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Hot photoexcited electrons: Determination of the time-dependent distribution function
in a quantizing magnetic field

N. Pottier and D. Calecki

(Received 29 November 1979I

The expression of the time evolution of the distribution function of hot electrons photoexcited by a lager pulse in

the conduction band of a semiconductor under extreme quantum limit conditions is calculated. The transformation,

justified in previous papers, of the master equation into a Fokker-Planck equation is used. The notions of diffusion

and of drift velocity in the electron energy space are rigorously introduced. Finally, the time evolution of the mean

electron energy is calculated and the influence of different scattering mechanisms and of various physical parameters

is discussed.

I. INTRODUCTION

The pioneer work on the determination of hot
electron energy relaxation by photoluminescence
is due to the work of Ulbrich. ' Picosecond laser
spectroscopy has recently been applied to the de-
termination of electron energy relaxation in semi-
conductors. "The knowledge of the electron dis-
tribution function (EDF) in the conduction band and
its variation with time is the first theoretical step
to determine the evolution of the mean electron en-
ergy. The essential phenomena which we need to
take into account for the determination of the EDF
are electron scattering (including carrier-carrier
interaction) and recombination. However, it is
well known that the application of a quantizing mag-
netic field can reduce the complexity of analytical
calculations4; this is due to the fact that high mag-
netic fields greatly reduce the importance of elec-
tron-electron scattering. ' In particular, under
extreme quantum limit (EQL) conditions, binary
electron-electron scattering in the absence of col-
lision broadening has no effect on the EDF. The
present work is thus concerned with the time evo-
lution of the distribution function of electrons pho-
toexcited by a, short laser pulse into the conduction
band of a semiconductor under EQL conditions.

In a previous paper, we carried out simple cal-
culations in order to get qualitative results on the
time evolution of the mean energy of the photoex-
cited electrons. We assumed that the EDF could
be essentially characterized by a unique param-
eter, and, as usual, we used a Maxwellian EDF
with a time-dependent electronic temperature T,(t)
representing the mean electron energy. We wrote
down the balance equations for particle number
and energy and set up a differential equation for
T,(t). We discussed the influence on T,(t) of the
magnetic field, the photoexcitation intensity, the
photoexcitation energy, the recombination time,
the lattice temperature, and the role of the various
types of electron-phonon scattering mechanisms.

The aim of the present paper is to give a more
rigorous treatment and to eliminate the Maxwellian
a priori assumption for the EDF. We use the
method that we developed for the treatment of the
stationary EDF when the photoexcitation is contin-
uous. ' We transform the master equation obeyed
by the EDF into a solvable Fokker-Planck equa-
tion; this is possible when the electron-phonon
energy transfers are small as compared to the
electron energy, and is meaningful when electrons
are scattered by acoustical phonons. The Fokker-
Planck equation is the starting point to describe
the mean electron energy evolution as a random-
walk motion in energy space. We recover here
the main features of an analog problem: the de-
termination of the quantum energy distribution
function of hot electrons in crossed electric and
magnetic fields

The present paper is organized as follows: In
Sec. II we describe the model and write down the
master equation for the time-dependent EDF. In
Sec. III we re""trict ourselves to the extreme quan-
tum limit conditions, under which the master equa-
tion can be transformed into a Fokker-Planck
equation. We emphasize the analogy between the
problem we consider here and a well-known Brown-
ian motion problem, i.e., the sedimentation phen-
omenon of Brownian particles"; then we give the
expression for the time-dependent EDF. Section
IV contains a presentation and a discussion of the
numerical results obtained for the time evolution
of the mean electron energy.

II. DESCRIPTION OF THE MODEI.
AND MASTER EQUATION

The electron states in a magnetic field B parallel
to the z axis are specified by three quantum num-
bers n, k, , and k„summarized by the index v.
The associated energies are simply

e„=(n+-', )h(o, +Pi'A(2/2m,
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where m is the effective mass of the assumed
parabolic conduction band and &o, =q, B/m is the
cyclotron frequency.

The time evolution of the EDF p„ in the different
states v is due to the following three effects:

(i) The first one is the laser pulse, whose dur-
ation is negligible when compared to all other
characteristic times of the problem such as the
recombination time or the momentum and energy
relaxation times of the electrons. This assump-
tion is now realistic, since one utilizes picosec-
ond lasers with pulses shorter than the momentum
relaxation time ~„of electrons scattered by acou-
stical phonons [g is of the order of 10 s or
more for InSb in EQL (see Sec. Ill)]; the energy
relaxation time is always greater than v„and this
is also quite genera11y the case for the recombin-
ation time. Thus if hN electrons are created at
time t=0 in the state of energy ~~ above the bot-
tom of the first Landau level, the corresponding
rate of variation of p~ can simply be written down
as

, 5(e„—e~ ——,'K(o, ) 5(t), (2)
g (~If)

where g(c) is the density of states in the conduc-
tion band.

(ii) The second effect is the annihilation of elec-
trons in the Landau states by various recombin-
ation mechanisms. We will crudely sum up the
complex recombination phenomenon by a simple
recombination time 7 y.

(iii) The last effect is the electron-phonon scat-
tering characterized by the transition probability
per unit time W». . In the Born approximation,
for collisions with phonons,

+(I+N, ) 5(e„-e„.—h(o,)],

where

lw„„.(q) I'=C'(e) I& vl exp(tq r) I
v')l'.

C(q) is related to the particular type of electron-
phonon coupling and

K, =[exp(her, /kr) —1] '

is the distribution function of the phonons assumed
to be in thermal equilibrium at temperature T.

Thus, the total rate of change of p„ is given by
the master equation

+ TV .~p -W„„p„

where

p'„e-xp( e-„/k T)

is the EDF describing the thermodynamic equili-
brium at temperature T, which prevails at time
t&0 and for times t ~ (i.e. , in practice,
t »r„, 7'„).

Equation (3) can be conveniently transformed in
the special case where the recombination time is
the same for all the Landau states. Let us define
that part b p, (t) of p„(t) whose variation comes
from the collision term after the laser pulse has
been emitted, and such that

p„(t) =p'„+ap„(t) exp(-t/~)e(t). (6)

e(t) is the step function and 7. is the v-independent
recombination time. Moreover, hp„(t) satisfies
the initial condition

hp„(0)=,5(c„—e~ ——,
' h~,).

g ~v)

Inserting (6) into (4), taking account of (7), and
remembering that the collision term cancels when

p, =p, according to the detailed balance principle,
we finally get

s~p„(t) r
=Zllwv v&pu (t) wpp &-pv(t)] ~ (8)

If we had followed on with a state-dependent re-
combination time, we would have obtained instead
of Eq. (8)

et p„(t) =Z (W, „ap„(t)exp[-t(v„' —~„')]

-w„„,~p„(t)] .
These last three equations are entirely equivalent
to the master equation (4): Equation (8) is partic-
ularly convenient for a discussion in terms of ran-
dom walk and Brownian motion in the energy space.
Moreover, Eq. (8) is the time-dependent analog of
Eq. (13) in Ref. 8, in which a method of transfor-
mation of the master equation into a Fokker-Planck
equation has been proposed. We shall brieQy sum-
marize here the steps of the transformation.

We are looking for an EDF appropriate to a sit-
uation in which the electron density is homogene-
ous; consequently, p, is k, independent. Further-
more, there is no electrical current along the mag-
netic field, thus p, must be an even function of k, .
We may then label the electron distribution func-
tions p„(t) and hp„(t) as p„(e, t) and b p„(e, t), re-
spectively, where n is the Landau quantum number
and e is the electron energy. In Eq. (8) we may
perform the k,' summation. After multiplication of
both terms of Eq. (8) by the density of states of the
nth Landau level which is, in the absence of any
collision broadening
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g„(c)=2, ,
~

[~ - (n+-') h(o, ] "' (9)
V 2m'"' III. EXPRESSION FOR THE TIME-DEPENDENT EDF

IN THE EXTREME QUANTUM LIMIT

[V=I,' is the volume of the sample and 5 =(k/m(d, )' '
the cyclotron radius], we obtain

[d(E)dp„(E, E)) gf=d" (P„„(E',E.)EEp„(E, E)

-P„„E(e,e')b, P„(e, f)],

where

P„„(& &') =g))(&)g))'(&') 27)'(~/I) +II ())E' p

ky

the result of the k,
' summation is k,-independent

because W„„.depends only on the difference
k, —k,'. The detailed form of P„„ge,&') varies with
the type of scattering; however, we know that
P„„(e,e') will be appreciable only if the energy
transfer E'- E is of the order of the phonon energy.

Equation (10) has a, very simple interpretation in
terms of the current of electrons along the energy
axis. Let us first consider what happens only in
the nth Landau level. We define the net current of
electrons belonging to the nth level that cross the
energy e per unit time:

Z„(E)=f dE' f dE" P„„(E. , E )dP„(E')
w oo

x[e(e —e') e(d'- e)

e(E e)e(e——6 )] (12)

(e is the usual step function). Thus Eq. (10) is
equivalent to

a sJ„(e)
[g„(e)b.p„(e, f)]+ " =S„(e,f). (13)

S„(e, f) = g de' [P„.„(e', e) ap„.(e', ,f)
n'vs n

—P„„,(e, e')6p„(e, t)] (14)

is the source term due to the electrons arriving in
the nth level and leaving it with energy c.

In general, a direct solution of Eq. (13) is im-
possible. A great simplification occurs when
there is no source term. This can be the case in
the extreme quantum limit, when the electrons
stay permanently in the first Landau level.

We recognize here a typical conservation equation
which relates the density of electrons having ener-
gy e in the nth Landau level to the current of elec-
trons in energy space belonging to this nth level.
The last term of Eq. (13)

(we dropped the index n which is always equal to
0 in the EQL), let us use this random-walk ap-
proximation to obtain some interesting preliminary
q»alitative results.

A. Expression for J(s, t) in a random-walk approximation

The net effect of the electron-phonon collisions
is to change the energy of the electron and to pro-
duce a particle current along the energy axis. We
can evaluate this current using the same argument
as Ref. 8. J'(e, f) comprises two parts: (i) A drift
term vg (e)hp(c, f), where v is the drift velocity
in the energy space resulting from the energy
losses due to the collisions, and (ii) a diffusion
term D(8/ae) [g(c)b p(e, f)], where D is the dif-
fusion coefficient in energy space due to the ener-
gy fluctuations produced by the collisions. Hence

ET(E) t ) = —Vg(E)DP(E, t) —D [g (E')EP(E) t )]

Moreover, we have the boundary condition

Z(0, t) =0,

since no electrons can get an energy lower than
e =0, and the initial condition

g (E)6p(t, k = 0) =END(E —Ep) . (18)

Now we will give more details on the two coeffi-
cients v and D. First, there is a trivial relation

We shall assume from now on that the temper-
ature is sufficiently low, the magnetic field is
high enough, and the photoexcitation energy is so
weak that only the first Landau level n =0 is oc-
cupied: h &,»kT, e~& h &, .

According to a phenomenological treatment by
Kurosawa and Yamada' and to calculations by Cal-
ecki, Lewiner, and Nozieres, ' the motion of an
electron colliding with the phonons in the energy
space appears as a random walk with a reflecting
barrier at the bottom of the first Landau level
(which from now on we take as the origin of ener-
gies). Simple results are obtained when the elec-
tron energy exchange during a collision is small
compared to its average energy; this condition is
fulfilled here if we neglect the effect of the optical
phonons. In particular, electrons cannot occupy
significantly energy states too high in the first
Landau level. Before dealing more rigorously with
the expression of hp(e, t) which satisfies the ex-
act equation

8
[g(c)ap(c, t)]+ ' =0Bz(~, f)
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between v and D. There is no net current at ther-
mal equilibrium: J'(e, f) =-0 when hp(e, f)
-exp(-~/kT) and we must have D/v =kT. This is
the analog of the mell-known Einstein relation for
a nondegenerate electron gas betmeen the diffusion
coefficient and the mobility.

Nom, we go one step further and use the classi-
cal results on random walk" to evaluate the drift
velocity v and the diffusion coefficient D in terms
of microscopic parameters. The electron energy
change at each collision with a phonon is of order
585 '„since phonons whose wave vector is of or-
der 6 ' are the most efficient. The drift velocity
v in energy space is equal to the average energy
lost per unit time. Since the emission probability

. of a phonon is proportional to N„whereas the ab-
sorption probability is proportional to 1+N„we
have

is a slowly varying function as compared to
P(d, e"), it can be expanded into a Taylor series
around e'= e which yields

g(~')~p(e', &) g(~)&p(e, &)

+ (e' —c)—[g (c) b.p (c, f )]

+ 0((~' —~)')

Moreover we can consider P(e', c") as a function of
the two independent energies e' and $ =e'- e",
P(~', f) Sin. ce 8 is very close to e we can assume
that P(d, $) =P(e, $). Owing to these two proper-
ties of P(d, d') we obtain in a straightforward
manner

J'(e, f) = -v(e) g (e) b p(~, f ) -D(e) [g (e) b p(e, t)],

with

1 ks5 '(1+N, ) Ssd '-N,7„1+2N where

(22)

N, -[exp(ks6 '/kT) -1] '

(r„ is the time between two successive collisions).
In the limit I@5 '«kT, v reduces to

(22b)

Similarly, the diffusion coefficient D is equal to
2 nl' where n is the number of collisions per unit
time and l the change of energy per collision; with
our notations, the expression of D is given by

D= 2(l/7 )(ks5 ')'. (20)

We immediately recover the previous relation
D/e =kT.

We have now to solve Eq. (15) in which the ex-
pression of J(e, f) given by Eq. (16) is completely
known. However we shall first justify these last
results by a more rigorous approach, based on the
derivation of a Fokker-Planck equation.

B. Derivation of a Fokker-Planck equation

The exa, ct expression for Z(e, f) in EQL is de-
duced from Eq. (12}:

Z(E, }=fd(E fdE P( ) EE( dtE)EE

& [e(e —e') e(e —e}

—e(d —e) e(e —c")], (21)

where P(e', e")=P„„E(d,e") when n=n'=0 In.
Eq. (21) we recall that P(d, d') considered as a
function of e' has only significant values when ~'
is close to e" and therefore when these two ener-
gies themselves are close to e. If g(e') b.p(e', f)

Equation (22) has exactly the same form as Eq.
(16) derived by qualitative arguments based on a
random-walk approach. The main difference lies
in the dependence of the drift velocity and of the
diffusion coefficient upon the electron energy.

In summary, as long as the electron energy
transfer in a collision is small as compared to
the scale of the variation of b, p(e, f) with e, the
equation satisfied by hp(e, f) is of a Fokker-Planck
type and can be written

„[g(~)&p(e, f}]= „[~(&)g(&)&p(& f)]

+ D E' —— g6 Ap&, t

C. Expression for the EDF

The expli. cit calculation of v(e} and D(c) has been
performed in Bef. 7 in the two cases where elec-
trons interact with acoustical phonons either
through the deformatfon potential (ad) or the piezo-
electric (ap) coupling. We give here only the final
results using the same notation as in Bef. V:

e(e) =g (c)M, and D (e) g (e)M, (26)

(24)

in which the part of the EDF 6p(e, f) has to satisfy
the two conditions (1V) and (18).



22 HOT PHOTOEXCITED ELECTRONS: DETERMINATION OF THE. . .

with

M, =Mo and M, =Mo(Ks6 ')')(hs6 ')'
(26)

where

4~arD &'&

o I2S
2~D"'ur

or

for the (ad) or (ap) cases, respectively.
Equation (24) has no direct solution when the two

coefficients v(e) and D(e) are e dependent. Only
numerical calculations can be made in that case.
However, if we assume that b,p(e, t) varies much
more rapidly than the density of states g(e), we
can consider this latter quantity as a quasiconstant,
and a straightforward solution of (24) can be ob-
tained. At first sight this procedure is question-
able because g(c) diverges as e ' ' when e goes to
zero. However, if we take into account the effect
of collision broadening, the density of states be-
comes very smooth and this divergence entirely
disappears. Anyway, no more calculations are
needed to solve Eq. (24) if we replace g (e) by a
constant value g„we can take g, to be the density
of states for an electron with the thermal energy
-kT:

2V 4m
(2v6)2 n'aT (27)

BK B gg BZU, +c
Bt Bg B8

(28)

so-6(z —z, ) as t-0, (29)

BK
D +ceo =0 for z =0 for all t &0.

BZ
(30)

D is the diffusion coefficient and c is related to the
gravitational constant, The solution of Eqs. (28)-
(30) can be found in Ref. 10; conveniently trans-
posed, it gives immediately the expression for
6p(E~ t ):

The situation becomes entirely equivalent to the
phenomenon of sedimentation, that is, to the
'Brownian motion of particles in a vessel sub-
mitted both to a diffusion process and to the effect
of gravity. If the particles are initially at a height
z, above the bottom of the vessel containing the
solution and if we label m(z, t) the density assumed
to be uniformly distributed in the (x, y) plane, the
evolution of the density is governed by the follow-
ing equations":

bN 1 I' (x-x, +v)' (x+x, +v)' 1 x+x, —vb,p = 2, „I, exp
~

— ' +ezpx, exp — ' + —exp(-x) erfc
4v 2 (4v)' ' (31)

with

M', &As'' ' tx = E/0 T~ xo = Ep/Q T~
v — got —

~

2 ~ac

where 7„'= g„iW»i -—Mogo is the collision fre-
quency of an electron on acoustical phonons in
EQL.

Taking account of our starting point, i.e., Eq.
(6), we finally get the EDF in the EQL:

with

p(~, t) =
p( )e+&p(~, t) exp(-t/~) e(t), (32)

p'(e) = 2' (2m6)' exp~ . (33)
2rnzk T ur

D. Time evolution of the distribution function

In order to discuss the formal results (31}and
(32), we consider the variations of p(e, t) with
e/e~ for different values of the time t in the case
of InSb, a semiconductor in which EQL conditions
are easily fulfilled. We forget the nonparabolic
character of the conduction band of InSb and use
the numerical values of the physical parameters

reported in Befs. 11 and 12. We fix the temper-
ature equal to 10 K, the magnetic field value B
equal to 5 tesla, and the photoexcitation energy
~„equal to 5kT. Finally, we need a value of the
collision frequency v,,' of an electron with acou-
stical phonons. We know that 7;,' = 2.2x10 "s for
the deformation potential coupling and 7„=5.5
&10 ' s for the piezoelectric coupling.

We plotted in Fig. 1 the dimensionless quantity
kTg, hp(e, t)/hN as a function of z/e~ when only
the ad type of scattering is taken into account and
for different successive values of the time. The
distribution function is initially very peaked around
the energy e~ (curve 1); then diffusion takes place
and the peak spreads out into a wider curve. The
electron energy loss by the acoustical phonons
produces then a drift of the curves towards the
lower energies (curves 2, 3, 4}. In the meantime,
the maximum flattens down and, once the proba-
bility of finding electrons near the bottom of the
band becomes appreciable, the curves begin to
rise upwards in this energy region because of the
reflection which the electrons suffer at a =0 (curve
6). Finally, we recover the equilibrium Maxwel-
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e,(f) is the contribution from the photoexcited
electrons to the mean energy; it must obviously
satisfy the two following limit conditions:

(3Va)

0.60

0.50

S
-9

S
-9

S

0.40

030

0.20

0.10

0 1 s/sp

FIG. 1. Variation of the mean photoexcited number of
electrons kT g(e)4p (e)/4N with the reduced energy
s/sz at different times after the laser pulse.

lian distribution (curve 6).
We observe that the thermalization process is

achieved in a mean time of order 1007;, =10 's in
InSb. This result is roughly in agreement with the
experimental results of Parti et a/. "who studied
the time evolution of the hot electron distribution
function in EQL in the presence of crossed elec-
tric and magnetic fields. However, the photoex-
cited electrons can be thermalized only if the re-
combination time v. is larger than 100m„; if, for
instance, &=107„, it is obviously impossible for
the photoexcited electrons to be thermalized be-
fore they recombine.

IV. TIME EVOLUTION OF THE MEAN ELECTRON
ENERGY

The mean energy per electron is Pefined in the
usual way:

( )
fo ds sg(E) p(s& f)
f«g( )sp(s, f)

There are two distinct contributions to (s(t)): The
first one comes from the thermalized electrons
preexisting in the conduction band; the other one
arises from the photoexcited electrons. This ap-
pears more clearly if we rewrite formula (34) as

1r NokT +b,Ns, exp(-f/~)
(36)

f&f, +hf&f exp(-f/v)

T,(t) —T = (2/k)(s(t)) —T (38)

versus f/v. Although the EDF is not a Maxwellian,
T,(t) can be considered as a measure of the elec-
tron temperature.

We shaO now discuss the characteristic features
of the electronic energy decay curves of Pigs. 2
and 3 and analyze the influence on these curves of
the different parameters of the proMem.

A. Influence of the magnetic field

We observed in Sec. III that Ap(s, f) depends on
the dimensionless parameter v = (fis6 '/kT)'(f/r ),
which is proportional to B't or Bt, respectively,
for the deformation potential and the piezoelectric
coupling. Therefore an increase of the magnetic
field has the same effect as an increase of time,
i.e., produces a decrease of the electron temper-
ature T, . This result can be easily explained,
since the mean electron energy lost per unit time
due to the collisions with the phonon gas is of or-
der 7„'[(I's6 ')'/2kT] and thus increases with fl.
We recover here the well-known cooling effect of
the magnetic field, which is observed in Pig. 2.

lim &,(f) = ,kT. —
g -woo

We must now evaluate s,(t). In the preceding
section, we determined an approximate expres-
sion for hp(s, f), assuming that the electron den-
sity of states could be chosen as a constant g, .
Let us use this expression for b,p(s, f } in formula
(36); we easily verify that the two conditions (3Va)
and (3Vb) are satisfied. Expression (36) must give
a good interpolation and we thus expect to obtain a
reasonable value of s,(t) at any time.

As in Sec. III, we consider the case of InSb; we
use the same value of 7„as before, but we must
also know precisely the recombination time v and
the relative number of excess photoexcited elec-
trons A =b,f&f/N, . We have chosen to deal with a
w ten or a hundred times larger than 7„, that is,
g =10 s or 10 s. We have given A the two pos-
sible limit values A = 1 or 10'. We plotted in Pigs.
2 and 3 the variations of
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E. Influence of the lattice temperature

The lattice temperature T is involved in the de-
termination of the initial value of T,(t) [T,(0) evi-
dently increases with Ttj. Moreover, the distribu-
tion function of the photoexcited electrons b,p(~, t)
depends on the dimensionless parameter
v =(hs5 '/kT)'(f/~„), which is proportional to
T ' ' for both deformation potential and piezoelec-
tric coupling. Therefore the decay of T,(t) will be
slower if the lattice temperature T increases.

F. Influence of th'e different types of electron-phonon
scattering mechanisms

The v„value in InSb is smaller in the case of
deformation potential coupling than in the case of
piezoelectric coupling. The acoustic deformation
potential coupling is thus more effective than the
piezoelectric coupling. This can be observed on
the decay curves of T,(t) (Figs. 2 and 3). In fact,
these two mechanisms occur simultaneously.
More precisely, we can easily verify that it suf-
fices to use the collision freIIuency (v,,')~ +(~„'},
in Eq. (31) to take into account both scattering
mechanisms. So we will obtain more rapid vari-
ations of f,(t) than when they a.re considered sep-
arately (curves tot of Figs. 2 and 3).

V. CONCLUSION

We are now in a position to compare the results
on the time evolution of the mean energy of elec-
trons photoexcited by a laser pulse in the conduc-
tion band of a semiconductor in extreme quantum
limit conditions which we obtained by two different
methods:

(i) The first method, developed in Ref. 6, is a

simple calculation relying on the hypothesis of a
Maxwellian EDF with an electron temperature T,(t)
depending on time.

(ii} The second one, proposed in the present
paper, is a first-principles derivation in which the
master equation for the time-dependent EDF is
transformed into a solvable Fokker-Planck one.

The qualitative features of the variations of the
electron temperature with time on the one hand
and with various physical parameters, such as
magnetic field, photoexcitation intensity, photo-
excitation energy, recombination time, lattice
temperature, and electron-phonon scattering mech-
anisms, on the other hand, are found to be the
same whatever the method used. Even the orders
of magnitude of the electron temperatures ob-
tained by methods (i) and (ii) coincide.

However, if we copsider the electron distribution
function itself, calculation (ii) evidently shows that
the Maxwellian approximation is not correct as
long as t 61007„. The agreement between the
mean electron energy results obtained by methods
(I) and (11) ls a conseIIuence of the 111tegI'atloll 111-

volved in the expression of (e(t)) which is not very
sensitive to the form of the EDF.

Moreover, the first-principles derivation we
propose in this paper allows us'to show that the
way in which the photoexcited electrons tend to-
wards thermal equilibrium can very simply be
understood in terms of a random-walk process
in the energy space involving both drift and diffu-
sion phenomena. This method thus yields a deeper
insight into the microscopic phenomena involved
in the energy relaxation processes, which was
evidently beyond the scope of the preceding treat-
ment.

*Laboratoire associe au CNBS.
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