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Curie, Berry, and Williams have recently published a theory of the effect of pressure on the

frequency of optic tl- absorption emission lines in solids. They argue th it our earlier work (with

F:rank) as well ts that by Henry, Schn utterly, and Slichter is wrong. In this paper we an;tlyze

and comp tre the methods of calculation. As we explain, we believe their calculation necessarily

brings into play t hidden vari able needed to specify the st ate of the pressure happ ir itus. We be-

lieve their method c&uses th &t vari able to ch ange in the optic il tr tnsition, thereby violating the

I r ~nck-Condon principle.

I. INTRODUCTION

The effect of pressure on optical spectra has long
been of interest. Together with Frank, ' we published
a paper titled "Optical Versus Thermal Transitions in

Solids at High Pressure" in 1972 which we will refer
to as DFS. In 1964' and 1965' Henry, Schnatterly,
and Slichter" published papers titled "Effect of Ap-

plied Fields on the Optical Properties of Color
Centers" which dealt with the effect of applied elec-
tric or magnetic fields or mechanical stresses. The
basic viewpoints of these papers agree with DFS.

Recently Curie, Berry, and Williams (CBW)' have
calculated the effect of pressure on optical spectra us-

ing an approach which differs from that of DFS.
They have published several papers giving their result
and stating that we are wrong.

These papers contain references to the earlier
literature consistent with their approach. We careful-

ly examined their approach and reexamined our own.
We concluded that we were correct, and identified
what we believe to be a subtle but fundamental error
in the approach of CBW.

In this paper, we present an analysis of the effect
of pressure on optical spectra in such a form as to
point out just where the two groups differ and show
that their approach neiessatilv brings into play a hid-

den variable needed to specify the state of the pres-
sure apparatus. We conclude that their method
causes that variable to change in the optical transi-
tion, which in our judgement violates the Franck-
Condon principle.

In Sec. II we state the problem at issue. In Sec. III
we give the Drickamer, Frank, and Slichter calcula-
tion. In Sec. IV we outline the CBW calculation and
discuss the disagreement, In Sec. V we give a quali-

tative explan &tion of the reason for the disagreement,
In Sec. VI we give;& quantitative expl tn ttion of the
disagreement showing explicitly the hidden v &ri able

which accounts for what we believe is their error. Of
course, the disagreement is over theory, but CBW
discuss experiments to support their viewpoint. In

the Appendix we give comments on the experiment tl

situation.

II. PROBLEM AT ISSUE

The physical system under discussion is ~ solid
which possesses t reason &bly narrow optical- absorp-
tion band arising from tn electronic transition from t

ground to an excited electronic state, The n arrow

band might arise from the presence of a foreign atom

or of defects (color centers) or„in the c use of a

molecular solid, t transition from t ground to tn ex-
cited state of a molecule. The question at issue is
what happens to the frequency of the peak of the op-
tical absorption if the solid is subjected to an exter-
nally applied pressure p. In all such systems there is
for each electronic st ate an equilibrium volume for
the sample. Typically the equilibrium volume of the
excited state V,.„,, differs from the equilibrium
volume of the ground state V,„d.

We conclude that applic ition of a pressure pro-
duces a frequency shift, Av which always cont tins
one term proportional to p ( V,„,.—V«z), i.e., linear
in pressure, plus another term quadt'atic in pressure.
We find that there is always a linear term when

V,„,. A Vg„d.
CBW conclude that the linear term is missing un-

less the compressibility of the crystal in the excited
state differs from its value in the ground st ate, t con-
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dition much more restrictive than our own. The
problem, then, is to calculate the effect of pressure
on the peak of the optical-absorption band.

Certain expressions occur repeatedly throughout
this paper. It is therefore well at this stage to point
out three well-known relationships which we call Eqs.
(1)—(3). Consider a spring with spring constant k.
Let a force, F, be applied to stretch the spring. Let x
be the amount the spring is stretched. Hooke's law

gives the relation between F and x„
F =kx

Pxf
lV;r= I F (x)dx (2)

which, using Eq. (1) for F(x), is readily integrated to
give

W;r= —,k( wf2 —x )
I (3)

We may use Eq. (1) to express Eq. (3) alternatively
as

Wr= —,
' [F(xf)' —F(x;)'j/k

We repeatedly use Eqs. (3) and (4) in this paper.

(4)

In stretching the spring from an initial stretch x; to a
firial stretch xf, the force does work on the spring W;f
of amount

either as a classical or a quantum-mechanical prob-
lem. We treat the problem classically in this paper
since the fundamental disagreement at issue can be
seen more simply using classical arguments, though it
also is found quantum mechanically. The normal-
modes problem is solved by finding the proper nor-
mal coordinates Q; which give the displacement of
the R s from their equilibrium values. In general,
the Q s are linear combinations of the displacements
of the R s from equilibrium. In the most general
case, the proper linear combinations differ for the
different electronic states. The extra contribution to
the total crystal energy resulting from the displace-
ments of the R s from their equilibrium positions is
called the elastic energy. When the solid is in ther-
mal equilibrium at some temperature, T, the elastic
vibrations are thermally excited and provide the lat-

tice contribution to the specific heat.
We can illustrate by a particularly simple case in

which we consider a system characterized by a single
generalized coordinate Q, and a pair of electronic
states we label as the ground and excited states. For
our problem, we take Q to be the volume change of
the crystal from its equilibrium value when the sys-
tem is in the ground electronic state.

The total crystal energy for the system in the
ground electronic state may be written as follows:

Er(gnd) =Eo+ , n&Q + —,kg—Q'
t

' 2

III. DRICKAMER, FRANK, AND
SLICHTER APPROACH

A. Calculation of the pressure dependence
of the absorption frequency

In the absence of an applied pressure, the calcula-
tion of the energy of a solid containing a color center
at absolute zero temperature can be done by well-

known methods given in the standard texts on solid-
state physics. In essence one takes the positions R;
of the various atoms as parameters„solves a Hamil-
tonian for the motion of the electrons, eventually
getting the electron wave functions, P„correspond-
ing to different electronic states of the color center,
and the total crystal energy. By varying the R s one
finds the minimum energy for each electronic state.
In general, the values of R; which minimize the total
crystal energy differ for the different electronic states.
Thus the crystal volume in general is different
between the ground and an excited electronic state.

For a given electronic state, the total crystal energy
increases when the R s are displaced slightly from
their equilibrium values. Since the ions possess
mass, a time-dependent displacement of an ion con-
tributes kinetic energy to the total energy of the crys-
tal. The discussion of such small displacements is
then. a normal-modes problem which may be treated

where Q' represents the displacement of the volume
from its value when the lattice vibrations are quies-
cent. The fact that the compressibility of the solid in

general depends on the electronic state of the color
center is expressed by the f ~ct that k, may be dif-
ferent from kg. The fact that the equilibrium
volumes differ for the ground and excited electronic
states is expressed by the fact that Q' N Q. We as-
sume that Q and Q' are related by the equation

Q'=Q —~

That is, we assume only one normal mode of the
ground state is involved in the normal mode of the
excited electronic state. Therefore,

Er(exc) = E~ +, inQ + —,k, (Q —5)'1

(g)

where Eo is the total energy when the atoms are at
rest at the position of minimum energy (Q =0), and
where m and kg are coefficients which come from
solving the normal-modes problem of the crystal, and

may be conveniently thought of as a mass and a
spring constant, respectively. The terms involving Q
and Q are, respectively, the elastic kinetic and poten-
tial energies.

If the system is in the excited electronic state, the
total energy is

Er(exc) =E~+ mQ + —k, Q'—
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Equations (5) and (8) are the harmonic approxima-
tions to the total energy of the crystal and are accu-
rate as long as the ions remain close to their equili-
brium positions. It is easy to generalize these equa-
tions to include many more normal modes, but such
a generalization is not necessary for understanding
the disagreement between DFS and CBW.

By means of Eqs. (5) and (8) one can analyze
many problems. For example, one can apply the
equipartition theorem to compute the manner in

which thermal excitation changes the average total
crystal energy, and thereby calculate the heat capaci-
ty. Or, as we show below, one can calculate the
optical-absorption frequency as a function of pres-
sure.

Let us first consider the case of zero applied pres-
sure, the one case for which DFS and CBW get the
same answer for the frequency of the optical absorp-
tion. We consider the system to be in its ground
electronic state initially. Let us assume there is negli-
gible thermal excitation of the lattice vibrations so
that initially

The term —,kgQ,
' is elastic potential energy which was

provided by the work done by the &pplied pressure in

moving Q from 0 to Q, just as in Eq. (3).
Once again if an optical transition is induced, Q

and Q do not change during the transition. There-
fore, immediately after the tr ~nsition the crystal finds
itself in the excited state with Q = Q„Q= 0, giving a

total crystal energy of

Er(exc, Q, ) =Ei+ —,k, (Q, —0 )'

In the case we are studying, the crystal is not isolat-
ed. It is coupled to the apparatus which supplies the
pressure. But since Q does not change during the op-
tical transition, the crystal volume does not ch ange,
and therefore the pressure reservoir does no work on
the crystal during the optic &I transition. As a result,
it is the light quantum which must supply the differ-
ence between the total crystal energy before and after
the transition.

Using v(Q, ) to denote the optical transition fre-
quency in this case, we h ~ve

and

Q=0, Q=0 (9) hv(Q, ) =Ei+ —,k, (Q, —5)' —E„——,kgQ,', (15a)

h v(Q, ) = (Ei —Eo) + —,k, d,
'

Ey-(gnd) =E() . (10) —k, Q, A+ —, (k, —kg)Q, ' (15b)

We now shine light on the system producing a

transition to the excited electronic state. We know
from the Franck-Condon principle that during that
transition the ions do not have time to move nor to
change their velocities. Therefore, the crystal has

Q =0, Q = 0 immediately after the transition, giving
from Eq. (8)

Er(exc) =Et+ —,k, h'1

The photon must supply the change in total crystal
energy so that subtracting Eq. (10) from Eq. (11) we

get

hv(0) =E)+—,k, h2 —Eo (12)

where v(0) means the frequency corresponding to
zero pressure.

What happens if we apply a pressure to the system
prior to shining the light? The applied pressure
compresses the crystal, changing the relative posi-
tions of the ions, and therefore changing the total en-
ergy of the crystal. Suppose we apply a pressure
when the system is in the ground electronic state
which causes Q to become Q, . We assume that the
pressure is applied in such a way that we leave the
system with Q =0. Then Eq. (5) shows that the total
crystal energy in the ground state becomes

OE„,(gnd)
(17)

which gives us, from Eq. (5)

kgQ = —p

Therefore

(18)

Q, = —p, /kg (19)

Thus we can express the frequency ch ~nge explicitly
in terms of pressure

(~, —x, )
h [v(p, ) —v(0)] = +—'Ap, + —, ', '

p,' . (20)

Comparing Eq. (15b) with Eq. (12) we see that

h v(Q, ) —h v(0) = —k, Q, + —, (k, —kg) Q,
' . (16)

lf we know Q„Eq.(16) gives us the shift in optical
frequency. More commonly the information we ~re

given is the size of the applied pressure p, . Howev-
er, Q, can be expressed in terms of p, if we simply
recall that an infinitesimal volume ch ange JV pro-
duced by an applied pressure, p, does work on the
crystal of —pc/V. This work goes into the total crystal
energy, so that, recalling that Q stands for a volume
change,

Er(gnd, Q, ) =Eo+, kgQ (13)
Equation (20) is the principal result we seek, the ef-
fect of pressure on the optical-absorption frequency.
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It is this equation, published by DFS, which CBW as-
sert is wrong. The first term on the right is the linear
pressure term. According to our analysis the term is

present irrespective of the relative size of k, and k~.
CBW find an expression for the linear term which
contains the factor (k, —ks). They conclude from
their expression that the linear term vanishes when
k =k

The essential aspect of our argument is that if one
knows Q and Q one knows the total energy of the
crystal for each electronic state, the explicit formulas
being given by Eq. (5) and (8), and the shift of the
optical peak being given by Eq. (16). Note that at
no place in Eq. (16) does the pressure appear expli-
citly.

One way of stating our basic disagreement with
CBW is in terms of our Eq. (16). They claim that, in
addition to the terms we find, in which there is an im-
plicit pressure effect, through Eq. (19) there is an ex-
plicit pressure dependent term.

Er(Q, }= Er(Qf) +p. (Qf Q}—(21a)

of

Eo+ mQ; + —,k Q—; =Eo+ mQf + , l Qf——

B. Conservation of energy under the
influence of applied pressure

Equations (13) and (14) apply to instants of time
at which Q =0. But even in the presence of an ap-
plied pressure, p„it is possible for Q to be set in vi-

bration about the equilibrium position Q, . Let us as-
sume the pressure is held constant during the vibra-
tion. In such a vibration, the crystal does work (posi-
tive or negative) against the applied pressure as Q os-
cillates. Therefore the total crystal energy is not constant
~hiring the cycle of the oscillation. In going from one
value of Q, which we call Q; to, another value we call

Qf, the crystal does work p, (Q& —Q;) against the
source of pressure so that the total crystal energy at
Q;, Er(Q;) is related to the corresponding quantity at

Qf Er(Qf), by

The same reasoning can be applied to the excited
state to give

Ei+ —,mQ + —,k, (Q —6) +p, Q =C' (23)

where C' is a constant.
The first three terms on the left of Eqs. (22) and

(23) represent the total crystal energy. Equations
(22) and (23) show explicitly that it is not conserved
in a vibration cycle at constant pressure. The term

p, Q present in both equations represents energy
transferred from the crystal to the apparatus which
produces the pressure. We show this point explicitly
with a model pressure apparatus in Sec. VI. One can
rewrite Eq. (22) in a very simple form as

—,mQ + ks(Q +—p, /ks)' = C +p, /2k, —Eo (24)

and similarly for the excited state

—,tnQ + —,k, ( Q —5 +p, /k, }'= C' +p,'/2k, —E,

(25)

One can identify the quantities on the left as kinet-
ic and potential energies, the potential energy being
parabolic in form. The Q corresponds to the mini-
mum, displaced by —p, /k, or —p, /k, for ground and
excited states, from its value in the absence of pres-
sure.

We must note, however, that Eq (2/) clear. ly shows

this potential energy is not the potential energy of the

crystal alone, but also includes energy the crystal supplies
to the pressure apparatus during the displacement of Q
under pressure.

Both C and C' can be determined if initial condi-
tions of Q and Q are given. In the most general case',

C and C' can be picked independently. However, if
C is picked for the ground state and an optical excita-
tion is made, since Q and Q do not change during the
excitation, C' can be determined in terms of C. In
fact, as we have discussed, the optical quantum must
supply the difference in total crystal energy so that

Eo+
2

mQ +
2 ksQ +llv=E[+

2
tnQ

I '2 I 2 I '2
/

+p, (Qf —Q;) (21b)

Whence

+-, k, (Q —6)' (26)

where Q; and Q~ are the values of Q for Q = Q; and

Q = Qf, respectively.
We can rewrite Eq. (21b) by collecting terms in-

volving Q; on the left side and involving Qf on the
right side, to get an equation which holds for arbi-
trary Q:

C'= C+h v (27)

IV. METHOD OF CURIE, BERRY, AND WILLIAMS

Eo+
2 mQ + —,ksQ'+p, Q = C1 '2 1 (22} A. Comparison of the CBW and

DFS expressions
where C is a constant, the value of which depends on
the initial conditions, i.e. , what is specified about Q
and Q at some instant of time.

Curie, Berry, and Williams calculate a quantity they
call E (p, R) (where n is labeled g or e for the
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ground and excited states). E,(p, R), which depends
on p and the generalized coordinate R (using their
notation) has the units of energy. They treat
E (p, R) like a potentiai energy to draw a configura-
tion coordinate diagram. They then state that the op-
tical transition occurs at frequency v(p) given by

h v(p ) = E, (p, R) Eg (p—, R) (28)

where E, (p, R) and Eg(p, R) are calculated for the
equilibrium value of R in the ground state under
pressure. Whether or not Eq. (28) is true of course
depends on the definition of E (p, R). As we ex-
plain, we do not believe Eq. (28) is true for their de-
finition.

E (p, R) is calculated by a method we describe
below. They find [Eq. (2) in their paper]

E (p, R) =E (0) + —,k [R —R (p)]'+p'/2k

(29)

where in the DFS notation

Rg(0) and R, (0) are the equilibrium values of R at
zero pressure for the ground and excited states,
respectively, so that

and

Rg(0) =0

R, (0) —Rg(0) =5

e, (0) =e„,
~, (0) =e, ,

R (p) —R (0) = —p/k

(30a)

(3Ob)

{30c)

(30d)

(31)

As we discuss below, given their prescription f'or cal-

culating F., (p, R) we agree with their specific result

Eq. (29). However, we do riot agree that this quanti-

ty is appropriate for use in Eq. (28).
We now use Eq. {31)to transform Eq. (29) into

two alternate forms. We give the complete algebraic
details so the reader can verify that we have done the
calculation correctly. First we transform the second
term on the right

E (p, R) =E (0) + k[R —R—(0) +R (0) —R (p)]'+p'/2k

=E (0) + , k [R —R —(0)]2+k[R —R (0)][R (0) —R (p)]+ , k [R (0) ——R (p) ]'+p'/2k

(32a)

(32b)

Using Eq. (31) and the third term we get

E (p, R) = E (0) + k[R —R (0—) ]2+p [R —R (0) ]

+ —,
'

k [R (0) —R (p)]' +p'/2k . (32c)

Using Eq. (31) we transform the fourth term on the
right:

E (p, R) =E (0)+ , k [R —R (0)—]2+p[R—R (0)]

or

E (p, R)=E (0)+ , k [R —R (0—)]'+p[R—R (p)]

(35b)

We now can compute the CBW expression for the
optical absorption by means of Eq. (28) and either
Eq. (33) or (35b) recognizing, as CBW do, that for R
we use the equilibrium value in the ground state

'2
2

+ —,
' k. ~ +-~

k 2k

E (p, R) =E (0) + , k [R —R (0)]'—

+ p [R —R.(O)]+p'/k. .

(32d)

(33)

R = Rg (0) —(p/kg ) = Rg (p)

Delaying this substitution, we get from Eq. (33)

h v(p) = E, (0) —Eg(0)

+ —,k, [R —R, (0) ]' ——,kg [R —Rg (0) ]'

(36)

Equation (33) is a useful form of displaying the
result of CBW. All the pressure dependence is expli-
cit. Another useful form for their result is found by

again using Eq. (31) to transform p'/k

+ p [Rg(0) —R, (0) ] + (p'/k, ) —(p'/kg )

(37)

p'/k =p[R (0)-R (p)]

glvlng

E (p, R) =E (0)+ ,'k [R —R (0)]'—

(34)
or from Eq. (35b)

I .(I ) = ~, (o) -~, (o)

+ —,k, [R —R, (0)]'——,k [R —R (0)]'

+p[R —R (0)+R (0) —R(p)l (35a) +p [R,(p) R, (p)]- (38)
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Comparing either Eq. (37) or (38) with the DFS
expression Eq. (15b) [using Eq. (30) to relate the no-
tation] we see that the terms in the first and second
lines of Eq. (37) or (38) agree with Eq. (15b) but
that CBW have an extra term which is the third line
of each equation. We contend that the term in the
third line implies that in going from the ground to
the excited state the light quantum must not only

supply the crystal electronic energy difference and the
crystal elastic energy difference, but also does work
against pressure in the amount

Work= —ph+p 1 1

k, kg
t

Since in the optical transition R (or Q) does not
change, there should be no work against pressure.
We argue that the CBW expression must be in error
since their result implies work is done against pressure in
a process in which the volume does not change.

As we explain below in detail, the energies used by
CBW include not only the total crystal energy, but
also a work term done by the crystal against the pres-
sure apparatus defined in such a manner that, at the
same Q, it is different in the ground and excited
states.

B. CB%'s method

F = —I. [R —R (0)]—p (42)

To calculate W we note that F must do two things
as R goes from R (p) to R:

(i) Supply the change in crystalline elastic energy

—,k [R -R (0)]'--, k [R (p) —R (0) 1'

Once the pressure has been applied, the system is
in equilibrium at R, (p). However, the system could
be displaced from this value by application of an ad-
ditional force F. If it were displaced by such a force
and the force were suddenly removed, R would oscil-
late harmonically about the equilibrium R = R (p).
To describe such a circumstance, CBW define a po-
tential energy W(R). They calculate W(R) by con-
sidering how R varies as F is built up from zero. By
building up F slowly, (the adiabatic approximation),
negligible kinetic energy is given the system, so that
W (R) is simply the work done by F in displacing R
from R, (p) to R. This definition of W(R) makes
W(R (p)) =0.

We now calculate W(R). We do it in an alternate
manner to that of CBW, but obtain the same result
as they do.

Since F is the force which would hold the crystal in
equilibrium at coordinate R, it must just balance the
sum of the elastic restoring force and the applied
pressure. CBW define F to be positive inwards so
that

E (p, R)=E (0)+ Wi+ W (40)

CBW's definition of E (p, R) is the sum of three
terms, E (0) and two quantities with the units of en-

ergy which they call W~ and W,

(ii) Supply work the crystal does against the con-
stant pressure. Since this is just the negative of the
work the pressure does on the crystal, and since the
pressure is constant, this work is just p [R —R (p) ].
Therefore

W, = -,
' k.[R.(p) —R.(0) ]' . (41)

CBW first calculate W~, and then in a second step
calculate W. We shall use their two steps, but use
the concepts (1), (2), (3), or (4) of crystal elastic en-
ergy to evaluate W~ and W. While our procedure
and results agree with theirs for both W~ and W, our
method of calculation emphasizes the distinction
between energy which resides in the crystal and ener-

gy which resides in the pressure apparatus. Accord-
ing to the Franck-Condon principle, only the former
changes during the actual optical transition.

CBW consider the system to be initially in equili-
brium in state n(a =g or e) under zero pressure.
That is, R =R (0), and the crystal energy is E (0).
In step one, the pressure is slowly increased to its
value p, changing R to R (p), its equilibrium value
at pressure p. W[ is defined as the work done on the
crystal by the applied pressure-as the pressure is built
up from its initial value to its final value p. Since this
work goes into the crystalline elastic energy we may
write [as in Eq. (3)]

W= , k [R —R (0—)]'——,k [R (p) —R (0)]2

+p[R —R (p)] (43)

Therefore adding Eqs. (41) and (43) we get

E (p, R) =E (0) + Wi+ W

= E (0) (term A)

+ —,k [R —R (0) ]' (term B)

+@[R—R (p)] (term C) . (44)

As we see Eq. (44) agrees with the CBW result
given by Eq. (35b). To understand what we have cal-
culated, we examine the significance of terms in the
second, third, and fourth lines of Eq. (44).

The term in the second line (term A) is the energy
of the crystal when it is in equilibrium at R = R (0)
prior to application of the pressure. We call this con-
dition the initial state of the crystal.

The term in the third line (term B) is the increase
in the crystalline elastic potential energy from its
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, mR +E —(p,R) =const
' 2

(45)

However, E (p, R) has built into it a convention
that the work the crystal does against pressure when
R changes is measured from a .standard state
[R =R (p)] which is different for different u. There-
fore, even though R does not change in an optical
transition so that in fact there is no work done
against pressure during the optical transition, term C
contributes to Eq. (28) simply because the standard
state changes. As we dernor1strate in the next fwo sec-
tions for optical transitions, the same standard state most
be chosen for term C for both electronic states in order to

avoid a spurious work-against-pressure contributior1 fo

The calculations of the energy of the light quantum.
Alternatively, one can simply recognize that terms

A and B by themselves give the total energy of the
crystal once the state o. is specified and the coordi-
nate R is selected. Then, since the crystal does no
work against pressure during the optical transition,
the entire energy of the light quantum must go into
the changing terms A+ B at fixed R. This procedure
is what DFS use, as outlined in Sec, II.

value in the initial state for which R =R (0), to the
value at R. It is therefore the work one must do
against the elastic forces in displacing R from R, (0)
to R.

The sum of terms A and B clearly gives the to-
tal crystal energy at coordinate R.

The term in the fourth line (term C) is the work
the crystal does on the pressure producing system
during the displacement from R =R (p), the equili-
brium position in state o. under action of the pres-
sure, to the final value of R. The extra term C
represents energy which does not reside in the crys-
tal, but rather has been transferred from the crystal
to the pressure apparatus during the displacement of
R from R (p) to R. A similar situation was dis-
cussed in connection with the derivation of Eq.
(21b).

As long as one is not considering optical transitions
E (p, R) may be considered as an effective potential
energy for describing the behavior of R at fixed p.
Thus, free vibrations of R about the equilibrium at
fixed p obey the equation

and

X = ( V! —VII) /A

Y = [( V; —VII)/A] +L

(46a)

(46b)

8 e rrote that at zero pre.ssure, the state of the pressure

ering a model which gives an explicit description of a

pressure apparatus. In this model we see that the
method of CBW necessarily assumes that the pressure
apparatus has a configuration change during the opti-
cal transition, a circumstance we believe violates the
Franck-Condon principle.

Accordingly considering Fig. 1 we show a pres-

sure vessel containing a sample (volume V(]) im-

mersed in an incompressible fluid. Pressure can be

applied to the fluid by a piston which slides without

friction in a tube of cross-sectional area A. A spring
of unstretched length L and spring constant k() is at-

tached at one end to the piston (coordinate A') and at
the other end (coordinate Y) to an external force of
magnitude F,„,(taken as positive to the left, so that a

positive F produces compression).
In a typical experiment, F,„,is built up slowly (to

avoid kinetic energy) pushing in the piston, and ex-
erting a pressure p = F,„,/A. In the process of build-

ing up the pressure, the piston moves to the left, as

does the point of application of F,„,. During the

buildup of pressure, F,„,does work which goes into

compression of the sample (crystal elastic potential

energy) and compression of the spring (spring elastic
potential energy) .

Once the pressure has been built to the desired

value, we clamp the right-hand end of the spring to
assure that no more work can be done by F,„,on the

system of spring, sample, and pressure vessel. That
is, we hold Y fixed.

Figure 2 shows the apparatus, at zero pressure for
two different electronic states. In Fig. 2(a) the sam-

ple is in the ground electronic state and has volume

Vo. We define the piston position in this case as

X =0. Accordingly Y = L.
Figure 2(b) corresponds to the sample being in

equilibrium at zero pressure in the excited electronic
state with volume V]. The fact that V] ~ Vo requires
now that X ~ 0 for this case. In fact

V. ANALYSIS OF A CONCRETE EXAMPLE
—QUALITATIVE EXPLANATION

The entire disagreement between DFS and CBW
arises because of term C in Eq. (44) and quite specif-
ically because CBW measure the work the crystal
does against the pressure apparatus from different
values of R for the ground and excited states. The
proper choice of standard states as well as further in-

sight into the energy transfers can be seen by consid-

AMPLE

PRESSURE TRANSM]TT]NG FLU]D

Q&i//I, 'ooooooooooo- Fext

~PISTON (AREA A)

FIG. 1. Schematic diagram of a sample contained in a

pressure bomb. Pressure is applied by an external force,

F«, , acting on a frictionless piston, and is transmitted to the

s ample by means of an incompressible pressure transm'itting

fluid.
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gggg+P/gg' ooooooooooooq

I
I

V-V
I

VI-vo Y=L+ I 0
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FIG. 2. The pressure apparatus of Fig. 1 for two states of
the sample both corresponding to zero pressure. The spring

has uncompressed length L, its left-hand end at coordinate
X, and its right-hand end at coordinate Y. (a) With the

pressure set to zero when the sample is in its ground elec-
tronic state, g, the corresponding volume is Vo and X is de-

fined as 0. Thus Y = L. Figure 2(a) corresponds to the zero
pressure configuration of both DFS and CBW when the sys-

tem is in the ground electronic state. (b) When the pressure
is set to zero with the sample in its excited electronic state,
e, the sample volume is V~, so the piston must be

( VI Vo)/A to the right of its position in Fig. 2(a), hence

X = ( V) —Vo)/A and Y = L + ( V] Vo)/A. Figure 2(b)
corresponds to the zero configuration used by CBW for the
case where the pressure is set to zero with the system in the
excited electronic state.

apparatus is different in these two cases In parti. 'cular,

the value of Y differs.
If the system of Fig. 2(a) (ground state at zero

pressure) were excited optically, the circumstances
immediately after excitation would be those of Fig.
3(a). The sample volume would still be Vo, immedi-

ately after excitation into state e. Eventually the ex-
cited state would settle down to volume VI, and the
situation would be as in Fig. 3(b). Note, however,
that Fig. 2(b) and Fig. 3(b) differ. Similar figures
could be drawn for the case of an applied pressure.
Figure 2(b) corresponds to the CBW approach of
starting first in the excited state, then applying pres-
sure. Figure 3(b) corresponds to applying pressure in

the ground state.
In Fig. 3(c) we see Y corresponding to the case of

zero pressure applied in the excited state, the sample
in the excited state, but with volume Vo of the
ground state. Figure 3(c) corresponds to the CBW
formulas for the energy of the excited state produced
by optical excitation. Contrasting Figs. 3(a) and 3(c)
we note that the optical transition does not go to the

CBH state.
Another way of expressing matters is that specify-

ing the state of the pressure apparatus requires speci-
fying the coordinate Y as well as the sample volume
(which specifies X). In an optical transition neither Y

nor X change. The procedure used by CBW has the
effect of keeping X fixed, but changing Y during the

(a)

(b)

QggQgg'oooooooooooa

I

x I=o Y=L
I l

I I

I I

I I

I I

I I

I

~ yQ&P/g'ooooooooe

I v-vix=0-l I

I I

I
I

I
I

l
I

I
l

. I

gY//g. ooooooooooooooo a

I vi -vp
x=o Y= L+

A

optical transition. That they change Y is the result of
their definition of the energy E,(p, R) which they use
to calculate the optical frequency.

VI. ANALYSIS OF A CONCRETE EXAMPLE—
QUANTITATIVE EXPLANATION

%e now proceed to work out the details of the
various configurations of Figs. 2 and 3, The prob-
lem can be treated by replacing the details of the
pressure vessel with an equivalent system shown in

Fig. 4, which is a linear arrangement of two springs,
one representing the crystalline elastic potential ener-

gy, the other representing the elastic potential energy

FIG. 3. The pressure apparatus for three states of the sys-

tem, all at zero pressure. (a) The situation immediately fol-

lowing optical excitation from state p to e. Since, prior to
optical excitation, the system was at equilibrium under zero
pressure in state p, X and Y are identical to their situation in

Fig. 2(a). Since the lattice atoms do not move during the
optical transition, the sample volume is Vo, its value in the

ground state just prior to excitation. This figure corresponds
to the excited-state configuration DFS calculate. (b) The
situation of Fig. 3(a) puts the lattice vibrations in a highly

excited state. If these vibrations die down while the lattice
remains in the excited electronic state, the system arrives at
the configuration Fig. 3(b), with the sample in equilibrium
in state e &t volume V~. Note that although the .sai»pie is in

the same state as Fig. 2(b), the coordinate Y is different be-
e ~use the pressure apparatus was adjusted to produce zero
pressure when the sample was in the ground state. (c) The
configuration immediately after optical excitation from the
ground state according to the CBW calculation. The Y coor-
dinate corresponds to the pressure apparatus being adjusted
to zero pressure with the sample in the excited state [Fig.
2(b)], but the volume of the sample is Vo corresponding to
the ground state. Note that while X =0 as in the DFS config-
uration [Fig. 3(a)], Y differs from its value in Fig. 3(a).
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I

I

I

I

I

I

0 I I

R,(0) —
JE, R,(O) Y= R (0)+ L

kg, jl, —m kp, L
O00000O0000 +0000000000000000O000O0000000
I I

I I

tern in state o.

lrlR + U( i(u )(a)

, t—nR +E (0) + —,k [R —R (0)]'+ , k„q—'

(50)

(b)
[
I

]

I

l

I

0

k, L ko, L

0000000000000000~0000000000000000000000$
I I
I I

I I

R,(o)-J. R Y= R+L+q

I IG. 4. Schematic represent'ition of s'imple and pressure
;ippar;itus for state u (where o. =,I; or e for ground or excited
electronic st ites). ( i) The situ ition it, zero pressure. The
s imple is represented by 'i spring of unstretched length /,

spring constant k, and mass r». The pressure is ipplied by

i spring of unstretched length L, ;ind spring const'int 10.
R (0) is the coordin ite of »i it zero pressure. (b) The gen-
er il situation. The m'iss is now it position R, the pressure
spring h'is;in extension q, so th it the right-h;ind end of the
pressure spring is it coordinite Y =R +L.+q. To ipply

pressure idi ibatically, Y is slowly moved to the left fr~)m its
v'ilue [R (0) +L] of F ig. 4(;i). Once pressure is;ipplied, Y

is held fixed. If the mass is in equilibrium R is it R (p~-).
Ihowever, more generally R is not in equilibrium, is, for ex-
'imple, immediately following in optic il excit;ition.

of the pressure apparatus. We label this the "pres-
sure spring.

" The linear arrangement will enable us
to keep track of energy, and to see in quantitative de-
tail why DFS and CBW differ.

For this system the following general relationships
hold, If we define the variable q as the amount the
pressure spring is stretched (so that negative values
of q corresponds to compression)

Y=R +L+q (47)

The pressure, p, exerted by the pressure spring on
the crystal is

p = —kpq (48)

U,o, (n) =E (0) + —k~[R —R (0)]~+—koq2 . (49)

Denoting the total energy of the system of crystal
plus pressure spring as W„,(o.), we have for the sys-

(Note that we assume unit areas so that forces and
pressures are equivalent. ) The crystal potential ener-

gy, U„is E (0)+ , k [R —R (0)]'.—Thepressure

spring potential energy, U~, is —koq'.

Therefore, the total potential energy of the system
of pressure spring plus crystal in state o. , U„,(a), is
the sum of these two terms:

We now note several ways of writing U„„(o). In
the first one, we utilize Eq. (47) to express q. This
gives us

U„„(u)=E(0)+ —,k [R —R, (0)]'

+-l;„(Y-R-L)' .
2

(51)

We note that there are in this expression ti4/o in-

dependent variables, R and Y. Speci%catio» of the
state of the system requires spec'ifii atiorr of both R a»d
Y. The value of Y, which designates the right-h ind
coordinate of the pressure spring, is determined by
two things: (1) the pressure applied to the system;
and (2) the state of the system in which the pressure
is applied.

Equation (51) is especially useful for computing
the optical transition frequencies. Application of the
principle that neither. R nor Y can change in the tran-
sition, together with assumption that R =0, shows
immediately from Eq. (47) that the energy of the
light quantum is

h. = U„„(e)—U,„,(~),
= E, (0) —Es(0) +-, k, [R —R, (0) ]'

(52a)

——,kg[R -Rg(0)]' (52b)

where R is the equilibrium value in the ground state
under the applied pressure. E'quatior~ (52b) is just the

DFS result of Eq. ((5a).
Denoting q, as the value of q when the entire sys-

tem is at equilibrium in state P at pressure p, we can
use Eqs. (47) and (48) to show that

pg = —k()c/~

Y = Rp(p, ) + L —p, /k()

Since

(53)

(54)

R p(p, ) = R p(0) —p. /k p (55)

we get

Y = R p(0) —p, /k p
—p, /ko+ L (56)

Therefore, determinatior? of' Y deperids riot only on

kr1owledge of'the applied pressure, p„but also or~ speci%-

cation of rhe state, P, the systet'n is in when the pres sure

is applied. These differences are illustrated, of course,
by the differences between Fig. 2(a) and Fig. 2(b).

Equation (51) shows that we can plot U„,(o., R, Y)
as a function of R for fixed Y. Taking successive



CHARLES P. SLICHTER AND HARRY G. DRICKAMER 22

Yg
= Rg (0) p, /kg ——p, /kp + L

Y =R (0) p /k p /ko+L

(57a)

(57b)

values of Y gives a family of curves, as illustrated in

Fig. 5. Since in an optical transition neither R nor Y

changes, an optical transition is shown as a vertical
arrow. This is the transition DFS use.

The prescription of'CBW calculates the ground-state

energy by applying the pressure to the system whe» in the

ground electronic state, and calculates the excited-state

energy by applying the pressure to the system when in its
excited electronic state. It therefore picks out ground and
excited states of different Y. Specifically, their prescrip-
tion leads to

requires that neither R nor Y change. The DFS
prescription is to use the values of both R and Y

found for the ground state to calculate U„,for both

ground and excited states.
These considerations can be followed in detail to

show that they account quantitatively for the different
expressions of DFS and CBW. To do so, it is con-
venient to reexpress the pressure spring elastic ener-
gy. Suppose we designate the value of q correspond-
ing to equilibrium at pressure p, as q(p, ). If the sys-
tem were in state P, the equilibrium value of R
would be R&(p, ). Then if the system is in state p,
but R 4 Rtt(p, ) (i.e., the system is not in equilibri-

um), we have

so q =q(p, )+R —Rp(p, ) (58)

Y, —Ys=R, (0) —Rg(0)+p, ——— . (57c)1 1

kg k,
i

We can utilize Eq. (58) to express the pressure spring
elastic energy, U~,

So, although their transition is in a plane of constant
R, it is not in a plane of constant Y. Such a transition
is shown also in Fig. 5. The Franck-Condon principle

Up = —koq (59a)

koqa +koqa[R Rp(pa)]+ ko[R Rp(pa)]

(59b)

DFS

U-U (Rp(p), Yp(p)) In order to guarantee that the pressure does not
vary as R varies (at fixed Y) we want [q —q(p, )]/
q (p, ) « I. This can be achieved if kp « k . We
assume this condition satisfied. Then we can neglect
the third term of Eq. (59b) with respect to the first
two. Utilizing Eq. (48) we can eliminate q, in. terms
of p, to get

I

Q-p(k -k )g e
I——)]

ke UB = (p /2kp) —p [R —RA(p ) ] (60)

p( ———)
I I

kg ke We see now that in expressing the total potential
energy of crystal plus pressure spring we must specify
two quantities n and p to specify state of the system.
We, therefore, write U„,as U„,(n, p) not just
U„,(n). If the system is in state n, but the pressure
is thought of as having been established in state P,
we get

R-Rg {p)

U,„,(n, P) = E (0) + ,
'

k [R —R (0) ]'—

+p.'/2ko —p. [R Rp(p. ) ] . —(61)

FIG. 5. Transitions according to CBW and DFS. DFS
keep both the pressure apparatus ( V) and the harrnonic-
oscillator coordin ~te (R) fixed during the transition in ac-
cordance ~ith the Franck-Condon principle. The technique
of calculation employed by CB% causes ( Y) to ch ange [see
Eqs. (57a) and (57b)].

The last two terms, having origtttated /i om Eq. (55),
represent energy I esiding in the pressui e spring. The
first of them is the energy when the spring length is

q, (p, ). The second of them represents the change in

the pressure spring energy produced by changing the
left-hand end of the pressure spring from R&(p, ) to
R. We note in Eq. (61) that for a given o. we get
diFerent U„,'s depending on whether P is the same
or different from o. .

We can utilize Eq. (61) to express the conservation
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of energy for vibrations of the system in state o. .

In—R +E (0)+—.k [R —R, (0)]

—p, [R —R p( p, ) ] +p.'/2k o
= 8 (62)

Dr, Beall Fowler. This work is supported in part by
the U.S. Department of Energy under Contract No.
EY-76-C-02-1198.

where 8 is a constant determined once R and R ~re

known for a given p, and R&(p, ). Equation (62)
contains both the result of DFS [Eqs. (22) and (23)]
and the result of CBW [Eqs. (35) plus (45)]

I

, mR—+E(0) + —,k [R —R (0)]'

+p, [R —R (p, )] =const (63)

at constant p, .
Taking R = 0 in the ground and excited states we

see that the DFS expression for the frequency of the
optical transition [Eq. (15)] represents the equation

h v(R) = U„,(e,g) —U„,(g, g) (64)

whereas the CBW expressions [Eqs. (24) and (3 lb)]
1S

h v(R) = U„,(e,e ) —U,„,(g, g ) (65)

Clearly Eq (64) is the .correct expression ro use since the
systefn when founcf in the excited state had'i(s pressIIre
established i» the grou»d sta(e, Specifically, the CB H

expression, Eq. (65) coi'respom(s, according ro Eqs.
(57a) and (57b) ro di//ere'&r values Yin rhe ground and
excited states, hence violates the FrancA. .-Condo» princi-
ple.

Substitution of explicit expressions for the U,„,
from Eq. (61) into Eqs. (64) and (65) gives us

b (vR) uts=sE(0) —Eg(0) + —,
'

k, [R —R, (0) ]'

——,'k, [R —R, (0)]',
which is the DFS result Eq. (15a) and

(66)

h v(R)caw = E, (0) —Eg(0) + —,k, [R —R, (0) ]'

——,kg[R —Rr(0) ]'

+p, [R, (p, ) —RE(p, ) ] (67)
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Recognizing that R (p, ) = R, (0) —p, /k we see that
Eq. (67) is the CBW result.

Thus, our example shows that we have been able
to reproduce both the results of DFS and CBW with
the concrete model. The inodel shows that CB8'
violate the FrancA. -Condo» pri»ciple because their Inethoik

of'calculation ilnplies a change in the pres. sI.Ire apparatI, Is

duriiig the optica/ trarisition.

APPENDIX: THE EXPERIMENTAL SITUATION

The justification of ~n analysis must lie primarily in

its consistency and correctness. Since, however, Cu-
rie et al. „have mentioned possible experiments ap-
parently consistent with their ~n ~lysis, it seems desir-
able to bring to the reader's &ttention a few experi-
mental obser vations.

(1) For a large number of ~romatic hydroc arbons
in liquid solution, in plastic films, and in the cryst tl-

line state, shifts to lower energy with increasing pres-
sure are observed for both absorption and fluores-
cence" in contradiction to the CBW analysis. Simi-
lar observations have been made on heterocyclic
molecules. A single configuration coordinate model
should apply to these materials. However, where the
bulk modulus changes strongly with pressure, ~s in

organic crystals and polymers, a strictly harmonic
&n'~lysis can be applied qI.Ia»titati»ely only under some
serious approximations.

(2) The Mn+' ion in a v ariety of environments""
gives ~n emission which shifts to lower energy with

increasing pressure. The absorption &lso shifts to
lower energy with pressure where it c &n be ob-
served. "' ' This is to be expected, as, for this d-' sys-
tem, the energy difference between' ground hand excit-
ed states does not involve the ligand field strength Dq
but only the interelectronic repulsion parameters (R ~-

cah parameters) which have been shown alw ~ys to
decrease with increasing pressure. ' Again, ~ single
configuration co~)rdinate analysis should apply.

(3) The heavy-metal ion in alk ~li halides which
CBW use is not a valid system for applying the same
configuration coordinate to both absorption and emis-
sion. The excited state is Jahn-Teller (JT) split '
~nd the emission is from one or the other (or both)
of the JT states„not necessarily the state to which the
electron is excited. Incidentally, the CBW analysis
predicts that the half width for absorption and emis-
sion should change in the same direction with pres-
sure, while, for the heavy metals in alkali halides, the
absorption half width i»f reases significantly while the
emission peak»ar&owe dramatically ~s pressure in-

creases.
A number of other examples could be cited which

are hard to reconcile with the CBW analysis. For ex-
ample, there are many emission-peak shifts which are
linear with pressure over a range of 100—200 kbar„
e.g, , ruby, "BaSiO~.'Pb (Ref. 12), Ca3(PO3) 2'.Sb:Mn
(manganese em issio n) (Ref. 10) Zn3 (PO4) 2. M n, [

large group of tungstate and molybdate phosphors, "
and a series of phosphates, silicates, and ~luminates
doped with Eu+', '8
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