc
eHS2

(12)

t hc

f S'eH

f f

3 2tR
2

tc
S SeH

(13)

Equation (11) was solved on the computer, to extract
H= H, q as a function—of temperature [the tempera-
ture dependence appears in g, Eq. (3)]. Keeping only
the first term on the right-hand side of (11),we ob-

tain, to leading order,

H2= —— 1 —2~Ac 5 1

2e 3 g~R' r~
(14)

When the coupling length t is much longer than the
coherence length (i.e., extreme weak-coupling limit),
Eq. (14) gives just the upper critical field of a small

spherical superconductor of radius R." This results
from the kinetic energy term in the LG equation, and
has a characteristic (T, —T)' z dependence. As the
coupling becomes stronger and t is shortened, H, 2 de-
creases from the value of an isolated grain.
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8. Weak field

When the inequality

S eH
hc

(15)

holds, the lowest eigenvalue of Eq. (7) is given by
the expansion"

2lql+2lql' '--„' +0(lql '~ ) (16)

1

fc t 1 t 1 3 J2tR0=—— '1+—
2e S( 4 g 4 5 S~

(17)

Again, the full solution was carried out on the com-
puter. The leading orders are

When the second term in the square brackets is small
compared to unity, the result resembles H, ~ of a bulk
superconductor, with the same temperature depen-
dence —T, —T, but with an effective coherence
length S$/r W. hen the second term cannot be
neglected, it may cause a negative curvature in H, & vs
T, which was observed experimentally. ' In general,
depending on the value of S'eH/fc, the upper critical
field as a function of temperature may have an up-
turn point, where the temperature dependence is
changed from that of T, .—T to that of ( T, —T) ' '.

The calculated curves in Fig. 4 were obtained by
computing Eqs. (11) and (16). The figures show
(e/tc)S'H vs t'/$' —T, —T, for different values of
—, (2tR/S')'. Since R and S are almost constant, this

means that the plots in Fig. 4 are for different values
of the coupling strength. In each curve we have indi-
cated the crossover between the regions of validity of
the two approximations. The comparison between
these curves and the experimental data is discussed
in the next section.

V. DISCUSSION

30 l5 300 l50
f2

I I

3000 l500

l.2
'S'H
%c

08
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20

l.6

L2

ep2 H
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To compare the model's results with the experi-
mental data, we must express the coupling energy
q(or t) in terms of measurable quantities. This is ac-
complished by equating the usual expression for the
Josephson energy'4

1 f 1 5 (T)
2Rn e 8 kB Tc

with the expression resulting from the LG free ener-
gy, 2qDQ' Here R. „ is the normal state resistance of
the junction, d ( T) is the order parameter (in energy
units), and fl is a typical volume of one unit cell of
the grain's lattice. The relation between
d, '( T) and P' is given by"

Q2
(18)

(mks T, )'

in which $(3) is the Riemann g function, N is the
electron concentration in the metal, and X is a func-
tion describing the "dirtiness" of the system. " In
the dirty limit, in which we are interested here,

2.0 l.0 20 LO

f 2

E~

4.0 20

FIG. 4. Calculated curves of (e/hc)S H as a function of
t~/g~ (proportional to T, —T) for different values of

3
u =

5
(2tR/S ) the coupling strength (see text). The down-

ward arrows indicate a solution for strong fields,
(e/lc)S~H &) l, while the upwards arrows indicate the
solution for weak fields (e/tc)S H (& l.

2

1 1

40 Rn(r

introducing'6 R„=p„/S where p„ is the normal-state

2' B c

7~(3)

where v is the mean free time of -the electrons colli-
sions with impurities. Using the free-electron gas de-
finition of the conductivity o-, namely o = Ne'r/m,
we obtain [see Eq. (8)],
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resistivity and 0 =S, we finally get

1 1

t 4S crp„
(20)

axis is t'/g' we find

4o p„S'
0.72/ pIT,

(22)

TC
g(T) =0.85 /pl

C

1/2

where I is the electronic mean free path. Since g(T)
characterizes the grain, we put I —R and evaluate gp

by multiplying" the corresponding value of pure Al,
16000 A, by the ratio of T, of pure Al to the T, of
the granular system (of the order —). From the rela-

2

tion g' —R and Eq. (14), it is seen that when H, 2 ap-
proaches the isolated grain limit, H~R '. Since R
varies slowly with metal concentration, it follows that
H, 2( T) also changes slowly with metal concentration.
This behavior is exhibited in Fig. 2. 'There, H, q(T)
is almost unchanged although the normal-state resis-
tivity changes by two orders of magnitude. Using the
experimental value H =5 kG for (T, —T)/T, =0.1,
pertaining in the isolated grain limit, we find from
Eqs. (.14) and (21) that R —45 A. This value is

quite close to the one deduced from electron micros-
copy, R '= 50 A .

The same qualitative behavior was observed in
Al-A1203 specimens, for p„~ 3000 p, O cm.
(Although for these samples the critical field was

probably that of the paramagnetic limit. ) Note also
that H, 2(T) in Al A1203 sa-mples is approximately
three times greater than the values in Fig. 2, a fact
explained by the smaller grain radius in Al-A1203.
The upper critical field was calculated in two limiting
cases, according to the value of S'eH/tc compared to
unity. The crossover between the two solutions will

thus occur for S2eH/Itc of the order 1 and from the
computer plots (Fig. 4) we find this point to be
S'eH/hc —0.8. Here the experimental result for H
is 1—2 kG (Fig. 3) and therefore, we get S —600 A.
This is greater than the expected value of 2R + b.
But it should be noted that the relation S'eH/hc —1

at the crossover point goes in the right direction. In
the Al-A1203 specimens of Deutscher and Dodds,
where the same upturn was observed, H —5 kG and
thus S becomes smaller, which is consistent with the
smaller grain size in Al-A1203 samples.

The temperature at which the crossover occurs can
be derived from the calculated curves as follows. Let
us denote this temperature by T, and the crossover
point on the x axis of Fig. 4 by X,. Then, since the x

It should be noted that o- refers to the corresponding
value of the bulk material from which the grains are
formed, while p„characterizes mainly the junctions
between the grains. The same distinction would be
made when considering the coherence length g(T).
In the dirty limit, and at the vicinity of T, (a situation
pertains to H close to H, 2), it is given by""

From Fig. 4 it is seen that X, —1.5 and hence

g~TcT—p„S' ' ' —const .
I

"
Tc

H, 2(T) =-bc t

2e gS
(23)

but with an effective coherence length given by gS/t.
The second is that for —,[(2tR)'/S'j « 0.25, there is

a negative. curvature in the magnetic field as a func-

Note that both cr and I are parameters of the Al grain
and change slowly from sample to sample since S also
changes very slowly we get p„(T, —T, )/T, = const.
This is indeed observed, as can be verified from Fig.
3 and Table I, within the limits of experimental error.
To extract S from Eq. (22) we need to know I/o and
since it is typical of the grain we shall use values ob-
served for bulk Al. Skin effect measurements" yield
I/o =0.4 x 10 "0 cm~ while the value derived from
resistivity measurements is'9 I/o =0.8 x 10 "0 cm2.

Using the last value we get S =700 A, again larger
than 2R +b, but similar to the former value. The
quantity S can be calculated in another way, as fol-
lows: From the experimental data in Fig. 3 it is seen
that a crossover point occurs in samples for which

p„& 100 p, O cm. The computer analysis reveals that
a crossover takes place for —, (2R T/S') 2 & 0.5. Using

p„= 100 p, D cm, t' = 4S'o p„, and R = 75 A we find
that S —600 A, consistent with the former values,
but much higher than 2R + b.

The reasons for these high values of S (the period
of the grain's lattice) are not yet clear to us. Two
possible explanations can be offered, both suggest
that at H = H, 2 the grains form clusters, and one
should consider the cluster's lattice rather than the
grain's lattice. The first explanation is that S is a cer-
tain characteristic length which involves the field
penetration depth into the Josephson junction. In an
isolated junction, this depth is twice the penetration
depth into the superconductor, and is of the order
1000 A. In our case the junctions are not isolated
but it may be that S is comparable with the penetra-
tion depth. The other explanation is that at the criti-
cal field, superconductivity is established by a perco-
lation process. Thus, at H, 2 we are dealing with clus-
ters. , for which the typical length may be greater than
R.

We now turn to the strong-coupling limit (small t)
of the weak-field case. Two main features are seen
from Eq. (17). The first is that iri the extreme limit
we obtain an expression similar to that of a dirty bulk
superconductor,
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tion of temperature. Such behavior was observ'ed in

H, 2 measurements taken for fields perpendicular to
an Al-A1203 film. ' For fields parallel to the film

plane (of Al-A1203), the negative curvature is ob-
scured by the ( T, —T) 'I' behavior, pertaining to
cases in which the film's thickness d is much smaller
than the coherence length. ' We can put these argu-
ments in a semiquantitative way as follows: For an
homogenous material, the upper critical field parallel
to the surface of a thin slab, of thickness d, is

H,
"

( T) = lc ~12
2e d(

(24)

In a granular material the coherence length is modi-
fied; we therefore, speculate that the upper critical
field parallel to a thin granular film will be

H„(T) &c v12 r

2e d( S
(25)

Using here Eq. (21) and [from Eq. (20)] 'r=4 Sa.p„,
we find that

/
' ' 1/2 ' ' 1/2

ig fc ~ pn 0 Tc

2e 0 85$'I2d I T,
(26)

Apart from a factor of 2 this is identical to the ex-
pression for H, '2 in a dirty film. Our data for weak
fields, taken on samples 7—10 (see Fig. 3), were
compared with Eq. (26), and it was found that it is
best fitted with I/o. =2.25 x 10 " Oem'. Other data
for critical fields2' were best fitted by I/o. =1.2
&& 10 " 0 cm'. In view of the simplified assumptions
involved in our model, this is not a serious

discrepancy. Also note that we have put [Eq. (20)]
t =40.p„S but probably this relation is oversimpli-
fied and it is plausible to assume that t = 5o p„S',
where 5 is a constant of order unity. Then, in order
to use for I/o the value extracted from resistivity
measurements (0.8 x10 " 0 cm~), we need 5= 1.4.

We have found that our model fits rather well the
experimental data at high and intermediate values of
metal concentration. At low concentrations (the iso-
lated grain limit), the model yields the measured
value of H, 2 without any adjustable parameter. At
first sight, it seems surprising that by an electrical
measurement one may observe the critical field of an
isolated grain. The answer to this is that the order of
magnitude of t' required to observe the critical field
of the isolated grain is much smaller than the one
needed to quench the Josephson coupling. The order
of magnitude of r' for the (magnetic) isolated grain
limit is given from Eqs. (14), (20), and (21). For a
supercurrent to flow, the Josephson energy must be
at least of the order of kaT. We have found that in

the extreme weak-coupling case, where p„—4
x 104 p, Q cm, the Josephson energy [see Eq. (18)
and discussion before] is still of the order of ks T.
Therefore in the range 2 x 10 (p„& 4 x 10 p, 0 cm
the weak-coupling limit is reached while the samples
are still superconducting.
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