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Theory of thermoelectric effects in dilute alloys
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The low-temperature thermoelectric coefficient is calculated for a model of fixed impurities, Debye phonons, and
free electrons using an expansion in the inverse powers of valence Z. It is shown that the cancellation of the electron-
phonon corrections to the thermopower found in the previous papers of this series for the case of isotropic
scattering on impurities does not occur in the general case. The convergence of the large-valence expansion is shown

to be fast even for small values of Z 2 1. The first term of the expansion gives a simple approximate formula for the
thermopower. For a class of model impurity potentials, the accuracy of this formula is found to be of order 5%.

I. INTRODUCTION AND SUMMARY

In previous papers of this series' ' the low-
temperature thermoelectric coefficient was cal-
culated in a simple model of free electrons in-
teracting with fixed impurities and longitudinal
Debye phonons through the Frohlich Hamiltonian.
The scattering on impurities was assumed to be
weak and isotropic (s-wave scattering). An un-
expected result of that calculation was a con-
siderable cancellation between various electron-
phonon corrections to the thermopower. It was
shown that these corrections cancel completely
in the limit of large-valence Z. An obvious ques-
tion arising from this result is whether there is
some deep physical reason for the cancellation
or is it purely coincidental. In the latter case
one would expect the cancellation to disappear
in a more realistic model. The purpose of the
present paper is to extend the treatment of Refs.
1-3 to the case of arbitrary (nonisotropic) scat-
tering on impurities. All other assumptions re-
main the same.

The electron-phonon corrections to the thermo-
power can be written as a sum $(') + Q('), where

Q
") is the contribution due to the renormalization

of the electron energy, velocity, and mean free
time and Q(') is the contribution of the electron-
phonon vertex correction. The generalization for
arbitrary impurity potentials is straightforward
in the case of Q(", while Q(') is given by an inte-
gral which cannot be evalua. ted for the general
form of the impurity potential. This difficulty
is resolved by observing that in the limit of large
valence, Z» 1, the vertex correction is nonzero
only for almost backward scattering, i.e., for
k'=-k. Expanding the impurity potential U„- „-

in powers of ~k+ k' ~' near k'= -k and performing
the integrations, one obtains an expansion of the
thermopower Q in powers of (4Z) '~'. The first
term in this expansion is

g = [i+2yr, ()(, —1)-']y(o),

where -y is the energy derivative of the electron
self-energy, A., is given by Eqs. (16) and (1V) be-
low, and g(o) is the thermopower without electron-
phonon corrections. For isotropic scattering,
when U-„), = const, )(,=0 and Q =- P(o). However, it
is clear from E(I. (1) that in the general case the
electron-phonon corrections to the thermopower
do not cancel, and thus the cancellation obtained
in Refs. 2 and 3 was coincidental.

The asymptotic behavior of Q at Z-~ would
be of little interest, were it not related to the cal-
culation of the thermopower for physically in-
teresting values of Z. The main result of the
present paper is to show that such a relation does
exist. The convergence of the large-valence ex-
pansion is shown to be fast even for small Z & l.
For a class of model potentials, the first term
of the expansion (1) already gives good accuracy
(-5%%uo) even for a monovalent metal. If this prop-
erty of the large-valence expansion is not af-
fected by anisotropies of electron and phonon dis-
persion relations, umklapp scattering, and other
real metal features, then such an expansion can
be a useful tool in the calculation of the thermo-
power for a more realistic model of metals.

II. CALCULATION OF P~l)

According to Refs. 1-3, the low-temperature
thermopower of a dilute alloy can be written as

y(o) + y(i) + y(2) (2)

where Q(" arises from the renormalization of the
electron energy, velocity, and mean free time,
and Q

' is the contribution due to the electron-
phonon vertex correction. We have

y(o) + y(&) —~ T
3e 8c

where p is the Fermi energy,

(4)

(5)
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(6)

and v*(e) is the renormalized electron mean free
time,

where e„=k'/2m, M, (e) is the electron-phonon
energy correction v*(e) is the renormalized elec-
tron velocity,

v„+&~a(~)
1 Mf (&) )s,=. '

is the dc conductivity and

7' =)r[Nmk„to (p, )]

is the "bare" electron mean free time.
From E(ls. (3) and (18) we find

~2T 2g(0)
Q" +&]&" = [1+2y —A.,(1+yH.3e p.

(20)

(21)

~*(e)= 7 (~)[1-M'(~)]s„=,

Here

Nk't(e)
v[k/m+()M, (~)/sk], ,=, '

1
f(e) = — IU» I'(1 —cos()» )dfl»

471 gk-Qk

(7)

(8)

(9)

Q(o) is obtained by setting y = 0 in E(I. (21):

OTTO
(1 ),)Sep

and thus

0'" = (2 —)(,)(1—)(,) 'ye'" .

HI. CALCULATION OF P( ) FOR Z&&1

(22)

(23)

and N is the impurity concentration. It is assumed
that the scattering on impurities is weak, so that
the T matrix T» is approximately equal to U»,

According to Ref. 3,
N~(o) ~y(o)

(1 —cos()»')U»'T»'(P ) s

Tkk = Ukk
——Uk k

where

U U x —(k -k')

(10)
(24)

where T)),.(p) is the energy derivative of the elec-
tron-phonon vertex correction' '.

U(x) is the impurity potential. If U(x) is spheri-
cally symmetric, then

(~)
C'U»

p d&)-
4"M,v.n, v. k" +k'-k —P

rr.;=
I
ss- sls' f r((r) si (lisIrss)r r.s

Note that in this case U» is real and depends
only on lk-k'l. We shall assume below that
U(x) is spherically symmetric.

Since M, (p,) = 0 and

].+g
~+k Ek=P

where

y= M,'(~), --
we can write for ~= p:

(12)

(13)

(14)

Here P stands for principal value, v, .is the sound
velocity, M; and n,. are the ion mass and concen-
tration, respectively, C is the Sommerfeld-Wilson
interaction constant and the integration is taken
over the sphere e, ~ = p in the region lk" —kl & q .

The integral (24) for (t)(') with T)'„(9) given by
(25) cannot be evaluated for the general form of
U» . However, a considerable simplification can
be achieved in the case of large valence,
Z=2(k~/q )'» l. It can be shown that in this case,
T» (i(,) is nonzero only for k' very close to -k:
lk+ k'l & q . To prove this statement, let us write
the integral of Eq. (25) in the form

f(.) = t'"(V) [I+),(I+y)(~ —I )/) l .
Here

(15)

(16)),=-) f(o)'(i )/f'"() )

and t(') (e) is t(e) without electron-phonon correc-
tions:

I=m(sin(t)o) '
dy

0

27r
)(' P d(t)(tan op tan~2(C)o+ cos(t ) ',

0

(26)

1f'" (e) = — IU». I'(1 —cosa„, )dA, .4r,k=.k

where g = 8»-, go = 8». and

= arccos(1 —q'/2k+) . (27)

o'" =n, e'~("/m (19)

Using the results of Sec. V in Ref. 1, we can now
write

c*(c)=o(o)(1+[1+2y—)(,(I+y)](e —p)/p), (18)

where

The P integration is elementary; the result is
nonzero only if cosgo/2 & sing/2, and thus I is
nonzero only if cosgo/2& sing~/2 = (4Z) '~' or
sin —,'()( —go) & (4Z) '~'. We see that T)„.(p, ) is non-
zero only near )C)o= v in the limit Z-~.

Assuming that U» does not change considerably
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&f)(2) &f)(o) o(y (Z/2)2/«( I )( )
1

I U I

«/$(o) (p )

where t(o) (p) is given by Eq (1.7) and n is the in-
tegral (16) of Ref. 3. In the limit of large Z,
a= —2(Z/2) '~' and

(28)

P'" = —2y)(, (l —)(,)-'g'",
where

~,-=IU. ,I'/f'"() ).
It can be shown' that ~, and X2 are related by

(29)

(30)

«r 5k'- q we can rep»ce IU» I' by IU«, «I' in the
integral for Q(«). This gives

tegrals, one would get an expansion of the thermo-
power in powers of q'/kz'- Z '~«. The result of
the preceding section, Eq. (32), would then cor-
respond to the lowest-order approximation. In
this section we shall calculate the next few terms
in the expansion of Q.

According to Eq. (12), U» is a function of
Ik- k'I and we can write

IU- I'-=&(~1k- k'I'). (33)

For Ikl = lk'I =k» « lk-k'I'=k~«(l-x), where
x = cos8» . Expanding Ii in powers of kr«(1+x} we
get

)(«= 1+A. ~/2 .
Combining Eqs. (23), (29), and (31) we get

y(» + y(» = 2yg ()( I)-~y(o)

(31)

(32)

IU» I'= &(2k'- k'(1+x))

=E(2k')Q A„2 "(1+x)",
n=0

(34)

%e see that the cancellation of the electron-phonon
corrections to the thermopower occurs only if
A. ,=O; i.e., when t(o)'(p) =0. Thus, the cancel-
lation found in Refs. 2 and 3 for isotropic scatter-
ing was coincidental.

IV. LARGE-VALENCE EXPANSION

where

(35)A
(-2k')" ~")(2k')

n! F(2k«)

Note that 2k''(1+x) =
I
k+ k'I', and thus the expan-

sion (34) is indeed in powers of lk+k'I'.
Substituting Eqs. (25) and (34) in Eq. (24) we

get

Instead of replacing IU». l' by IU, ,I', one could
expand IU» I' in powers of Ik+ k'I'. Substituting
this expansion in Eq. (24) and evaluating the in-

i rz '"
n=0

where

(36)

sing sin(l)o(l —cosyo)(l+ cosgo)"
cosg+ cosgo —cos() cosgo —sing sing, cosq) —l.

(37)

Introduction of new variables x = sing/2, y = sing, /2,
and z = (x'+ y' —I)'~' brings this integral to the
fol m

8(2+ 4 )4+~)6 p,
0 3 45

n= ——$+—$+ ~ .8 4 32 6
1 3 45

~4 to+,2 45

(41)

~ = —16 ~ g'-Z2 n ] —X2+Z2 1/2dZ

0 0
(38)

where )=sin(c) /2= (4Z) '~'. An expansion of n„
in powers of $' can now be obtained by expanding
(1-x'+a')' 'in powers of (x'-z') and performing
the integrations over x. This gives

f t« +« fn z g« +4
n+ 1 2(n+2)

An extension to greater n and to higher powers
of (2 can be easily obtained.

The coefficients A„ in Eq. (36) depend on the
specific form of the potential U» . For example,
if the impurity potential U(r) is proportional to
r with' 1&P &3, then U» —Ik-k'I ' with
o =3 -P and

A „=(n!} 'a (g + 1) ~ (v +n —1) . (42)

where

n+ 2 2n+6 ~

8(n+ 3)
(39)

Using Eqs. (16), (23), (36), (41), and (42) we find

y(i) + y(«) yy(o) (I +&)
- i

1
f„= (I —t') "df .

0

From these equations we find

(4o) x I2g —&(2 —g)(2o —l)g'

—~4«(2 -v)(4v' —1)&'+ j . (43}
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It is interesting to note that the convergence of
this series is fast even for small values of Z.
If P is not too close to 3, say, P &2.5, then, even
for a monovalent metal (Z = I), keeping only the
first term in the expansion (43) would give an
error of no more than 4/g. If P is close to 3, then
0 is small and the second term can be important.
But the first two terms together give a good ac-
curacy for all acceptable values of P.

These results indicate that the large-valence
expansion can be used to calculate the thermo-

power for all values of Z ~ I and for a wide class
of impurity potentials. It should be stressed,
however, that in this paper we considered only a
simple model of free electrons and Debye pho-
nons. Extension of the results to a more realistic
model of metal would be of great interest.
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88epresenting ( U» ~ as E(k O. -x)) with &„=&„=p and

x= ense ~. , we can write t'0' (ii) = m fii S"(u2 (1-x))
&& (].—&) dz. integrating by parts we obtain Eq. (32).

This requirement for P if necessary for the conver-
gence of the integral (12).


