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Multiple scattering of waves from random rough surfaces

Janice Shen and Alexei A. Maradudin
Depart»rerrt of'Physics, Urriversity of Califor»ia, Irvirre, Califonria M27I 7

(Received 21 April 1980)

A recent multiple-scattering theory of waves scattered from a random rough surface of Garcia
et al, [Opt. Commun. 30, 279 (1979)] is modified by the use of cumulant techniques to yield

an expression for the mean scattered intensity that can be separated explicitly into a specular
and a diffuse contribution, and possesses a simple physical interpretation.

In a recent paper' Garcia et al. have presented an
exact multiple-scattering theory of waves scattered
from a random rough surface. In this paper we
present a variant of this theory that appears to have
certain formal and conceptual advantages.

%e consider scattering of a particle of mass m, in-
cident from above, on a random rough hard wall

described by the potential

0, x3 & ((xii)
V x

ooq X3 ( $(XJJ),

where ((xll) is.the surface-roughness profile function.
It is a function of the two-djmensional position vec-
tor x][=x~x]+x2x2, where x] and x2 are two mutually
perpendicular unit vectors in the plane x3=0.

The function g(xll) is assumed to be a stationary
stochastic process, characterized by the following sta-
tistical properties. (1) The average over the ensem-
ble of realizations of the surface profile function of
the product of an odd number of f(xll)'s vanishes,
e.g. ,

(g(xii)((xIJ)t'(xIJ ) ) =0,
II

where x]] x]] and x][ do not need to be different

points; and (2) the average of the product of an even
number of ((xil)'s is given by the sum of the pro-
ducts of the averages of the ((xll)'s taken two-by-two
different in all possible w lys, e.g. ,

(((XII)((Xll)((xll ) ((XII ))
= (((XII)$(XII) ) ( $(XII ) $(XII ) )

+ (g( )~( , ))(t( )~( ))
+ ( 5 ( x 11 ) 5 ( X

I I ) ) ( 5 ( x
I I
) 4 ( x II ) )

Each average of a pair of ((xll)'s on the right-hand
side of this equation, called a contraction, is given by

(4)&t(xll)((xii) &
= g'@'(IXII

I

Here 5'= (('(xll) ) is the mean-square departure of
the surface from flatness. In actual calculations a
Gaussian form will be adopted for the correlation
function 8'(

J xii —
xii f ),

« I xii —
xIJ I ) = exp( (5)

The parameter a appearing in this expression is called
the transverse correlation length.

The exact wave function for this problem can be
obtained by an application of Green's theorem and is
given by'

i' d'qiJ exp(/qiJ xll)
exp[ikll xll

—i n(kll)x3] + I—
2rr a qii

3

J[l(x), x3&((xii)
&& Ji d xil exp( —iqii xii) exp[iu(qll) )x3 g(xii) [1]L (xp) =

0, X3($(XJJ)~ (6)

where k[[=x~k[+x2k2 is a two-dimensional wave vector parallel to the plane x3=0, and

(kp kll ) ~ kll + kp
n(kii) =

i (kii —kp ) ', kll & kp (7)
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Here ko= (2mE/t~)'i', where F. ( & 0) is the energy of the incident particle. The function L (x~~) is defined by

'2 ' '2 [/2

L (x(() = 1+ ~ + ~ y(x)
Bxl ax2 Bn

x3~$(x)I)

In the present case the normal derivative is given by

8 I + 8$ + 8$ 8$ 8 . + 8$ 8 8
gn Qx~ QX2 gx~ 8x& QX2 gx2 Bx3 '

t t

The scattered wave function is obtained from the second term on the left-hand side of Eq. (6) in the limit
that x3 » (,„:

(g)

d q[[
p (x) = R (k&ilqi~) exp[iqirxii+iu(qe)x3j

2m
(10)

where

R (k~~)q~~) = d'x~~ exp[ —
iq~~ x~~

—iu(q~~) g(x~~) ]L (x~~)
2u(qg) "

The three-component of the scattered flux of particles, averaged over the ensemble of realizations of the sur-
face roughness, is

(R (klllei)R (kiil%i) & «p[ —
~ (qadi

—@II) &ll~
d q[[ d p[[

pyg
~ (2~)& ~ (2~)&

x exp[ —I [u'(qll) u(pll) )x3 [ p
[a ( llq) +(allp))

I

The three-component of the incident flux is

J3' (x) =——u(k~~)
m

(13)

Equating the magnitudes of the normal components of the incident and scattered particle fluxes, we obtain the
unitarity condition on the scattered wave in the form

Aii " d pii a (qo)+u(po)
4 (2e)' " (2n)' 2a(kii)

(R'(kalqg)R (kii(pii)) «p[ i(4~ pll) xll~ exp( —I[a"(qadi) a(pg) ~x3) = I

(14)

We will return to this condition below.
To proceed farther we require the function L (x~~). It can be obtained from Eq. (6) in one of two ways. We

can let x3 g(xa) from above in the first of Eqs. (6). The right-hand side of this equation vanishes and we obtain

the following integral equation for L (x~~):

d'qg exp(i qt x(()—exp[ik~l'xU —ia(kll)((xi') 1=
z

i
(2rr)' a(qp)

d xll exp( —I qadi x~i) exp[1' u(q&i) I ((«&) —((xIi) I lL (xI/)

Alternatively, we can use the second of Eqs. (6). We require that it be satisfied for all x3 ( f;„. In this way we

obtain the equation
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d qtt exp[iqti'xtt I a('qit)x31—exp[ikii xii
—ia(kii)x3] = , i „—' —, Jt d'xtt exp[ —iqii xii+iu(qii)g(xII)]L (xii)

We see that his equation is satisfied if L (xtt) is a solution of the integral equation
(16)

J d xitexp[ —iqil xi+in(qo)g(xtt)]L(xli) =2ia(qtt)(27r) 5(qii —ko) (17)

To illustrate the method for obtaining the scattered wave function we are proposing in this paper we will work
with the simpler equation for L (xtt), Eq. (17). We begin by simplifying this equation. If we expand L (xtt) for-
mally as

L(n)(x )
L(xtt) = X„0 n!

where the index n denotes the order of the corresponding term in ((xtt), substitute this expansion into Eq. (17),
and equate the terms of the same order in f(xtt) on both sides of the resulting equation, we obtain a series of
equations for the determination of the I L "(xtt) I, the first three of which are

ld xttexp( —iqti xtt)L' '(xtt) =2ia(qtt)(2m)'5(qtt —ktt)

d'xtt exp( —iq x ) [L"'(xtt) +in(qtt)((xtt)L'"(xtt) ] =0,
(19a)

(19b)

d xll exp( qtl II) [
2

L (xll) + a('qll) 4( II)L (xll)
2

n (qll)( (19c)

These equations can be solved successively with the aid of courier s inversion theorem, with the result that

L' '(xo) =2in(kii) exP(I kit xo)

2

L "(xtt) =2iu(ktt) exp(iko xil)( —i) JI — '

exp(iP» xo)((PII)n(IPII+kttl)
(2m)'

(2) d Qtt
2 fO 2

2I n(k II) exp(t kll xll) (—I ) " —
JJ (2~)' (2~)' exp(iPII xtt)((PII —Qo) C(Qo)

(20a)

(20b)

x n( IP»+ kill ) [2n( IQ»+ kol ) —n( IPit+

kill�

) 1 (20c)

In obtaining these results we have introduced the Foutier transform of ((xtt),

d g]]
f(xtt) =

2
exp(iqtt'xll)bqtt)

2m '

The results given by Eqs. (20) suggest that we express L (xtt) in the form—

L (xtt) = 2/n(kii) exp(i kit xii) f ("»lxo)

where f (kttlxtt) obeys the integral equation

J d xll exp[ —i (qii —kii)'xii+ ia(qo)g(xtt) ]f(kolxii) = (2n')'5(qtt kll)

(21)

(22)

(23)

f (kttlxtt) = exp[g (kt, lxtt) ]

where the function g (kill xtt) will be expanded in
powers of ((xtt) according to

OO

(k I ) X( . )gg kltlxll

n 1
Pl .

(24)

(25)

The point of our approach is that we seek f(kttlxtt) in
an exponential form

f (k I ) g (
. )„.f (k»lxii)

n 0 P1 .

where from Eqs. (20a) and (22) f'o'(kttlxtt) =—1. It is

(26)

where, again, 'the superscript denotes the order of the
corresponding term in $(xtt). To obtain the
{g'"'(kttlxtt) } we use, as did Garcia et al. ,

' the
method of Lopez et al. ' Thus we expand f'(kttlxtt)
formally as
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g(1) f(1)

g (2) f(2) f(l)2

g(3) f(3) 3f(2)f(l) + 2f(1)

g(4) f(4) 4f(3) f(1) 3f(2)

+ 12f(2)f(1) 6f(l)

I

(27a)

(27b)

(27c)

(27d)

easy to see that the relation between. g'" (klllxll) and
the {,f' '(klllxll) } for 0 & m ~ n is exactly that
between the cumulant average (x"), of a random
variable x and the moments { (x ) } for 0 ~ m ~ n 4.
Thus we have that the first few {g'"'(klllxll) } are
given by

tions

( ~ d qll
.f'"'(klllxll) = J ', exp(iq)) xll)f" (k))lq))),

22r 2

d2
lg( )] = J" e p('q )( (q )

(22r ) 2
(32)

The Fourier coefficient g (qll) can be obtained re-
cursively from the relation

2"(m) t d Q)) "(m —1)(q)= ) g (q —Q)g(Q), m~1
(22r )2

(33a)
with

and in general

n

g(n) n) X X f
m-0

"m

, Pm 1

(q))) = (22r)'8(q))),
"(1)

(33b)

(33c)

Combining Eqs. (11), (22), and (24) we can write
the scattering amplitude R (klllq») in the form

(—I )' '(p —I)!
~1 ' ~m

(28) a(kll)
R (klllq») = — d'x))exp[) (kll —qll) xi)]

where the second summation extends over all non-
negative m's and p's subject to the two conditions x exp[G (kllqlll xi)) ],(34)

Pl~[+P2~2+ ' ' ' +Pm~m = &

n') + m'2 + + m'm = P

(29a)

(29b)

where

G (k))q» I x))) = —ia(q))) ((xH) +g (kill x))) (35)

(30a)

To obtain the {.f'"'(klllxll) } we substitute the ex-
pansion (26) into Eq. (23) and equate the different
powers of j(x))) on both sides of the equation. In
this way we obtain the results that

.f (k))lq))) = (22r)'8(q)))

Thus, if we expand G(kllqlllxll) in the form

C)O

G(k-I-)= X(- )"
n 1 fl .

we have

(36)

n

f "
(k»lqll) = g (—1) a( Iq»+ kl)I)

m 1 G " (k»q»lx») =
*(q)))((x))}+g'"(k))lx))), n =1

(37a)
g (kl)lx))), n ~ 2

X ( (Qll), (30b)

where we have introduced the Fourier representa-

(37b)

The average appearing in the scattered flux, Eq.
(12), and in the unitarity condition, Eq. (14), now

takes the form

a'(k)))
(R (kl, lqll)R(klllp„)) =, J d xi)& d x)) exp(iqll xl) —ipll xll)

Pl)

x exp[ —ikll (xll —x») ] (exp[G'(xll) + G (xll) ]) (38)

where, to simplify the notation, we have dropped the arguments kll and ql, in writing G (xll). The average appear-

ing in this expression will be evaluated in terms of cumulant averages. 4 %e begin with the identity

(exp[G'(xll) + G (xll) ]) = exp[ (expG" (xll) —I),] exp[(expG (xll) —I), ]

exp { (exp[G'(xl)) + G (x,')) ] —1), }
X

exp [ (expG'(x)) ) —I ),]«p [ (exp G (x)) ) —I ), ]
(39)
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where ( . ), denotes the cumulant average. The first factor on the right-hand side of this equation gives that
part of the average on the left-hand side that is independent of xll', the second factor gives that part that is in-

1

dependent of x]~', the third factor gives the correlated part, i.e., the part that depends on both x]] and x~]. We next
introduce the definitions

M ( k((,qo) = —&expG (x(() —1 ), (40)

C (k((', q((lx(( —x(() = (exp [G'(x(() + G (x(() ] —1 ), —&expG'(x(() —1 ), —(expG (x() —I ), (41)

The fact that M (k((', g(() is independent of x(( is due to the stationarity of ((x((), as is the fact that C (k((;q((l x(( —x(()
depends on x~] and xll only through their difference. Thus we are led to the result that

& exp[ 6'(x(() + G (x(() ] ) = exp [—2M ( k((', q(() ]exp [C (k((', q(( I x((
—x(() ] (42)

where
C

M (k((,q(() = ReM (k((,q(()

When the result given by Eq. (42) is substituted into Eq. (38) we obtain the result that

& & '(k((lq(() & (k((l p(() &
= (2~ )'8 (p(( —q(() I u(k(()/u( q(() I'exp [—2M ( k((;q(() ]

+
x J A((exp[ —i (k(( —q(() y((] exp [C (k(('q ly(() 1

(43)

(44)

It follows that the scattered flux is given by

d2
&J,"(x) ) = —u(k(() J &I (k((,q(() ), (45)

fP1 o((&ko (2~ ) 2

where the integral is restricted to such values of q ][

that u(q(() is real, and where the mean scattered in-

tensity corresponding to the wave vector q]] is

where

& I ( k((;q(() ), = ( 2~ ) 8 (q((
—k(() exp [—2 M ( k((.,k(() ]

'I

u(k(()
& I & k((,q(() ) d

= «p [—2M ( k((, q(() l

d'y((exp[ —i ( k((
—q(() y((]

(50)

u(k(()(I (k(, ;q(, ) ) = exp [—2M (k((;q(() ] x l exp [C (k((', q((ly(() ] I ] (51)

J"~'~((exp[ —,( k((
—q(() y((]

x exp [C (k(l, q((ly(() ] .

With this definition the unitarity condition (14) takes
the form

We see from Eq. (50) that the mean scattered in-

tensity in the specular direction is reduced from its
value for a flat surface by the factor
exp[ —2M ( k((,k(() ], that describes the effects of
scattering in directions other than the specular by the
surface roughness.

From the results given by Eqs. (47), (49), and
(50) we can establish the following sum rules:

, (I (k((;q(() ) = I"o((~"o (2m )' (47)
2

, & I ( k((;q(() ), = exp [—2M ( k((, k(() ]
o((~"o 2m ) '

Using the identity

e"= 1 + (e"—1 ) (48)

(52a)

2

( I ( k(('q(() ) d
= 1 —exp [—2M (k((,k(() ]

o((~"o (2'(r )'

(52b)

(I ( kl( q(() &
=

& I ( k(( q(() &, + (I ( k((', q(() & d (49)

we can separate the mean scattered intensity into the
specular contribution and the diffuse contribution,

If we now use the definitions (40) and (41), the
expansion (36), and the rules for evaluating cumu-
lant averages, 4 we obtain the following expressions
for M(k((, q(() and C(ko, q((lxll x(() to 0 (8'):
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M(kll'qll)=
2

((G ) + (G )) —
2

((G ) +4(G G ) +3(G ) +6(G G ) + (G )

—6(G"') (G"' ) —3(G'" )' —3(G"') ') +O(86) (53)

C(k .qs(x x ) (G( )G( ) ) + ( 2(g(I)g(3)+) 2(g(I)+G(3)) +3(g(2&g(2&6) +3(g(1) G(2&~)

+3(g( ):g )) 6(g )g(1&"g(2&) 6(g(I)g(I&~g(2&") 2(g(1& G(J))

2(g(l)g(I)4 ) +3(g(l) G(1)+ ) 3(g(2)) (G(2)+) +6(g(2)) (g(l)g(J)6)

+6(g(2) ) (g(1)g(1) ) 3(g(2)) (g(l) ) 3(g(2) ) (g(l) ) 6(g(l)g(1) )2

3 (G(l) ) (G(1)+ ) + 6(g(l) ) (G(I)g(I)+) +6 (G(I)+ ) (C(l&g(l)4') ) + O (86)

(54)

In Eq. (54) the argument of G'"' is xll, while the ar-
gument of 6'"' is x~[.

The explicit results for M(kll,'qll) and C (kll, qll(yll)
to O(8') are

M(kll~qll) 2
8 (kll qll ) + 8 [(2(kll) + a'(VII) j

d Qll
2

g (QII)~(IQII+ kill),
(22r )'

d'Qll
C (kll qlllyll) = 8 exp( —(QJJ'yll)g (Qll)

(22r )2

2
x (q ) + ~(IQII+ kill)

(55)

(56)

= n a' exp( ——a2kll ) (58)

where the second form for g (kll) follows from the
choice for II'(~xl(() expressed by Eq. (5).

When the expressions given by Eqs. (55)—(56) are
used in Eq. (46), and the result is expanded to
second order in 5, we obtain for the mean scattered
intensity

(I (kll, qll) ) = (2m)'8(k&1 —qll)

—2 M ( k II,k I I ) (2 2r ) '8 (k
I J

—q I I )

a(kll)+ I d'yl&exp[ —I (kll —qll) yll]

x C (kllsqlllyll) + O (8 ) (59)

%hen this expression is substituted into the unitarity
integral, Eq. (47), the integrals of the second and
third terms cancel, and we conclude that the expres-
sion for (l(kll', qll)) given by Eq. (46) satisfies unitar-

In obtaining these expressions we have used the
results that

(((kll)((kll)) =8 g(kll)(22r) 8(kll+kll), (57)

where

g (k Jl) = JI d'XII exp( —ik'xll) II'(
I xlll )

+O(84) .

At normal incidence we find that

2 Q2
2M (0;0) = ——(kpa )4 exp[ ——(kpa )' j

3 0 4

(60)

1 1

5 kpa2-xM —,—,—

2 2' 4
(

= ——(kpa ) M I,—,282 4 5

a ,
'2'

k 2g2
(61)

where M(a, b, z) is Kummer's function, ' and
Kummer's transformation' has been employed in go-
irig from the first to the second equation.

The result given by the second of Eqs. (61) is
equivalent to that given in Eq. (13) of Ref. l. Alter-
native forms of this expression that may be better
suited to its numerical evaluation are

1/2

2M(0;0) =4—(kpa)' 1 — exp[ ——(kpa)')
g Ikpa 4

x erf(-, ik()a )
1

(62a)

=4—(kpa)2 1 — F(—kpa ), (62b)
82

2 2

0 kpQ
i

I

ity through terms of 0 (8') when the expressions for
M(kll', qll) and C(k&1',qlllyll) given by Eqs. (55) and
(56) are used in it. This is as it should be, since the
expression for (1(kll', qll)) given by Eq. (59) is
equivalent to that obtained to the same order in 5 by
Garcia et al. ' and shown by them to satisfy unitarity
to the same degree.

A closed form expression can be obtained for the
quantity 2M(kll', kll) that appears in the expression
(50) for the specular contribution to the mean scat-
tered intensity for the special case of normal in-
cidence (kll =0). In general we have that

d2
2M (kll', kll) =48'u(kll) ", g (QJI) Reu(IQII+ kill )

24r '
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where erf(z) is the error function, and F(x) is

Dawson's integral, '

2 t 2F(x) =e " e' dr
0

(63)

At the beginning of this paper we stated that we
believed that the approach to multiple scattering of
waves from random rough surfaces outlined here has
formal and conceptual advantages over that presented
in the note by Garcia et a/. ' The formal advantage
we see in the present approach is that it provides an
explicit separation of the mean scattered intensity
(l(k~~;q~~)) into the specular and diffuse components,
according to Eqs. (49)—(51). The conceptual advan-
tage it possesses in our view is the analogy it permits
us to draw between multiple scattering of waves from
a random rough surface and the multiple scattering of
waves from another well-known random system —the
thermal vibrations of atoms in a crystal —as exempli-
fied by the diffraction of low-energy electrons by the
thermal vibrations of a semi-infinite crystal. 8 In the
latter theory it is found that the positions of the
Bragg peaks in the scattered intensity (the analogs of
the specular beam in the present context) are not dis-
placed by the atomic vibrations from their positions
for a static lattice. Their intensities, however, are re-
duced by the atomic vibrations through the Debye-
%aller factor, that describes the scattering out of the
Bragg beams caused by the thermal motions of the
atoms. The decrease in the intensity of the Bragg
peaks is compensated by the appearance of a nonzero
scattered intensity in directions away from the Bragg
directions, the so-called thermal diffuse scattering. If
one regards the surface roughness profile function
f(x~~) as a continuous analog of the displacements

from equilibrium of the atoms in the surface layer of
a crystal, we expect by analogy with the theory of
low-energy electron diffraction that the intensity of
the specular beam in the present case should be de-
creased by surface roughness by a Debye-%aller-type
factor, and that there should be diffuse scattering in
directions away from the specular. The analogy
between the two theories becomes even closer if we
recall that the atomic displacements in the theory of
low-energy electron diffraction are random variables
distributed in a Gaussian manner, in the harmonic
approximation. The statistical properties of the
( f(x~~) ) described by Eqs. (2) —(5) define them also
as random variables distributed in a Gaussian
manner. In the theory of low-energy electron diffrac-
tion the atomic displacements appear in the analog of
R (k~~(q~~) in the exponential fashion in which ((x~~)
appears in Eq. (34) [note that G (k~~q~~)x~~) is linear in
((x~~) in first approximationj, and it is this fact that
leads to the appearance of displacement correlation
functions in exponential factors in that theory, just as
correlation functions of the ((x~~)'s appear in the
same form, for the same reason, in the present
theory.

Thus, we conclude that the simple variant of the
theory of Garcia et al. ' presented here offers distinct
advantages over that theory, with no significant in-
crease in the computational effort required to imple-
ment it.
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