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The ideal-kink-gas phenomenology of Currie, Krumhansl, Bishop, and Trullinger is extended
to include the case of nonzero winding-number density in sine-Gordon systems. By considering

kinks and antikinks to be substates of a single type of "particle" and taking into account the re-

normalization of the kink energy due to phase-shift interactions between kinks and phonons,

simple expressions are obtained for the low-temperature, average kink and winding-number

densities as a function of the winding-number potential. The results agree with the exact
transfer-operator results of Currie, Fogel, and Palmer.

I. INTRODUCTION

Recently Currie, Krumhansl, Bishop, and Trul-
linger' (hereafter referred to as CKBT) have formu-
lated an ideal-gas phenomenology for the classical
statistical mechanics of one-dimensional kink-bearing
systems such as the sine-Gordon (SG) and @-four
prototypes. A major ingredient of the work by CKBT
was the influence of the kinks on the phonon density
of states via phase-shift interactions, leading to a re-
normalization of the kink creation energy, i.e., a kink
self-energy correction. This effect had been neglect-
ed in the earlier work by Krumhansl and Schrieffer
on the $-four problem, and its inclusion was shown

by CKBT to be absolutely essential in correctly ac-
counting for the various degrees of freedom in the
problem. By considering a dilute gas of renormalized

kinks, CKBT were able to demonstrate the low-

temperature equivalence of their phenomenology
with exact results obtainable from a transfer-integral
approach.

In their work CKBT focused on the simplest situa-
tion where periodic boundary conditions are imposed
on the field variable: $(L, t) = @(O,t), where L is the
length of the system. In a canonical ensemble this
forces. the number of kinks to equal the number of
antikinks. In a grand canonical ensemble such as
the one employed by CKBT, the numbers of kinks
and antikinks are not fixed, but nevertheless the
equality of kink and antikink energies causes those
members of the ensemble with equal numbers of
each to dominate the grand canonical partition func-
tion. As a consequence the average kink and an-
tikink numbers are equal. In several physical situa-
tions, however, there may be external constraints or
forces which dictate an imbalance of kink and an-
tikink numbers. For example, in certain quasi-one-
dimensional charge-density-wave (CDW) systems,
the CDW wave vector may be incommensurate with

the underlying lattice period, ' and in such cases there
is a preference for kinks over antikinks or vice versa.
The details of this preference depend on the degree
of commensurability and on whether' a charge reser-
voir is in contact with the system.

In this paper we extend the CKBT phenomenology
to include cases where external constraints are im-

posed to yield a net number of kinks minus antikinks,
i.e., a net "winding-number" density. ' The simplest
model system where this can occur is the sine-
Gordon system and we treat this case here. More ex-
otic systems, such as "double sine-Gordon" with two
types of kinks (and antikinks), will be treated in a

separate publication. We shall assume that the
winding-number density n„—= [$(L) —$(0)]/2mL, is
related to a conjugate "winding-number potential, "

A. ,
which plays a role similar to that of a chemical poten-
tial.

In Sec. II we review the source and derivation of
the kink (soliton) self-energy introduced by CKBT
and we extend their analysis to include the velocity
dependence of the kink-energy renormalization. In
Sec. III, we construct a grand canonical formalism for
the calculation of thermodynamic functions. Non-
trivial improvements of the CKBT procedure are re-
quired when the winding-number density is nonzero.
In particular, we shall find it convenient to regard
kinks and antikinks as substates of one species of
"particle. " We compare our phenomenological results
with those of the exact transfer-operator approach
and find exact agreement at low temperatures.

II. THE KINK SELF-ENERGY

In the notation used by CKBT the sine-Gordon
Hamiltonian is written as

H =A J~ dx [ 2 P,2+
2

co @„+mo(1 —cos@)], (2.1)
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@&) yg»p (+$p) + p2cp2 ) 1/2 (2.4)

where p = yMgv is the "relativistic" momentum and
EP~ is the rest energy of the kink (antikink)'

E$ =8A pppcp = M»cp (2.5)

Here M» =8A tpp/cp is the kink rest mass.
As emphasized by CKBT, the presence of a kink in

the system influences the density of states for sma11-

amplitude solutions to the linearized equation of mo-
tion [sing $ in Eq. (2.2)]. The behavior of such
small oscillations (phonons) in the presence of a sin-

gle static kink is determined by finding solutions to
Eq; (2.2) of the form

y(x, t) =y»" (x) +X(x,t) (2.6)

where X(x, t) is smail. Phonons in the presence of
moving kinks can be obtained from those for a static
kink by "Lorentz boosting" to the kink rest frame.
Substitution of Eq. (2.6) into Eq. (2.2) and lineariza-
tion in X gives

X„—cp X +tpp2[1 —2 sech'(x/d)]X=0 . (2.7)

where @(x,t) is the dimensionless sine-Gordon (SG)
field. The constant co is a characteristic velocity and
the constant coo is a characteristic frequency for the
system. The overall constant A sets the energy scale
and has dimensions of (energy) x (length) '

x (time) 2. The ratio d - cp/tpp serves as a
fundamental'length scale in the system and provides a
measure of the "width" of the kink excitation.

The single-kink solutions to the Euler-Lagrange
equation of motion

$„—cp2 $ + cp2 sin@ =0 . (2.2)

have the form

p»" (x, t) =4 tan ' [ exp(+ y(x —ut)/d) ], (2.3)

where v is the velocity of the kink (+) or antikink
( —) and y = (1 —u /cp2) '/2. The excess energy E»,
associated with a single kink has the pseudorelativis-
tic form

Note that the dispersion relation (2.10) for these con-
tinuum states is exactly the same as for phonons in
the absence of a kink and, indeed, the waveform

ft, (x) approaches that of a pure phonon (—e'~) far
away from the kink "center" at x =0. Ho~ever, there
is a distortion near the kink which results in a "phase
shift" of the phonon'

h(k) = n —2 tan kd
k (2.11)

We note here that the equations following Eq.
(2.6) are insensitive' to our choice of either a kink
(+) or antikink ( —) solution $P'(x). Thus, from
the point of view of the phonons, an antikink is indistin-
guishable from a kink This w. ill have important'impli-
cations in Sec. III when we develop the kink-gas
phenomenology.

We now make use of the information contained in
5 (k;v) to examine the effect of kink excitations on
the density of states for the phonons. Because the
presence of a kink changes this density of states,
there is a corresponding change' in the phonon free
energy when a kink is introduced into the system.
This led CKBT to define a "self-energy" for the kink
which takes into account the fact that kinks and pho-
nons share' the available degrees of freedom.

Consider a large system of length I. and suppose
first that there is one kink (or antikink) at rest at
x =0. If we impose periodic (Born-von Karman)
boundary conditions on the continuum (phonon)
state solutions f/, (x) of Eq. (2.8), the allowed wave
vectors k are determined by the condition'

Lk„+h(k„) =2mn(n =0, +1, +2, . . .)

The phonon density of states is then

(2.13)

For a kink moving with velocity v, the velocity-
dependent phase shift can be obtained from Eq.
(2.11) by a Lorentz boost

h(k;v) = h(y [k —(veep/cp ) (1+k d )' "] 0)

(2.12)

Writing X as X(x,t) =f(x) e ' ' leads to the following
eigenvalue equation: (k) dn L + 1 dh(k)

dk 2m 2m dk
(2.14)

—cp~f + tp~p[1 —2 sech2(x/d) ]f = tu f . (2.8)

fp(x) =(2d) ' ~sech(x/d); rup2=0,

and the continuum or scattering states'

ft, (x) = (2w) ' 2pp» 'e'~[kd + i tanh(x/d) ],
o2+ c02k

(2.9)

(2.10)

This has the form of a Schrodinger equation for a
"particle" moving in a one-dimensional potential well

[ —1 —2 sech'(x/d) ]. The spectrum of solutionsp to
Eq. (2.8) contains exactly one "bound state" (the
"translation mode"')

In the absence of a kink, the density of states is
pp(k) = L/2n so that the change is given by

hp(k) = p(k) —pp(k) = 1 did(k)
2m dk

(2.15)

1
l dk

leap(k)

= ——h(0+) = —1
~J 7r

(2.16)

In analogy with the Friedel sum rule' (e.g. , for im-

purity states in a metal) there can be no net change in
the total number of states when the kink is intro-
duced. Since there is one bound-state solution of Eq.
(2.8), the total number of extended phonon states
must be decreased by one; i.e.,
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where 6'denotes the Cauchy principal value, and we
have used the fact that kh h(k) =0. Note that Eq.
(2.16) also follows from Levinson's theorem"

5(0+) =2r% (2.i7)

where X is the number of bound states.
One way to view' this decrease is that the kink (or

antikink) "traps" a phonon state due to its very pres-
ence. Nor only is the trapping of a phonon state una-
voidable, it is precisely the mechanism by which the
kink can divert two degrees of freedom for its crea-
tion and translational motion.

In the next section we shall define a grand canoni-
cal partition function for the system by considering
the excitations to be comprised of kinks and an-
tikinks at low enough densities so that they can be
regarded as noninteracting "particles. " In order to ac-
count properly for the phonon excitations as well, it
is essential to remember that the density of states for
the phonons depends on the kink configuration.
Thus, the phonons are not independent of the kinks,
but rather must be regarded as being associated with

the kinks. Because of this association we shall refer
to these phonons as "kink phonons, " and emphasize
that this association precludes the factorization of the

partition function into independent kink and phonon
pieces. Indeed, before we can integrate over kink po-
sition and velocity phase-space variables, we must in-

tegrate over the kink-phonon phase space associated
with kinks moving with particular velocities. Only
then may we integrate over kink velocities to obtain
the kink partition function.

As a preliminary step in calculating this partition
function, we therefore require the calculation of the
free energy of the kink phonons associated with a
particular configuration of N kinks and antikinks
moving with velocities 2i/(j =1,2, . . . ,N)Fo,r this
purpose we use the fact that each kink and antikink
contributes independently to the change in the phonon
density of states, since the phase shifts in the SG
case are additive. " The total kink-phonon free ener-

gy is then written as

Fkink phonon -FP + X ~F ( &J )
J

(2.18)

~here Fo is the unperturbed phonon free energy in
the absence of kinks, ' and EF(u) is change' in clas-'
sical phonon free energy caused by a kink (or an-
tikink) moving with velocity 2i (in the limit of vanish-
ing lattice constant)

y+ao ka T "+" dA(k;ki)AF(v)=ksTO' dk/kp(k;u) In(ptook) = tp dk ' ln[ptoop(1+k d )' ]8
2m dk

kg T,~+= —ksTln(Pt pip) + 6'„' dk ' ' In(1+@ d )' P=(ksT) ' (2.19)

where Eq. (2.16) has been used and h(k;u) is the kink-velocity-dependent phonon phase shift given by Eq.
(2.12). In performing the integration in Eq. (2.19) it is convenient to transform from k to
k'= y[k —(2ipip/cp )(1+k'd')'/']. We then make use of the relation

( 1 + k2d2) i/2 y[ (1 + k 2d2) i/2 + (ki/cp) k d] (2.20)

to write

EF(2i) = —ks T In(yptnip) + 6') dk', In[(1+k'd2)' 2+ (v/cp) k'd], db, (k')
2~ — dk'

If we then make use of the fact that dh/dk' is an even function of k' we have

(2.2i)

ka T,~ dk'
lLF(y) = ks Tin(yPt nip) d ln(1+y k' d ) = —ksTln(yPt pip) —ksTin(1+y ')

= —ksTln[(1+y)Pt pip] (2.22)

Since lLF depends on the velocity u of the kink (or
antikink) only through the Lorentz factor
y = (1 —2i2/cp ) '/, we see that /ii, F is an even func-
tion of v, as it should be.

%e shall regard the change in phonon free energy
due to a kink moving with velocity v is a self-energy
of the kink X~(y) =bF(y). As we shall see in the
next section, the grand canonical partition function
for the system can be obtained by regarding the kinks
(and antikinks) as "particles" with "renormalized"

energies

z,"(y) =yes&+ X,(y)
=yEP& —k, Tin[(I+y)Pt~, ] . (2.23}

III. KINK-GAS PHENOMENOLOGY

In this section we extend and modify the ideal-gas
phenomenology developed' by CKBT to include the
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case of nonzero winding-number density

n„= [P(L) —$(0) J/2mL (3.1)

for the system as

:(T,L, p„A.) =—e ™x(T,L, p„A.) (3.3)

We restrict ourselves to the case where the total
number of kinks (including antikinks) is low so that
we may ignore interactions between them. ' The
winding-number density (3.1) may then be re-
expressed in terms of the difference of kink and an-
tikink number densities

n = (Nx Nx) /—L = n„—ng, (3.2)

since these are the only stable excitations which can
evolve the field between the degenerate wells in the
SG potential (I—cosP).

There are two basic ways in which to view a
nonzero value of n . It may arise by a direct con-
straint (such as the introduction of a fixed amount of
excess charge in a CDW system), or it may arise be-
cause of a winding-number potential A. which causes
a tendency for n to be nonzero but does not preclude
fluctuations in the winding number. We shall consid-
er the latter situation here since it is the more general
case. By using what amounts to a grand canonical
ensemble with a partition function that is A. depen-
dent, we can, in fact, obtain results which are valid
for the former case (fixed n„) as well, in the same
way that the ordinary grand canonical ensemble can
be used to obtain results for systems with a fixed
number of particles. In other ~ords, if X is the quan-
tity which is fixed externally, we can determine (n„)
as a function of A.; if n is fixed externally we can
choose A. so that (n ) =n„.

We regard the system as an ideal gas of kinks (in-
cluding antikinks) and their attendant kink phonons.
Before we can integrate over kink momenta, we must
first integrate over the kink-phonon degrees of free-
dom, since these depend on the kink velocities. This
has already been accomplished in Sec. II where we
saw that the influence of the kinks on the phonon
free energy could be accounted for in terms of "self-
energies" Xx for the kinks. We now therefore write

the grand canonical partition function (T,L, p„A)

where Fo is the zero-kink phonon free energy and

=-;(T,L„,I, ) ) = Xe»'Z (T,I., x) (3.4)

is a grand canonical partition function for renormal-
ized kinks (including antikinks). Here Z& is the par-
tition function for a system of N renormalized kinks,
where N refers to the total number of kinks plus an-
tikinks. Indeed, there is no reference to whether a
"particle" is a kink or an antikink, since both possibili-
ties will be sumed over in calculating Z&. In other
words, the kink and antikink excitations are regarded
as substates of the same particle. This is in contrast
to the approach of CKBT, ' who regard kinks and an-
tikinks as separate ideal gases. While their approach
can be used when n =0, it fails when n &0 since
the number of kinks is not independent of the
number of antikinks in this latter case.

The sole purpose of introducing the chemical po-
tential p, in ~ is to allow a convenient and self-
consistent definition of the average total kink density
(including antikinks)

(n...) = = ln=„"(T,L, p„ lt) . (3.5)
(N)

L PL Bp

In this expression we set p, =0 after performing the
derivative since we have already accounted for the
kink self-energy due to its effect on the phonons; the
renorrnalized energy E~ will be used in calculating Z~.
The total kink density depends only on the tempera-
ture T and winding-number potential A.; thus in the
same way that the photon or phonon gas has p, =0,
we must also require p. =0.

We now calculate the N-kink partition function
Zn( T, L, Q. This is done by considering N particles
placed along a line at positions q~ q2 . . . , qN, with
momenta p~ p2 . . . ,pg and integrating over q and p
and summing over a kink-antikink index o-

eL faq
&

ZN(T, L, x) = „dqg Ji dq2
~N-1 N '

p~a( )
dqn dp ' dpN Q e40 4 -oo 4 -oo J~] cr~ + 1

(3.6)

The limits on the q integrations take into account the
correct "Boltzmann counting" (indistinguishable na-
ture of truly "quantum" particles). Note that the
winding-number potential k favors kinks (o.=+1)
over antikinks (o = —I) if k )0 and vice versa if
X & 0. Upon carrying out the q integrations and the
cr summations, Zy may be rewritten as

N

Zn(T, L, h. ) =, coshPh. J dpe
1 2L

I

where z is the single-particle partition function

2L t'+ -P&g (e)
z = coshPX J dpe

To. evaluate z we change variables from p to y

(3.8)

z = (coshPA. )MarcoJ,e, (3.9)4L aExt»-
h 2 I)1/2

where Ex(y) is given by Eq. (2.23). If we define the
quantities

(3.7) y—= y —I, n= PEP'— (3.10)
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and use Eq. (2.23), z can be rewritten as
1 )

(coshP)). )qe "),—3 +22L e' a e ~
md Bq' Br) "o. 4y(y +2)

The integral appearing in Eq. (3.11) can be found in tables'3

d e- ~=e~K,(~),
4y(y+2)

where Ko(q) is the modified Bessel function. '~ Thus,

(3.11)

(3.12)

z = coshPL(PE) [)K,(PE'/to') +K (PE)")j +K (PE)")I
md

(3.13)

O. i4)

In order for the kink density to be low so that our noninteracting gas approximation is valid, we must restrict
ourselves to the low-temperature region ks T (( E)0) (/3') )) 1). Using the asymptotic forms'4 of the Bessel
functions, we find:

' I/2
2 2L (coshP»(PLP")'"(1+ '(P&P))—'+ " (P&P) '+ ]~ " PEP') ) 1

S» -~E«~

Now that we have an explicit expression for the single-particle partition function z we may calculate all thermo-
dynamic quantities of interest. The grand canonical kink partition function is obtained from Eqs. (3.4) and (3.7)

PI &

:-x(7;L,p„)).) = $, =exp(ze») .
w-o

. PEP)»1

The average total kink density is given according to Eq. (3.5) as

1/2
PE «)

(n„,) = z/L =—— —( coshPA. ) (PF/t ) '/'e
7r d

(3.15)

(3.16)

By comparing this result with the zero-winding-
number result' ()).=0), we see that

In situations where X is not fixed externally but
rather n„ itself, we must impose the condition

( Il f f ) (n 0 ) cosh p )). (3.i 7) (n„) =n„ (3.23)

where (no) is the total density of kinks and antikinks
when X=0:

(pE]0))1/2& a )r

7T d
(3.i S)

The average winding-number density is given by

(n„) = — n(r, L, )).),8
BA.

where 0 is the thermodynamic potential

(3.19)

= (no) sinhP)).

= (n«, ) tanh)8)).

(3.21)

(3.22)

This last equation makes apparent the close analogy
with the average magnetization ((n„)) as a function
of a magnetic field (X) in a spin- —, paramagnet. "

O(7;L, )).) = —ks Tin ( T, L, p, =0, h. ) . (3.20)

Thus,

(n„) =ksT ()Z

ez

which determines the winding-number potential via
Eq. (3.21)

)=)k Tssi hn'(n (/n )o) (3.24)

Combining Eq. (3.22) with Eq. (3.17) then gives
the average total kink density

(r) ) =((r/ )'+ (/)o)')'" (3.25)

This result agrees with the speculation put forth by
Currie, Fogel, and Palmer' which was based on exact
results using the transfer-operator technique.

For completeness, we present expressions for the
kink and antikink densities separately. These may be
obtained from Eqs. (3.2), (3.17), and (3.21):

(n~) =T'((n«, ) + (n„)) =
&

(no)ea", (3.26a)

(nx) = —,((n«, ) —(n )) = —, (no)e ", (3.26b)

where (no) at low temperatures is given by Eq.
(3.is)

We remark that the winding-number potential
must be small enough so that (n«, ) is small in order
for our ideal-gas phenomenology to be valid, as can
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be seen from Eq. (3.17). A rough criterion is

exp( —PE) ~)coshPL ( ( 1 or P(EP —~h~) & & 1;
i.e., the winding-number potential must have magni-
tude less than (and not too close to) the kink creation
energy. Thus, the present phenomenology is not ap-
propriate for describing incommensurate-
commensurate transitions3 ' when h. =EP'.

IV. SUMMARY

In this paper we have extended the ideal-kink-gas
phenomenology of Currie, Krumhansl, Bishop, and
Trullinger' to include the case of nonzero winding-
number density in sine-Gordon systems. By consid-
ering kinks and antikinks to be substates of a single
type of "particle" and taking into account the renor-
malization of the kink energy due to kink-phonon
phase-shift interactions, we have obtained simple ex-
pressions for the average kink and winding-number
densities as a function of temperature and winding-
number potential A.. Our low-temperature results

agree precisely with the exact transfer-operator
results of Currie, Fogel, and Palmer.

Extensions of the phenomenology developed here
to (i) treat cases such as double sine-Gordon where
two types of kinks (and their antikinks) are possible
and (ii) develop a vtrial expansion in the kink density
are currently being investigated. ' ' This latter in-

vestigation is necessary in order to extend the
phenomenology to the region just above (~ A.

~
& Eg ~)

the commensurate-incommensurate transition'
(which occurs strictly at T =0 and is smeared by fi-
nite T); the kink-kink interactions are responsible for
keeping the kink density finite5 when P & EP~.
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