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One-dimensional resistance reduces to one-dimensional Ising partition function
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A resistance p of an arbitrary one-dimensional system of elastic scatterers exactly reduces to a

one-dimensional partition function of an inhomogeneous Ising Hamiltonian. Except for special

cases, lnp is proportional to the length of the system, in accordance with previous work. The
dependence of p on other parameters of the system is discussed. For certain random systems
an explicit formula for p is presented.

The theory of a ID (one-dimensional) resistance of
random systems is important for the very under-
standing of a metal conductivity. ' ~ An efficient ap-
proach to the problem is related4' to the Landauer
formula, which reduces the resistance p to the
transmission coefficient of the system. However, this
formula is complemented by a somewhat less effi-
cient composition law of scatters. In this paper, I in-
troduce a complex "resistance amplitude" R [such
that p= (mh/e') [R ['], whose composition law for a
sequence of scatterers is linear with respect to each of
them. The law provides an exact relation between
the resistance of an arbitrary 1D system of elastic
scatterers and the free energy of a cert~in 1D
(nearest-neighbor interaction) Ising Hamiltonian with
inhomogeneous (e.g. , random for a random system)
"magnetic field" and "exchange integrals. " Such a
Hamiltonian has already been considered' " (e.g. ,
with relation to a helix-coil transition in polymers).
So, apart from general statements on the resistivity
dependence on the system length L (Inp ~1, in ac-
cordance with Refs. I —5), one learns the p depen-
dence (which may be oscillatory) on the parameters
of the scatterers and their position. Also, an exact
formula for p for a certain class of systems (including
certain random ones) Is presented. For any given
system, the obtained equations allow for simple and
convenient computer calculations.

%'e start with the Landauer formula in the form

2

mh Sp=

where S and T are correspondingly the amplitudes of
the reflected and transmitted wave functions
(~S ['+

~

T~'= I ). I introduce a complex "resistance
amplitude" R and "inverse transmission amplitude"
R+:

R = (S/T)", R+= I/T, [R+['——[R ['= I ' (2)

a star denotes a complex conjugation.
Suppose successive elastic scatterers are located at

the points x =x],x2, . . . , xn, . . . , and Rn, R„+ refer

to the composition of the first » scatterers, while

r„,r„describe the scattering by a single»th scatterer.
Then one easily obtains'4 the (linear in R) relation
which is of the same nature as the usual law6

n+1
. +

Rn+1 =
,
t'n+1 ~

R+
n

Rn=
R n

(3)

r„=F„exp[—ik (x„+/ +x„)] (4)

R„' = R„exp(iskx„+~), s = +I

k being a wave vector. Now Eq. (3) can be written as

G„+~ =F +~G„+i a(F„+~ ) G„'.
G„=R„+ia(R„)', (r =.+ I

Thus, the equation for the real 3„+ and imaginary
parts of Gn reads

gs ssr gsr
n+1, 0 n+1, cr no. (7)

3„+ = ReGn, 3„=ImGn (7a)
+ .

where a„"' is real; its relation to t„ is obvious.
Later, until Eq. (12), we omit the subscript o. for
brevity.

Equation (7) is very convenient for computer cal-
culations for any given (random, periodic with incom-
mensurate periods, etc. ) system.

Quantities a„"' can be presented in the form
y $$ r

a„'*'= ( —I) " exp( in~a„'*'~), I —2s„"'= a„"'/la„"'I

(8)
—In[a„"'

~

= y„+5„s + K„s'+ X„ss' (9)

s„" =$„+q„s+$„s+v„ss
The coefficients in Eqs. (9) and (10) are easily relat-
ed to a, 0; the coefficients in Eq. (10) change only
when a„"' changes its sign.

(10)

To exclude in this relation the dependence on the ab-
solute position of the scatterers, we perform the
transformation

r„+=F„exp[ik (x„+,—x„)],+
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Equations (7)—(10) provide

N

AN II (ak rrs pk )
k~1

(13)

In particular, for a random sequence of two different

A„*= X (—I) 'exp( —H, ) = X(—I) 'Z, (Hk), (11)
«'k» H~

where H& and H, are Ising nearest-neighbor interac-
tion Hamiltonians [with H, always integer and, e.g. ,

H, = —X„",In (ak" " ' (, s„=s, with In )a ( from Eq.
(9)j and Z, (H~) is the partition function for H, and

the fixed value of H&, "temperature" equals one.
The calculation of Z, (H~) reduces to the calculation
of the partition function for the 1D Ising Hamiltoni-
an H„=H, —p, H& with p, being a chemical poten-
tial. " This completes the exact evaluation of the
resistivity of an arbitrary ID system, as, by Eqs. (I),
(2), (4), (6), and (7a):

p = (4e'/rrt) [(An+ —AN )'+ (An+ —An: )'j, (12)

N being the total number of scatterers.
When absolute values of exchange integrals are

large, the free energy for the Hamiltonian of H„ type
was determined' "as an explicit function of its
parameters (see also Refs. 11 and 10). The main
qualitative results (unrelated to the values of ex-
change integrals) are as follows.

(a) All sequences of scatterers (except for those of
measure zero), and in particular random ones, have a
negative extensive free energy. '6 Thus, lnp ~ N (in
accordance with Refs. I —5). This is vividly demon-
strated by the case of real 7 „+~ = a„+~ and ir„~~ = P„~~
in Eq. (5), when A~ in Eq. (12) exactly equals

scatterers (denoted by superscripts) with concentra-
tions C"' and C"'

InIA& (
= N ( O'" In la"' —os P'"

I

+C"'Ini '"— sP"'i) . (13a)

(b) When a "magnetic field" in H„changes its
sign, an oscillatory dependence of p on the charac-
teristics of scatterers and their position is possible.

(c) A "special-type" situation is illustratgd by a+
periodic sequence of identical scatterers; F„=r
Then in Eq. (12)

An = U' cos(Ncu)+ V' sin(Nco), cosro=ReF

(14)

the constants U', and V' are easily obtained from
the boundary conditions (for N = I, 2). When
ReF ( 1, i.e., the Fermi energy is inside the band,
created by scatterers (this must always, be the case in

metals), the resistance is finite (and may be zero)
and oscillates with N.

The reduction of the resistance problem to the Is-
ing free energy allows for the application to the prob-
lem of powerful thermodynamic methods (e.g. , scal-
ing) and for the investigation of various kinds of ID
systems and of transitions between different p depen-
dences on the parameters.

For an arbitrary dimensionality, Eq. (3) remains
valid, once its parameters are replaced by the ap-
propriate angle dependent ones, and the presented
approach is applicable.

Note added in proof. After this paper was submitted,
I learned about a similar approach by E. Abrahams
and M. Stephen, J. Phys. C 13, L377 (1980).
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'4For the waves exp(+ikx), incident from opposite direc-

tions, R+'s coinside, while (iR )'s are complex conjugat-
ed. Thus, if in the region x, where x„(x & x„+[ and the
potential energy is zero, the wave function is

p exp(ikx) +g exp( —ikx), and r~ =1/7'„, I'„= (A„/T„)
then [accounting also for Eq. (2)] &„+]=&„+pT&',
=p7.„+[,g =pA.„+)=-pv„+((r +[); p = T„+gT„R„.
These relations provide Eq. (3),

' Z~ (H&) exactly equals the factor, multiplying exp( p H &) in

the partition function for H„; the calculation of A„' in

some cases may imply more accurate than usual calcula-
tion of Z~(Hz). Alternatively, Eq. (11), due to (—1)~
= exp(im. H), reduces to the analytical continuation of the
thermodynamic potential 0 to p, =i m.

' This immediately follows from min E (0, where E is

the ground-state energy of H„.


