PHYSICAL REVIEW B

VOLUME 22, NUMBER 1

1 JULY 1980

Critical dynamics of the Potts model

G. Forgacs*'
Department of Chemistry, State University of New York at Albany, Albany, New York 12222

S. T. Chui* and H. L. Frisch _
Department of Physics, State University of New York at Albany, Albany, New York 12222
(Received 1 October 1979)

The dynamical critical index z is calculated for the two-dimensional Potts model on square lat-
tice using a Migdal-type recursion method generalized to dynamics.

I. INTRODUCTION

Physisorbed films have gained much interest in the
last few years because they provide a possibility to
study experimentally! higher-order phase transitions
in two dimensions. In order to study these systems
theoretically Potts lattice gas models on a triangular
lattice were constructed.?™* Applying Migdal’s recur-
sion method to these Potts models good agreement
with experiments was obtained.>* The experiments
until now studied only the time independent proper-
ties of the physisorbed systems. By studying time
dependent processes in these systems, we may hope
to learn about dynamical critical phenomena in two
dimensions. To encourage such experiments we in-
vestigated the dynamics of the g-state Potts model
using Migdal’s recursion method® which we have re-
cently generalized to study the two-dimensional
(2D) kinetic Ising model.” The method of Ref. 7 is
based on the linear-response theory worked out by
Achiam and Kosterlitz,® using a finite number of per-
turbations. Recently Mazenko et al.® developed a
method for the kinetic Ising model in which they
were able to follow the full dynamical operator under
renormalization-group transformation (RGT).
Memory effects within their approach are eliminated
by a clever choice of the RGT. Unfortunately, be-
cause of the complexity of this method it is very dif-
ficult to apply it to the study of the g-state Potts
model. The question of memory effects is not fully
solved within the method of Ref. 8, where instead of
the full master equation only the linear part is treat-
ed. Certainly this remains an open question in our
Migdal-type approach, too, in which the invariance of
only this linear part is required under the RGT. On
the other hand, the numerical values of the dynami-
cal critical indices obtained by the methods of Refs. 7
and 8 and by the method of Mazenko et al. are very
close to each other. This may indicate that memory
effects are perhaps irrelevant in the sense of RG
theory. For more details on the Migdal-type RG
method we refer to Ref. 7, in which we obtained
results for the 2D kinetic Ising model, which were in

2

excellent agreement with the available high-tempera-
ture series-expansion results. Because of the similari-
ty between that and the present problem, we expect
our results for the Potts model to be just as reason-
able (at least for small g; see below). Applying this
method to the Potts model on a square lattice we
have obtained, for the first time (whereas high-
temperature series calculations have been performed
for the Ising system, none is available for the Potts
model), numerical results for the dynamical critical
index of the Potts model in two dimensions.

II. THE MODEL AND RESULTS

To study the dynamics of the g-state Potts model
we start with the following master equation:
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~ Here P is the time dependent normalized probability

distribution of the spin configuration, 2[“ means
{

summation over all values of §;, and w;(s; —5;) is a
transition probability from a spin configuration with
{s;} into one, in which the ith spin has a value given
by §;. 7 sets the time scale. The ¢ =2 case in Eq.
(1) corresponds to the model studied by Glauber.'
The transition probabilities satisfy the detailed bal-
ance condition and are chosen as
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is the equilibrium Boltzmann distribution, and Z is
the partition function. Ew means summation over
nearest neighbors. Following Achiam and Kosterlitz®
we introduce a time dependent perturbation and use
linear response. In this paper we use energylike per-
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turbation. The case of the magneticlike perturbation
is technically more complicated and will not be dis-
cussed here. In any case it is believed that the critical
exponent z should be the same for the energylike

and magneticlike perturbations.!! The details of the
present calculation are similar to our earlier calcula-
tions’ and will not be presented. Here we recapitu-
late our key approximations. We assume for P (r)
the following form:

1

1+<h (’)28=i»si+m] . (4)

where K =J/kT.
Putting (4) into Eq. (1) and keeping only terms
linear in 4 we obtain
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In Eq. (5) we have used the detailed balance condi-
tion. We assume Eq. (5) to be valid for a finite sys-
tem (in d =2 a square) with linear size L and average
both sides of Eq. (5) over the internal spins of this
finite system. Furthermore we assume that all the
spins along the edges of the square domain (in d =2)
are aligned and therefore can be replaced by one
average spin. We then find the most general func-
tional form of the right-hand side of the averaged
equation (5), which satisfies the factorization hy-
pothesis®’ and which also is invariant under the ap-
propriate Migdal’s recursion (for details see Ref. 7).
The recursion equation for the time scale factor 7 is
obtained by requiring that the master equation in the
Migdal variables had the same form when written in
terms of quantities corresponding to linear scales L
and AL. The actual Migdal transformation for the
master equation follows closely that given in Ref. 7.
We finally get

T)\L=(h)‘L/hL)C(K*,q)TL , (6)

where C (K*,q) depends only on the fixed-point
value of the K and the value of ¢. Since h,; and h;
are taken at the same time, we can use the static
result for their ratio, namely,

th/hL=>t“v . (7)

It is well known that the best numerical results ob-

tained by the Migdal’s method correspond to A =1

(in a limiting procedure); therefore, we also take the

limit A — 1. The value of K* and v for this case had
- also been calculated by Stephen!? and are given by

K*=In(/+q) , ®)
v 1=2[1-1n(1+vg)/Vq 1 . 9)

Equation (8) is the exact result obtained by Potts us-
ing duality arguments.!* According to dynamical scal-
ing,“ TAL =N7L.

Using Eq. (8) in Eq. (6), in the limit A —1,

we obtain "
1 2++gq 1
==+ L In(1+vVg)=—+ . (10)
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For g =2 Eq. (10) gives the result obtained in Ref. 7
for the Glauber-Ising model. Equation (10) involves
the value of v, which is known to be badly deter-
mined by the Migdal approximation. As it was
shown in Ref. 7 if we use the exact result for v in
Eq. (10) for ¢ =2 and calculate only m using the
above method, the agreement with the results of
high-temperature series expansions is very good,
moreover magnetic and energylike perturbations
give essentially the same z. For g > 2 neither exact
result for v nor high-temperature expansion for z ex-
ist. What we can do is to use the value of v for the
g =3 and 4 Potts models obtained from high-
temperature series expansions and scaling. If we had
estimated z by using magnetic perturbation, we would
get (see Ref. 7) z =y, + ), where yy is the usual
magnetic eigenvalue of the linearized static recursion
matrix and 7, is an exponent determined purely by
the dynamics. yy is believed to be given by the
Migdal’s procedure rather accurately. Unfortunately
the magnetic (or odd) perturbation is more difficult
to deal with in the case of the Potts model then in
the Ising model, therefore it will be discussed else-
where.

In Table I we listed the values of z for ¢ =3 and 4
obtained with v determined by Eq. (9) and by high-
temperature series expansions. There exists strong
numerical evidence that reduced static exponents like
v/v, B/v are the same for many two-dimensional
discrete models (including the Baxter model).
Suzuki®® argues that this perhaps could be expected
on the basis of rather general theoretical arguments.
Now, z =A/v where A is defined by 7= (T —T,)™4.
It means that z is a reduced exponent of the same
type as those mentioned above. This, together with
values of z,, in Table I could suggest that perhaps z
should be the same for those two-dimensional
discrete models for which the reduced static ex-
ponents are the same. However, we would like to
stress that this is at best only a conjecture. There are
several reasons why only the ¢ =3 and 4 cases are
listed. According to Baxter, and more recently
Nienhuis ef al.?! in the two-dimensional Potts model
with ¢ > 4 a first-order phase transition takes place,
while for ¢ =<4 the transition is of higher order. The
results of the Migdal type calculation predict first-
order transition in the limit ¢ — oo. Comparing the
result [Eq. (9)] with the conjecture of den Nijs?? one
can see that the agreement is excellent for small q.
The physisorbed systems of experimental interest are
modeled by two-dimensional Potts models with ¢ =3
and 4 so if these theoretical models are correct we
may expect the experiments to give some informa-
tion on z for ¢ =3 and 4. .

Our Migdal-type method for critical dynamics can
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TABLE I. z, is obtained using Egs. (9) and (10), and z, is obtained using Eq. (10) and the results of series expansions and

scaling for v~!, thatis v~ = (8 +y/2)"L.

q=2 qg=3 qg=4
Series and Series and

Exponents This work Exact Series This work scaling This work scaling

p! 0.75 1 0.840 1.172 0.900 1.45b¢

g 1.065 1.082 1.099

z 1.819 1.922 2

z, 2.065 2.1354 2.55

2.00¢ 2.25

2Reference 17.
bReference 18 for the value of B.

be used in any dimension. It is easy to see that the
method is exact in one dimension where we obtain

z =2 independently of ¢g. In principle we could
predict z for the three-dimensional ¢ =3 Potts model
too, which according to Bak and Domany? could
describe the order-disorder transition in the stage-1
graphite intercalation compound C¢Li. However, it is
still not clear what is the nature of the phase transi-
tion in this model, also, the results of a Migdal-type
calculation are not as reliable in three dimensions as
in two dimensions.

III. CONCLUSIONS

In conclusion we may say that the present calcula-
tion is the first one which gives results for the
dynamics of the two-dimensional Potts model. Since
this model describes rather well the static critical
properties of krypton and nitrogen submonolayers ad-

‘Reference 19 for the value of vy,
IReference 15.

®Reference 16.

sorbed on graphite, we hope that the above results
will help us learn about the dynamical critical proper-
ties of these systems. Experimentally, probably the
exponent A =pz is more accessible than z. Its value
can be obtained from Table I, using either Eq. (9) or
results for v from series expansions and scaling. By
comparing with other numerical results, obtained on
the basis of Migdal-type calculations involving the ex-
ponent v, we think that the above results should be
at worst within 20—25% of the real values. Either
high-temperature series expansions for A or experi-
ments on the dynamics of physisorbed systems would
be welcome to support these results.
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