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The hypothesis of universality implies that for every scaling relation among critical exponents
there exists a universal ratio among the corresponding critical amplitudes. lf one writes 8 I(Ip,

, C+-Ir
I &, and t'&&Ir I

" [where r = {p, —p)/p„p being the concentration of nonzero

bonds, and +(—) stands for p & p, ( p ) p, ) j for the leading singular terms in the probability

to belong to the infinite cluster, the mean number of clusters, the clusters' mean-square size,

and the pair connectedness correlation length, then it is shown that the ratios AF+/AF, C+/C,
Ay+8 C+ (0/(p and AF+(('0 ) (t'I is the dimensionality) are universal. Similar quantities are

found for the behavior at p =p, (as a function of a "ghost" field). All of these universal ratios

are derived from a universal scaled equation of state, which is calculated to second order in

e =6 —d. The (extrapolated) results are compared with available information in dimensionalities

~l =2, 3, 4, 5, with reasonable agreements. The amplitude relations become exact at d =6, when

logarithmic corrections appear. Additional universal ratios are obtained for the confluent correc-

tion to scaling terms.

l. INTRODUCTION AND SUMMARY OF RESULTS

The behavior of percolation models near the perco-
lation threshold involves singularities which are very
similar to those of systems undergoing thermo-
dynamic phase transitions. ' As the concentration p
of nonzero bonds approaches the percolation concen-
tration p, from above, the probability of a bond to
belong to the infinite cluster decreases as

where r =(p, —p)/p, . The function n, (p) denotes
the average number (per bond) of clusters containing
s bonds. Equation (1.1) is very similar to that
describing the order parameter in a thermodynamic
phase transition. Similarly, other moments of n, ( p)
also exhibit singularities. In particular, one can de-
fine the singular parts of the mean number of clus-
ters F and their mean-square size S, '

r

F(p) = Xn, (p)
$

sing

5( p) = Xs'n, ( p)
, sing

where the amplitudes AF+(and C+' and AF (C ) refer
to r )0( p & p, ) or r (0( p ) p, ), in analogy to the
free energy and the order-parameter susceptibility.
One can also define correlation lengths for the pair
connectedness

(1.4)

Introduction of a "ghost field"' H yields the critical
"isotherm"

'I

OO

P ( p„H ) = 1 —X sn, ( p, )e '"
t

s 1
, sing

=EH'» . (1.5)

One should note that throughout this paper we al-

ways refer to bond percolation and not to site percola-
tion. Similar relations (1.1)—(1.5) may be written
for the latter problem.

Much progress has been achieved in recent years in

the determination of the various exponents appearing
in Eqs. (1.1)—(1.5), using series expansions, Monte
Carlo simulations, renormalization-group calcula-
tions, and experiments. ' The exponents turn out to
be uttiversal; i.e., they depend only on the dimen-

siottality of the systems considered and not on any
other specifics (such as the lattice structure). In the
theory of phase transitions it has become clear that in
addition to the exponents, the amplitudes which ap-
pear in Eqs. (1.1)—(1.5) must also obey universal re
lations. ' This led various authors to search for
analogous relations in the percolation problem. The
present paper is devoted to this question.

Much of the current understanding of percolation
processes is due to the realization' that these
processes can in fact be described by the limit q 1

of the lattice-gas phase transitions associated with the
q-state Potts model. In particular, this correspon-
dence has been used to identify d =6 dimensions as
the upper critical dimensionality, above which mean-
field theory (i.e. , percolation theory on Cayley trees' )
becomes correct, and to expand critical exponents in

powers of e =6 —d. ' ' This ~ expansion has also
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w,'/w;= ——,
' (i+ —,",.) +O(a'),

c+/c-= y/p+ o(")= 6- 1+o(.'),
C+P-SB8-I 28-2 + O ( &3)

Rc=a(2 a)(l ct.)Ar B 2C+

= —,
' (1+—', e) +O(a'),

(1.6)

(1.7)

been used by Stephen" to derive the distribution
function n, ( p) and the equation of state P ( p, H)
[Eq. (1.5)] to first order in e. However, we are not
aware of any earlier discussion of universal amplitude
ratios in this context. In the present paper the
Universality 6f sUch ratios is discussed, and val.'ious
ratios are calculated as expansions in e =-6 —d. Some
of the present results can also be derived, after some
algebra, to a lower order in ~, from Ref. 11.

For convenience, the final results of this paper are
listed here. The amplitudes in Eqs. (1.1)—(1.5) are
found to obey the following universal relations'.

F(p)g(p)"=Olinl t/ tlat, d=6 . (1.22)

with the universal amplitude

0 =7K6/24=7/293m' (1.23)

In addition to these results, one can discuss con-
fluent corrections to the leading singular terms. ' Equa-
tions (1.1)—(1.4) should in principle be multiplied

by the factors (1+a~ltl""), (1+ar-+ltl""),
( I +as lt l""), and (I+at—ltl""), with' '

Ql=e —e +O(e )671
(2)3'7'

As in the thermodynamic case, the ratios

(1.24)

where to is some nonuniversal constant. The ampli-

tudes in Eqs. (1.17)—(1.21) obey the same universal
relations (1.6)—(1.10) in the limit e 0. The rela-

tion (1.11) must however be replaced by"

go+/go ——1+—,', e+ O(e') =2v+ Q(e') (1.10) a~/aF-+=1+0(e), a~/as—
+ =1+0(e)

a,/ar-+=12/5+0 (e), (1.25)

(R)+)~=a(I —a)(2 —a) A~+((a+)~

7K'
1 — —.+O(e),

223272

A= 1+ 443
7 223273

e +O(e )

P=l — e —— — e +O(e )61
7 223273

y=l+ —e+- e +O(a ),565
7 223273

5=2+ —a+ 565 e'+ O (e'),
7 (2)32'73

(i.i2)

(i.i3)

(1.14)

(1.15)

2v=l+ —e+ — e +O(e )5 589
(2)3 7

(i.i6)

At d =6, the power laws (1.1)—(1.5) have toga
rithmie corrections' '

where Kq ' =2 'm 2I"(d/2).
In these expressions, the exponents should be in-

terpreted as their corresponding ~ expansions9'o

are also universal. "
The outline of the paper is as follows', In Sec. II

we recapitulate the hypotheses of scaling and universali

ty, and show how all the amplitudes can in fact be
determined once two of them are known. Section III
contains a detailed calculation, to order —e2, of the
scaled equation of state The cal.culation is performed
using diagrammatic expansions for the q-state Potts
model in the limit q 1. Details of some calcula-

tions are given in Appendixes A and B. The correla-
tion length amplitudes are derived, to order —e, in

Sec. IV. Appendix C contains an alternative ca)cula-

tion, based on the renormalization-group recursion
relations. These results are used in Sec. V to obtain
the amplitudes of the confluent corrections to scaling

and the logarithmic corrections at d =6. The results
are evaluated numerically, and compared to existing
data (from series and Monte Carlo) in Secs. VI and
VII. Section VIII contains final comments and con-
clusions. The structure of the paper allo~s anyone
not interested in the technical derivation of the
results to skip Secs. III—V, and go over to the nu-

merical results.

P (p) =Bltll lnlt/tall"

F(» =&r*ltl'lInlt/toll'" .

s(p) =c ltl ')lnlt/toll' !',
e( p) =io'ltl '"llnlt/tol)""' .

P ( p„H ) = E l
H l

'"
l —,

'
in l H l

t' ',

(i.i7)

(i.20)

(1.21)

II. SCALING AND UNIVERSALITY

P„(p, H) = 1 —X sn, ( p) e '"
g~] , sing

(2.1)

Using the concept of the "ghost field, " one can gen-
eralize Eq. (1.5) to the form'
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Similarly, Eqs. (1.2) and (1.3) may be generalized and

t I

F( p, H) = Xn, ( p)e '"i"
.

j sing

S ( p, H) = $s'n, ( p) e *"
S

(2.2)

(2.3)

-+ -+
The universal constants C, A are given by

C+ = lim [x"/h (x ) ]

(2.1 5)

(2.16)

Note that P and S are related to the first and second
derivatives of F with respect to H, in full analogy
with the phase transition case. This analogy leads
one to the scaling hypothesis'

A = —PJ~ dyy h (y) (2.17)

etc. These results immediately yield the universal
ratios (1.6)—(1.9),

F(p H) =

gati'

5+(H/lti~') (2.4)

Appropriate derivatives then yield the usual scaling
relations among the exponents, e.g„P=2 —a —P5,
y =P(5 —I). In fact, the hypothesis (2.4) is a conse-
quence of the assumption that the function n, ( p) has
the scaling form'

and

AF+/AF =A /A

C+/C- = C'/C

R„=C

Rc=~ C

(2.18)

(2.19)

(2.20)

(2.21)
n, (p) =qps 'f(q, (t(s ), s )) I (2.5)

with qp and q] being nonuniversal amplitudes, and

r =2+ I/5, o = I/P5=1/(P+y) (2.6)

This is due to the fact that n, ( p) is simply the in-
verse Laplace transform of F( p, H), Eq. (2.2). '

Instead of using Eqs. (2.4) or (2.5), we find it

more convenient to write P ( p, H) in a scaling form,
and then invert it to find'

H/P„' = h (t/P„u~ ) (2.7)

For completeness, we now summarize the discus-
sion of Refs. 2 and 3. We define two nonuniversal
constants xp and hp

hp=h(0), h( —xp) =0

Rescaling h(x) by hp and x by xp we arrive at a
u»iversal equation of state scaling fun'ctions

h (x) = h (x/x, ) = h h (x) .

(2.8)

(2.9)

8 =Xp&

C+= lim [x"/h(x)] =xvh 'C

(2.10)

(2.11)

C = Pxp
' /h'( —xp) = xp" hp 'C (2.12)

a(1 —u)(2 —u)Ar+= —P J dyy h"'(y) =hpxp 'A+

(2.13)
t

a(1 —a)(2 —a)Ar =P nxp 'h'( —xp) +xph"( —xp)
t

p

+ J"„dylyI h"'(y)

= hpxp 2A (2.14)

All the amplitudes in Eqs. (1.1)—(1.3), and (1.5) are
then directly related to xp and hp"

We next turn to the correlation functions. Denot-
ing the Fourier transform of the pair connectedness
function' by X(k, t, P ), the scaling assumption im-

plies the form3

X(k, t, P ) =)t[ vZ(tP '», k[t[-") (2.22)

The function Z(x, 0) is directly related to the func-
tion h (x), since X(0, t P ) = 5 ( p. H). Therefore,
one needs only one additional nonuniversal parame-
ter to obtain a fully universal function Z(xy). For
r & 0, this is chosen so that'" for y && I one has

Z(0,.v) =C'[I+(spy)'+0(((py)')] ', (2.23)

with gp+ having been defined in Eq. (1.4). For t (0,
a similar expression is applied to Z( —xp,y). The hy-

pothesis of tvvo scale factor uttiv-ersali-ty" states that in

fact hp, xp, and gp are not independent. They are re-
lated via the universality of the combination (1.11).
In Ref. 3 it was shown (in the context of the usual
critical phenomena in d =4 —e dimensions) that the
universality of R~+ indeed follows from the basic as-
sumptions of the renormalization-group approach. "
Exactly the same analysis can be carried over to the
present case. We shall comment further on the
renormalization-group approach to the percolation
problem below, in Appendix C.

We have thus expressed all the universal ratios in

terms of the universal functions h(x), or z(xy).
We next turn to the calculations of these functions.
There are various ways to carry out this calculation.
To order —e, most of the necessary results are hid-

den in Ref. 11, which used a direct diagrammatic ex-
pansion. Alternatively, one can follow Pytte's exten-
sion of the recursion relations approach to the "or-
dered" phase. ' In what follows, both approaches will

be used.
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III. EQUATION OF STATE

In what follows we adopt the formulation of Refs.
7 and 9 of the q-state Potts model. Since we aim
here at order —e2 results, we shall describe in detail a

diagrammatic calculation, similar to that of Brezin
et al. '4 for the usual phase transition problem. How-

ever, various aspects of the problem are easier to see
from a renormalization-group calculation like that
done by Pytte. ' We shall describe some to these in

Appendix C.
The Potts-model Hamiltonian can be written in the

form9

q 0,'
0"

q —o, +1
t

]/2 0 ifi &o.,
x'1 ifi=o. ,

—1/(q —n) if i ) u.
t

q-state Potts vector model,

H =-J X A(x) A(x )
(xx )

one has

q-[
Q;;=/A a;,'

a 1

with

(3.3)

(3.4)

(3.S)

(ro+k ) Xg;;(k)Q;;(—k)
i~1

+ w Xg;;(k)g;;(k )Q;;(—k —k ), (3.1)
i~1

where Q;; are the diagonal elements of a q xq di-

mensional traceless tensor. Integrals are performed
over a spherical Brillouin zone ~k~ (1. Expectation
values of correlation functions in the disorderd phase
have the form

Q;;= —c(g+g)+q;;, i Al (3.7)

Adding a fictitious field HA t(x), the Hamiltonian
can be written in the form

In the "ordered" phase we now set'

A (x) = (A ) +Z(x) = QS, +2( x ), (36)

(Q is proportional, when q 1, to P ) and therefore

gtt=c(q —1)(g+g), c=[q(q —1)] '

(g;;(k) g, ( —k) ) = (g; —1/q) G(k) (3.2)
3C 3Qp +QC ] (3.8)

with G (0) = 2/r = X being the susceptibility (propor-
tional to S). In terms of the components A of the with

q

(r +Lk)2Z(k) 2(—k) ——' (rr+k2) Xq;;(k)q;;( —k)
/~2

(3.9)

Xt =[H — rag +3w(q ——2)g ]Z(k =0) ——[ra —rL —12(q —2) wcg] ZZ

rra—
4 (ra —rr+12wcg) Xq;;q;;+(p 2)cw ZZ—Z —3wc „&Xq;;q;;+ w Xq,,q,,q, ,

al
(3.10)

We have introduced IL and IT as the actual renormal-
ized "masses, "24 defined via

(g(0) 2(0)) = GL(0) =2/rL

the equation of state will be given by (A, ) = QS t',

1.e.,
(3.12)

Figure 1 shows the diagrams which contribute to this
equation. Explicity, this yields

(q;;(0)q&&(0)) = 8& — Gr(0)1

q —1
t

/
I
t I

II

(3.11) r
/

I

The angular bracket now means a thermodynamic
average with the full Hamiltonian X.

We next expand all averages in a perturbation ex-
pansion in 3Ct. In addition to the conditions (3.11),

(b)

FIG, [. Dia'grams contributing to the equation of state
[Eq. (3.13)]. (a) Order —e, (b) order —e2. Full (broken)
lines denote GL(GT).
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H = —roQ —3 wc (q —2) Q +3 wc (q —2) Ji ( GL —Gr)

—54w c (q —2) Jt~~ ((q —2)'GL( k ) GL( k ) [GL(k + k ) —GL(k) ]

+(q -2) G, (k) G,(k') [G,(k+ k') —G,(k)] -2G, (k) G, (k ) [G,(k+ k')- G,{k)]

q(q——3) Gr(k) Gr(k ) [Gr(k + k ) —Gr(k)] ]+ (3.13)

with the propagators GL =2/(rL +k ), Gr =2/(rr+k ). The subtractions in the last term arise from "mass"

renormalization terms which were already included in the term preceding it.

Similary, Eq. (3.11) yields (Fig. 2)
1 I

2 2 4 0 4
rL =t —12wc(q —2)Q —36w c (q —2) (q —2) ~ GL' ——+ Gr' ——+

rr = r +12wcQ —36w c 2 GrGL ——+q(q —3) Gr ——+4 4
k4 k4

(3.14)

where we define t = ro —ro„with

ro, =36w c (q —2)(q —1) JI (4/k )+ . (3.15)

denoting the critical value of ro, at which IL =IT
=Q =0 when H=O; i.e., p =p, .

Note that rL satisfies the relation rL = B(2H)/BQ,
whereas in the general case there exists no simple re-
lation between rr and 2h/Q. (A Ward identity can
be constructed, relating rr 2H/Q —6w—cqQ to
higher-order correlations. ) Substitutions of the results
[Eqs. (3.14)] into Eq. (3.13), together with replace-
ment of ro by t, in the limit q 1, finally gives our
equation of state. The parameter ~ must be chosen

at its appropriate fixed point value. Noting the
equivalence between the recursion relations with
large rescale factor b and the e expansion, "we use
the value found by Priest and Lubensky9; i.e.,

144Kqw = —&+ 629 +
7 (2)3273

(3.16)

Details of the calculations of the various integrals are
given in Appendix A. It should be noted that the
percolation limit q 1 is rather delicate. Clearly, in

that limit one does not expect to have two different
susceptibilites. Indeed, Eqs. (3.14) yield

I

rr —rL =12wc(q —1)Q —36w c 2 Gr(GL —Gr) —(q —2)' (GL —Gr) +

=12wc(q —1)Q+36w'c (rr —
rL& (q —1)(q —3) Jl Gr'GL+

4 (rr —rL)(q —2) J~ GI.'Gr' + . (3.17)

Thus, we see that in the limit q 1 one has I~=rL =I, the limit being approached as

(rr —rI )/(q —I) 12wcQ 1 —72w2 G3+108w3cQ G4+ (3.18)

FIG. 2. Diagrams contributing to the inverse susceptibili-
ties [Eq. (3.14)j and correlation functions [Eq. (4.2) j. (a)
Contribution to IL, (b) contribution to I'q.

One must be careful with this limit, since all the
terms in Eq. (3.13) involve combinations of integrals
which tend to zero as I.

L I ~. These are multiplied
by powers of c = [q (q —I ) ] ', finally yielding finite
contributions as q 1. Note also that Q is always
multiplied by i, so that the actual order parameter to
be used is P =Q/c.

Leaving all further technicalities to the Appendices,
the final equation of state in the limit p 1 has the
form
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2H/Q = t +6weQ +72K&w2[1 +144Kdw~(2 lnr +3+2weQ/r) ] [r (2 lnr + I) —
&

er( lnr +In r) ]

—1296(Kqw')'[r(12in'r+104lnr)+6wcQ(16in'r+
3

Inr)]

405

(3.19)

with r given by Eq. (A5). We note here that the
coefficients in the last term were deduced assuming
that the critical exponents obey scaling (Appendix B).

We can now follow Eqs. (2.8) and (2.9), and elim-
inate the nonuniversal amplitudes hp and xp. In our
case, these are given by Eqs. (B4) and (B6). A tedi-
ous but straightforward calculation then yields

h(x) =2' a x+1 + —1+ (x+2) ln(x+2)565&
7 223272

l

-( ) X
y (n -1)p-

n 1

This expansion involves a// integer powers n, and not
only the even ones which appear in the (time-rever-
sal symmetric) magnetic case. '9 The coefficients g„
are universal, given by

(3.26)

One does not encounter here the problem of positivi-
ty of h, arising in the usual n-component spin prob-
lem. '4

(ii) For large x, one expects

2

+ ', (x+4) in'(x+2)
2 72

(3.20)

The fact that xp and hp indeed cancel out from this
result proves the universality hypothesis to order ~'.
Note that the coefficients et and c2 [and in fact all

the order a' constants appearing in Eq. (3.19) or in

Eq. (Bl)] drop out of the final result. Note also that
the powers of c = [q (q —1)] 't2 also dropped out, so
that Eq. (3.20) is directly related to the percolation
equation of state [Eq. (2.7)l.

Equation (3.20), together with Eqs. (2.1)-(2.7),
now enable us to calculate the universal ratios
(1.6)—(1.9). Direct algebra yields

rt, =2' '+O(a')

~, = 2'-'(8-1) + O(")

a1+ 222a +O(a)23 817
3 7 223272

etc.
(iii) For small x, h(x) is analytic, with

h(x) = X h;x' .
iW

(3.27)

(3.28)

C+= lim [x"/it(x)] =2' '+O(a') (3.21) The coefficients h; are again universal, e.g. ,

(3.22)

(3.23)

C =p/t ( I) =2'-'p/y—+O(a'),
taboo

A = —P &
dy y h'"(y)=2 aP(1+

7 a) +O(a2)

(3.29)

IV. AMPLITUDES OF CORRELATION LENGTHS

W =p ai (—I) + I (-I) + dy y k'"( —y)

= —2-'p(5+ —,'a)+O(a') . (3.24)

h(x) =2' 'y(x+I), x+I « I (3.25)

Together with Eqs. (2.18)—(2.21), these yield the fi-
nal results [Eqs. (1.6)—(1.9)].

In addition to these results, a few more comments
about h(x) are appropriate:

(i) In the vicinity of the "coexistence curve, "

x —I, the function h (x) is completely well

behaved

We now turn to the pair connectedness function, to
derive the correlation length. The equivalence of the
percolation problem to the q-state Potts model relates
this function to the Potts order-parameter correlation
function. ' In the notation of Sec. III, this becomes
[up to factors of (q —1)]

X(k, t, Q) = (Z (k) 2(—k) ) = GL(k) +diagrams

(4.1)

The necessary diagrams are again those shown in Fig.
2(a), yielding

t

2[X(k, t Q)] '=rL+k +36w c (q —2) GL(k )[Gt(k +k) —GL(k )]
t

+ Gr(k )[Gr(k +k) —Gr(k )] + (4.2)
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In the limit q 1 we can again combine the integrals in the large parentheses,

=(q —1) J G(k )[G(k+k) —G(k)]+(rr rL—)—JI G(k )[G(k +k) —G(k )]+0[(q —1)'], (43)
Q)'

so that in this limit [see Eq. (3.17)]

2[X(k, t, Q)] '=r+k +36w J G(k ) J G(k )[G(k+k ) —G(k )]

+12wcQ— G(k ) [G(k + k) —G(k )] +
Q) J

t

(4.4)

This can now be used to evaluate the full correlation function in scaling form, as done by Stephen. " For our
purposes we need only the small k behavior of X [Eq. (2.23)]. Expanding the integrals in power of k and using"24
Eq. (A4) and a similar result for J k'G4, this becomes

G(k ) [G(k + k ) —G(k ) ] =k2 ——„G3+—, „(k')2G4 +O(k ) = k2Kd[ —lnr +
9 +O(r)] +0(k ) (4 5)

t

and thus

2[X(k, t, Q) ] ' = r [1 + k'r '

r =12wcQ +diagrams is given by

2/r = S ( p„H ) = 8P ( p„H ) /BH = C'H «taa, (4.14)

+ ]

x [1+36Kdw'( —, lnr+ 9 +8wcQ/r)]

(4.6)

with

Cc= E/8 (4.15)

Comparison with Eq. (2.23) therefore identifies (, Therefore,

g = r '[1+36Kdw ( 3
lnr +

9 +8wcQ/r) ]

Substituting for w [Eq. (3.16)l we find

e 5 8wcQ
28 9 )

(4.7)

(4.8)

with

gcH —v/P8

t t ]/(2 g)

@1+ llaC
23327 2

J

(4.16)

(4.1 7)

where we identify

«t =2 —y/v = a/21+0(a')— (4.9)

r =2[X(0,t, Q) ] ' = 2(C [t )
«) ' (4.10)

For H =0, ) was defined as the inverse susceptibil-

ity [Eqs. (1.3) and (3.11)]; i.e.,

We have thus related P and C' directly to F., and Eq.
(1.8) can be used to relate these to other amplitudes.
Dividing Eq. (4.12) by Eq. (4.13), and using Eq.
(1.7), finally yields the result Eq. (1.10).

We finally turn to a discussion of two scale /actor--
universality, i.e., Eq. (1.11). Combining Eqs. (1.11),
(2.11), (2.13), and (4.12) one finds

Therefore, Eq. (4.8) reduces to Eq. (1.4) with
' 2/(2 —8)

a 5+8wcQ C
28 9 I' 2

For t & 0, Q =0 and we have
' ]/(2-q)

Se C+
2'3'7 2

(4.11)

(4.12)

gg
'

+ ' d/(2-g)

«+)'=1+ '
23327 2

where one uses the scaling relations 2 —o. =de
= dy/(2 —«t) to cancel the powers of xo and

(d —2+ «t)/(2 —«t) = 2P/y = —2/(8 —1)

(4.18)

For t ( 0, to lowest order, r =6wcQ [Eqs. (A5) and

(Bl)], and thus

to obtain the power of ho. Substituting ho from Eq.
(B4), and using Eqs. (3.21) and (3.23), one thus
finds

t

( 1 + 17m

23327

i/(2-~)
C
2

(4.13) (Pr+ )d (12wc)
—2[1 + e + O (&2) ] (4 19)

Note that in fact Eq. (4.8) is quite general and will

also yield the correlation length at p„when

As in similar calculations, one must now replace
(12wc)' by its fixed point value [Eq. (3.16)]. This
fact is further explained in Appendix C. Noting that
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+DPy 'i" + ] (4.20)

Since the function Z(0,y) is explicitly given by

Stephen [Eq. (5.4) of Ref. 11] we do not elaborate on
these amplitudes here.

V. CORRECTIONS TO SCALING AND d 6

Appendix C reviews the results of an order —e
renormalization-group calculation for the Potts
model Hamiltonian. The final results are summa-
rized in Eqs. (Cl1)—(C14) and (C19)—(C23). Ex-
panding Eq. (Cl1) for small t we find

((: = got "(I +apt"") (5.1)

with ar+ =Sa/42, a = [(w"/w) —1], Similar expan-
2 + 2

sions for X(ccS) and F yield as+= —a, aF+= —a.
Below T, one finds the same results for a~, aq, and

ar and also ae= 7a. (Note that P m g. ) Thus,2

one sees that indeed the nonuniversal amplitude a
drops out of any ratio of two such amplitudes, and
the remaining universal ratios are as quoted in Eq.
(1.25).

As noted in Ref. 17, we mention that to this
(zeroth) order in a one has

ae/ar-+= —(p —I )/(a+ I )

ae/a)(~ = —(p —I )/(y —I )

ae/a p = —(p —1)/(v ——')
2

(5.2)

Since the next order in ~ is not yet available, the two
estimates (1.25) or (5.2) (in which the actually mea-
sured exponents a, p, y, and v are substituted) give
a measure of the error involved in extrapolation to
d (6.

It should also be mentioned that ratios like Eq.
(1.25) are directly related to ratios of effective eriticat

exponents If Eq. (5.1).is approximated by g«tt
then"

v, tt = v —0)va ) t
~

"" (5.3)

with t being some average value. If y, ff is measured

the "free energy" F defined in Eq. (1.2) is related to
that of the corresponding Potts models via a factor
(q —1), which cancels the factor c ' in Eq. (4.19),
this finally yields Eq. (1.11).

In addition to the universal amplitudes already dis-

cussed, there are also amplitudes which appear in the
pair connectedness function at t = H =0, when one
expects'

Z (0 y) y-(2-q) [D + D ~y —((—a)lv

over a similar range of t then

(y, tt
—y)/(vcff v) =as/ar= (y —I)/(v —

q
) . (5.4)

In the limit of six dimensions [e 0] Eq. (C7) be-
comes

W = I + (7)72K~ w'~ Int
~

(5.5)

Substitution in Eqs. (C6), (C8), and (C9) then yields
Eqs. (1.20), (1.19), and (1.18) with the amplitudes

$0, C, and Ar obtainable from Eq. (C14) by replac-
ing ( w/w )~ by (7)72Kw~. Similar substitution in

Eqs. (C20) and (C22) [using Eq. (C21)] yields Eq.
(1.17) and)~

H =Dg'I lngl (5.6)

Inversion of this now yields Eq. (1.21), with D = F.

again given by Eq. (C23) with (w/w")' (7)72
xKqw'. The factor —, multiplying the log in Eq.
(1.21) has been included so that all the amplitudes in

Eqs. (1.17)—(1.21) obey the e 0 limit of Eqs.
(1.6) —(1.10). This may be verified by a direct mul-

tiplication of the appropriate amplitudes, in which all

the factors involving the nonuniversal parameter w

drop out.
There is however an exception. %hen one multi-

plies Eq. (1.18) by the sixth power of Eq. (1.20) one
finds

F( p)4( p) AF (40)'I lnt I (5.7)

Equations (C14) with (w/w')' (7)72Kqw' then
show a cancellation of w~, leading to Eqs. (1.22) and
(1.23) "

VI. NUMERICAL VALUES

The results at d =6 [Eqs. (1.6)—(1.10) with a=0
and Eqs. (1.22) and (1.23)] are exact, and therefore
should offer a direct check for the universality, scal-

ing, and renormalization-group theories. Extrapola-
tion of the results [Eqs. (1.16)-(1.11)] to finite
values of ~ is not unambiguous. Houghton et al. '

undertook a detailed study of the extrapolation of Eq.
(1.24) down to d =2 (a=4). Clearly, the direct sub-
stitution of e «2 in Eq. (1.24) is nonsensical, as it

yields negative values. A simple Pade analysis gave
co =0.568, 0.793, 0.914, and 0.989 for d = 5, 4, 3, 2,
while two variations of the Pade-Borel summation
procedure gave eo =0.614, 0.925, 1.13, 1.28 or
ao =0.582, 0.831, 0.973, and 1.07. This gives a feel-
ing for the uncertainties involved.

The situation with other critical exponents involves
similar uncertainties. For example, Eq. (1.14) may
be written as
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2y=1+ —~+ 1—
7 223273 223272

565
' '

1 313,1

'

1— 1 ——6' ——--
2'3 7

~

7 223'73 (6.1)

The second and the third expressions gives y =1,21, 1.80, 12.(), and —1,0 or y =-1.20, 1.63, 2.91, and 43.5 for
d =5, 4, 3, 2. Only the first expression, i.e., a direct substitution of e in Eq. (1.14), gives resuits which compare
well with other sources. Equation (1.14) yields

yeexp, '= 1.189, 1.469, 1.840, 2.304 for d =. 5, 4, 3, 2

to be compared with

yother 1.2, 1.5, 1.7, 2.43 for d = 5, 4, 3, 2

which Stauffer' collected and averaged from series and Monte Carlo data.
Results for P are somewhat worse. The [2,0] and [1,1] Pades give similar values

P„„„=0.85, 0.70, 0.52, 0.34, for d =-5, 4, 3, 2

while Stauffer' finds

(6.2)

(6.4)

P„h,„-—0.7, 0.5, 0.4, 0.14 for d =5, 4, 3, 2 (6.5)

with a somewhat better agreement with values extracted from scaling relations like P = y/(8 —1) = —(dv —y).
The [0,2] Pade gives worse results.

The accuracy of the exptrapolation of 8 is similar. Equation (1.15) yields

8=2y+O(e') . (6.6)

(6.7a)
(6.7b)
(6.7c)

This relation is certainly not true generally, as at d =3, 2 Stauffer' quotes 5=5 and 18 while 2y =3.7 and 4.6.
The correlation length is found to have

0.575, 0.683, 0.822, 0.992 for d = 5, 4, 3, 2

v„„„= 0,581, 0.755, 1.40, -3.0 for d = 5, 4, 3, 2

0.579, 0.723, 1.03, 2.07 for d = 5, 4, 3, 2
t

from the three possible Pades, to be compared with'

v„h„=0.6, 0.7, 0.8, 1.35 for d =5, 4, 3, 2

Finally

(6.8)

—0.893,
o.„„p=' —0.713,

—0.887,

—0.858, —0.894,
—0.522, —0.385,
—0,817, —0.776,

—1.00 for d =5, 4, 3, 2
—0.337 for d =5, 4, 3, 2
—0.755 for d =5, 4, 3, 2

(6.9a)
(6.9b)
(6.9c)

TABLE I. Estimates for C+/C IEq. (1.7)].

Direct
e expansion

Exponents from
Eqs. (6.2) and (6.4)

Exponents from
Eqs. (6.3) and (6.5)

Series and
Monte Carlo

1.0
1.4
1.9
2.7
3.6

1.0
1.4
2, 1

3.5
6.6

1.0
1.7
3.0
4.3

17,0

—1

—4
—5
—10
—200
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TABLE 11. Estimates for R'= Rz/~ fEq. (6.11)).

Direct 5=y/P+1, using 5=y/P+1, using Using ~ expansion Series and
d e expansion Eqs. (6.2) and (6.4) Eqs. {6.3) and (6.5) for (1 —2/8) Monte Carlo

1

1.2
1.4
1.8
2.3

1

1.2
1.3
1.5
1.7

1

1.2
1.3
1.4
1.9

1

1.1
1.3
1.6
2.0

—1.4
—1,5
—1.2

1.1 -1.6
1.1 -1.3

The only direct calculation of a gives

0'other = —0.688 + 0.004 for d = 2 (6.10)

The differences among all these estimates should
be used to estimate the uncertainties involved in ex-
trapolating the ~ expansion. %hen the unreasonable
Fades are ignored, the results seem to have accura-
cies of 10—30% for d =5 —3 and up to factors of 3—4

at d =2.
%e can now turn to our new ~ expansions Eqs.

(1.6) —(1.11). It was chosen to write Eqs. (1.7) and
(1.8) in terms of the exponents y, P, and 8 instead
of direct ~ expansions in order to draw attention to
the similarity with the related critical phenomena
results. In the Ising-model case, Brezin et al. ' find
C+/C = 2" 'y/p+ 0(a'). The power of 2 arises
simply from the different mean-field temperatures
scales in that problem [in which one chooses26
t(l') = I and t(/") = ——, for t )0 and t (0, com-

pared to the present t(/') = I and t(l') = —I, Eqs.
(CS) and'(C16)]. Aside from this factor, the two

results look identical. This raises the interesting pos-
sibility that in fact this result is quite general.

Having written Eqs. (1.7) and (1.8) in these forms,
one can now choose various ways to estimate the fi-
nal values for C+/C . One can either use a direct a

expansion, to order a' [i.e., the e expansion of 8, Eq.
(1.15)[, or use the a-expansion estimates of y and P,
or use the exponents available from other sources. '

All of these estimates are shown in Table I.
Similar considerations apply to R„[Eq. (1.8)].

Since 5 is rather a large number, earlier publications'
discussing R„preferred to look at R'=R„' ~. Equa-
tion (1.8) thus becomes

R t/a ( C+) I/8P —1 gl-1/a 21-2/a + 0 ( 3) (6 I I)

and Table II presents estimates based on various ex-
trapolations of the e expansion.

Finally, the extrapolation of Eqs. (1.6), (1.9),
(1.10), and (1.11), which we have only to order a,
has been dori simply by substituting the appropriate
value of ~ in these equations. The results are sum-
marized in Table III.

VII. COMPARISON %1TH ALTERNATIVE
CALCULATIONS

The ratio C+/C was first estimated from series in
d =2 to be of order unity. " Monte Carlo calcula-
tions later gave" a value of —20, but more careful
analyses" finally seem to converge to —200.

TABLE 111. Estimates for other amplitude ratios.

AF+/AF Rc

6c

5
4
3
2

-1/5
—0.35
—0.50
—0.65
—0.79

1/4

0.43
0.6-1

0.79
0.96

1

1.12(1.15)
1.23 {1,4)
1.36(1,64)
1.50(2,0)

Eqs. (1.22) and (1.23)
0.38
0,34
0.30
0.21

'The numbers in brackets represent 2v. See Eq. (1.10).
Calculated from (7K~/2e) f1 —397~/(2 3 7 d)], with K& =2 'm /' 1(d/2). See Ref. 3.

'These exact results refer to the am'plitudes in Eqs. (1.17)—(1.21).
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References 33 and 34 also contain a discussion on
the reasons for the earlier difficulties. At d =3,
Refs. 33 and 34 find C+/C =11 and 8. The other
numbers quoted in. Table I are from the Monte Carlo
calculation of Ref. 34: tWe should mention, however,
that Kirkpatrick has extended his earlier Monte
Carlo calculations in 2 «d «6, "and these yield
somewhat smaller values of C+/C, in closer agree-
ment with the ~-expansion estimates.

We next turn to the ratio R' = Rx p [Eq. (6.11)].
This ratio was first considered in d =2 by Marro, 3~-'

who checked series data and found that. ,indeed,
R'=R„' ~ is universal and o'f order 1.25. In d -3;
series results exist only for the fcc site problem, for

'

which Gaunt quotes R„=6.5 +3; i.e.,
R'=1.3—1.6.- It is useful to note here tha't in many
numerical calculation one does not calculate the am-

plitude E directly. Rather, one "measures", the ampli-
tude qp [Eq. (2.5)]

certainties in the alternative calculations, especially
for d ) 3, is open to debate. The reader should go to
the sources for a feeling of the uncertainties, which
definitely become larger as d increases. With all of
this in mind, we feel that the e expansions for the
amplitude ratios compare very well with existing al-
ternative calculations. It would be nice to have more
accurate series or Monte Carlo calculations, especially
at the higher dimensionalities.

A crucial check for the present theory will concern
the exact predictions at d =6. An extension of the
serie's work of Ref. 12.or of Monte Carlo calcula-
tions'4 3p to check Eqs. (1.22) and (1.23) or the p 0
limit of Eqs. (1.6) —(1.10) will therefore be of great
interest.

It should be noted that one does not need to ex-
tract amplitudes and then to calculate amplitude ra-
tios. The result Eq. (1.6), for example, could also be
interpreted as stating that'

tt, (P, ) =qps ' . (7.1) (8.1)

A direct algebra shows' that for the bond problem
one has

E = qpgl'( I —I /8)

and therefore a related universal ratio is' '"
( C+)1/P —1 gl —I/O

(7.2)

(7.3)

From the values of K given in Ref. 34 one can ex-
tract the values quoted in Table II for d =4, 5, and 6.

We are not aware of any previous discussion of the
amplitude ratios which are listed in Table III. As-

suming that a = ——, in d =2, Domb and Pearce es-

timate that'

AF+/AF = —1.0, d =2 (7.4)

which compares reasonably well with the extrapolated
—0.79 (Table III). Using AF+ from Ref. 28 and other
amplitudes as listed in Ref. 1 one also finds

t

4.2, square lattice, random bond
C

4.1, triangular lattice, random site (7.5)

This confirms the universality of Rc and of AF+/AF

in d =2.
We are not aware of any published amplitudes of

the correlation length and therefore a comparison
with the results on fp+/gp or R p+ is not yet possible.

VIII. CONCLUSIONS

The numbers in Secs. VI and VII have been quoted
without error bars. The discussion in Sec. VI should
shed light on the uncertainties involved in the e ex-
pansion. When extrapolated with caution, theSe un-
certainties seem to be less than 30% for d ~ 3, and'

up to factors of 3 to 4 at d =2. Similarly, the un-

((t) = R~+ [n(1 —a) (2 —Ot) F(t) ] (8.3)

etc. Such a direct combination of the "raw" data
[e.g. , plotting $(t) vs F(t) '/~] may give reasonable
estimates for the amplitude ratios.

As a last comment we mention again that although
our results to order e prove both scaling and univer-
sality, we have assumed the scaling relations among
the exponents to obtain the universal equation of
state at order p' (Appendix B). A direct confirmation
that the integrals in Eq. (A13) are indeed given by

Eq. (B7) will confirm the scaling relations as well.
Hopefully, this paper will stimulate further series,

Monte Carlo and real experimental" work, to study
amplitude relations.
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APPENDIX A: EVALUATION OF VARIOUS

INTRO RALS

The expressions for rL and r& are needed only to

order e. The integral combination appearing in rL

[Eq. (3.14)] is

I = (q —2) (G' —4/k') + (6' —4/k )

= (q —1) (GL' 4/—k4) —„(GL—Gr2)

te

= (q —1) (6,' 4/k') — ,
' (r,——r,) —(6„+6,)6,6,

= (q —1) (6' —4/k") —12wcQ „' G3 +O((q —1)')
t

where we used Eq. (3.18). Thus, in the limit q 1

(A1)

rL = rr = r = t +12wcQ +36w2 (G —4/k4) —12wQ 6

To lowest order in a, using Kq ' =2" 'ddt'I'(d/2),
fl

(G' 4/k") =—4Kd k dk[(r +k') ' —k ] =2Kqr[2lnr +1+0(r)]
at p

G'= —2K&[2lnr +3+0(r) ]

and therefore, ignoring unimportant terms

rL =rr =r = t +12wcQ =72K&w [r(2 Inr +1) +12wcQ(2lnr +3)]

Also

O' = -', K~/r + 0 (1)

and therefore

(6 —2/k') = 2K~r—
4 at P

(GL —Gr) = (rr —rL)Kd[r(2lnr +1) —
2

er(lnr +in r) +1/(1 —e/2)]

(rr —rL)/(q —1) 12wcQ [1 +144Kd w (2 lnr +3 +2 wcQ/r) ]

We now turn to Eq. (3.13). The integral (GL —Gr)'is needed to order a. One finds

tI]

k 'dk(r +k ) ' = Kdr ( Inr —
4

e—ln r) 2Kdr/(2 —~)—

(A2)

(A3)

(A4)

(AS)

(A6)

(A7)

(Ag)

(A9)

The last term here will cancel exactly when we subtract t tj, [Eq. (3.15)] from 2H/Q [Eq. (3.13)l. Thus, the con-

tribution of Fig. 1(a) to 2H/Q in the limit q 1 is

72K&w Q[1+144Kqw (21nr +3+2wcQ/r)][r(21nr +1)— er( lnr +l—n r)]

ln explicit calculations one must remember to use Eq. (AS), i.e., expand r(2 lnr +1) to order Kdw'

(A 10)

r(2lnr +1)= F(2lnF +1) +72Kdw~(2lnF +3) [F(2lnF+1) +12wcQ(2lnF +3)], F = t +12wcQ . (All)
I

Finally, we turn to the last term in Eq. (3.13), resulting from Fig. 1(b). Expanding about rr =rL we find

(q —2) GL GL GL + (q —2) Gt, Gr Gt —26r'GL Gr —q (q —3)Gr Gt Gr

=(rr —rL)(q —1) (q —2) 6 GG+(q —3) G G G

h

+ '(r —t )' '(q ——1)(q —2) —6'66+[3(q —2)' —1] O'6'6+ —,'(q —2)' O'6'6' +O{(rr rt)')—
h

= —12wc(q —1)'Q G'GG +2 O'62'6 —6wcQ 2 G'O'G +
2

G'6 G' +O((q —1)3) . (A12)
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Here, each integral actually includes a subtraction, -, e.g. ,

G G'G~ G (k)G (k')[G(k+k') —G(k')]
aJ

This is to be multiplied by —54w'c'(q —2) to yield a contribution to 2H/Q equal to —1296w'[ ], with the
square brackets which appear on the right-hand side of Eq. (A12), subtracting their value at r = Q =0 to account
for I 0, .

A simple power counting now shows that

J G'GG +2 J G'G'G —subtractions= K jr (a i
lnzt +bi lnr +ci)

2„' G G'G+ —, J G G G' —subtractions= Kd—'(azln'r+bzlnr+Cz) (A13)

with coefficients of order unity. The constants i ] and i 2 turn out to fall out of our final result, and therefore
must not be evaluated. The other coefficients can be identified as described in Appendix B and the final result
yields Eq. (3.19).

APPENDIX 8: SPECIAL LIMITS

Combining Eqs. (3.13), (A8), (A9), (A13); and (3.16), the equation of state becomes (to order ez)
1

2H 629= t+6wcQ + ——a+ a F (2lnF+1)
2 7 (2) 3273

+ &2[SF(2 lnF +1)(2 lnF +3) +12wcQ(2 lnF +3)2+4wcg (2 lnF +1)—7F ( lnF +lnzF)]
(4)7'

2
a [F(ai ln F +bi lnF+ci) +6wcQ(azln F+bzlnF+cz)]

16 7' (81)

In the limit H =0 we expect the order parameter in

the ordered phase to be given by Eq. (1.1). Using
the exponent P from scaling and comparing with Eq.
(81), we find

568a&+a2=28, b~+b2=
3 (85)

2nd [Eqs. (1.1), (2.8), and (2.10)]

B ax ii(6 c)w~ 1 + a+ W„a
1

(2)7

W 1 83 (ci + c2) + 629
7 12 16 223 7

(86)

with F = t +12wcg.
In the limit t =0 we expect the critical isotherm to

have the form given in Eq. (1.5). Using the ex-
ponent 8 which results via scaling from Priest and
Lubensky's results9 [Eq. (1.15)] this implies

1

I-I —Q' 1+—alng +2 565 2 2

(2)3'7' Ill g +—f ill Q72

(82)
This form is consistent with Eq. (Bl) and with Eq.
(3.16) only if

2a~+a2=40, 2b&+b2=
3

(83)

With the identification we find [Eqs. (1.5), (2.8), and
(2.15)]

E a = ho= —(12wc) '(1+—e+ Wqe )0 4 7

1 55 (2ci+ cz) ~ 629
7 6 16 (2)3z7

Solving Eqs. (83) and (85) we therefore find

a] =12, a2=16, b] =104, b2=
3

256 (87)

APPENDIX C: RENORMALIZATION-GROUP
APPROACH

The renormalization-group approach of Rudnick
and Nelson has been used by Pytte to analyze
both the Hamiltonian Eq. (3.1) in the "disordered"
phase and Eq. (3.8) in the "ordered" one. The dif-
ferential recursion relation for w turns out to be "
(setting q =1)

dw (I )
6V

with

288Kq7 w'(I)—'--', ~(I) w(I)+, (Cl)
2 ' [1+r(l)]'

zt(l) = —48Kqwz(I)

The solution of Eq. (Cl) is

w'(I) = w' e"/W(l)

(C2)

(C3)

These are the values inserted in Eq. (3.19). In fact,
the coefficients a~ and a2 are also consistent with
those derived from the corresponding integrals of
Priest and Lubensky using the equivalence of
r 1/bz. One further checks that assuming the
values in Eq. (87) all other exponents come out
correctly. For example, for t ) 0 one can set g =0,
F = t, and recover Eq. (1.3) with Priest and
Lubensky's value for y [Eq. (1.14)].
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where

W(l) = I + (7)144K& w (e"—I )/e

= I + ( w/ w') '(e"—I ) (c4)

Thus,

(+t—v(1 + atcuv) 5/42

X=C+t "(I +at"")' '
(Cl I)

(c12)

with w" given in Eq. (3.16). Thus, w(l) w' as
l ~. In the "disordered" phase one integrates the
recursion relations up to I', defined via

with

(q —I) 'F =A&+t' '(I+at"")'/' —Bt, (C13)

t(l") =te" W(l') '/"=I

t = rp+72Kgw + O(rp )

This implies that the correlation length is

(cs)
g+=(w/w') ' C+=2(w/w')

(c14)
A += (w/w")' '/12'w'

Combining Eqs. (Cl I), (C13), and (C14) we find

g=e' =t '/ W (c6) (q —I) 'Fg~=, (I +at"")
12'( w')' (cl s)

where now

W = W(l') = I + (w/w')~(l '/' —I) (c7)

] - -2/7= —t8'
2

t'ai

4'

(q —I) 'F = —,K „ ln[1+r(i)]e 'dl

(cg)

Similarly, the susceptibility and the free energy are
given by

r (l') = t (I') +12cw (I")Q (I') = I (C16)

The factor ~2 in the denominator of A&+ is thus re-
placed by (w )'. This justifies the substitution of Eq.
(3.16) in Eq. (4.19) to obtain Eq. (1.11). To lowest
order in e, Eqs. (CIS) and (1.11) indeed give the
same result.

In the "ordered" phase (t (0 or H AO) one must
integrate separate recursion relations for IL, r&, and
H. Defining I' via

[ W(l') / —1]
123~2

For small t, Eq. (C7) can be rewritten as

W = (w/w')'t ' '(I + at"")

(C9)

(C10)

where

Q ( l ) Qe(2-e/2)l W(l )-I/42

one then finds

(C17)

where pt was defined in Eq. (1.24) while a = [(w'/
w)~ —I]. The parameter a measures how far w is

from its fixed point value, while the exponent co,

responsible for the corrections to scaling, measures
how fast this fixed point value will be approached.

H = tQW(l') —'+3wcQ' W(l') (Cl 8)

For H =0, W(l') becomes equal to W [ Eq. (C10)]
with t replaced by l

t l. One can then find equations
similar to Eqs. (Cl I) and (C12) for g and X. The
"free energy" is'

't

(q —I) 'F =(q —I) '
, rQ' —(—q —2)cwQ'+ —'Kp ( In[1+rL(l)]+(q —2) in[I +rr(l)] }e 'dl

, 2 2 Jo
- ~/7(s w —I) =Ar ltl' (I+a ltl"")'' —Bltl'

123w2

and the order parameter is

Q = BI/it'(I +alt l"")' ' B = (w/w') '/6wc

At t =0, Eq. (C16) implies

W(l") =I+(w/w') [(12wcQ) '' —I]
so that

H =3wcQ~W =DQP[1+a(12wcQ)""]

with

D =3wc(w/w') =F.

(C19)

(C20)

(c21)

(c22)

(c23)
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