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Ionized impurity scattering in semimetals
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We developed recently a simple theory for the dielectric response of a doped semiconductor, and calculated the
effect of the valence dispersive screening on the ionized-impurity-limited (IIL) mobility. The effect was found to

result in a small reduction of the IIL mobility. In this paper we apply the same approach to a semimetal. In this case
the effect results in a strong dielectric enhancement of the IIL mobility.

I. INTRODUCTION

The traditional theories' ' of ionized-impurity-
limited (IIL) mobility in semiconductors describe
the free carriers as moving in a background whose
dielectric response is characterized by a single
parameter: the static dielectric constant &,. This
background is, of course, the perfect (zero-tem-
perature, undoped) semiconductor, and the phy-
sical mechanism responsible for this static di-
electric constant &, is the polarization of valence
electr ons.

In two recent papers '' we have provided, within
the framework of the linear response theory, the
generalization of these traditional theories' '
which includes the dispersive dielectric screening
(DDS) of the background. Such a DDS has been
described by means of the static dielectric func-
tion c(k), calculated previously' within the
Thomas-Fermi (TF) approximation. Since the IIL
mobility is dominated by low-momentum transfer
processes, it was found' that the inclusion of the
DDS produces only a small reduction of the IIL
mobility with respect to the traditional theories. ' '

The model semiconductor that we have consi-
dered so far is characterized by a finite value of
&(k) at k =0, namely e(0) =&,. However, it is well
known that the &(k) of a metal diverges as k ' at
low k.' It is thus quite natural to wonder whether
materials having an intermediate behavior exist,
and what would be the effect of such an interme-
diate DDS on the IIL mobility.

%e address ourselves to these questions in this
paper. Following the approach established in
Hefs. 4 and 5, we perform a calculation of the
IIL mobility in a semimetal exhibiting a k ' di-
vergence of &(k) at low k.

II. DIELECTRIC SINGULARITY OF A SEMIMETAL

The Thomas-Fermi approximation is quite ef-
fective in describing a (homogeneous and iso-

tropic) material exhibiting either metallic or
semiconducting behavior. To describe metallic
behavior, the only necessary input parameter
is the electronic density n, . The semiconducting
behavior is obtained by means of an alternative
boundary condition (incomplete screening). ' In
this case, &, is a second necessary input para-
meter. The TF theory is nonstructural and no
other choices of boundary conditions are possible.
Therefore, no other type of dielectric behavior
can be obtained within such an approximation.

In the random-phase approximation' (RPA) one
can consider any structural model. It is quite'
possible within such a theory that a particular
band structure leads to some different type of
dielectr ic behavior. For instance,

g (k) =j,(1 + Xk ') . (1)

Indeed, Liu and Brust' have rigorously obtained
within the RPA the result of Eci. (1) at low k for a
band structure as in n-Sn. Later on, Liu and
Tosatti" showed that such a dielectric singularity
disappears in the doped case, as a function of k.
However, a quite intimately related singularity
in &(k) reappears, as a function of the impurity
concentration n,-.

The specific dielectric singularity given in Eq.
(1) at low k arises in any perfect (zero-tempera-
ture, undoped) semiconductor in which the (com-
pletely empty) conduction band and the (completely
filled) valence band touch each other at one point
in k space because of symmetry. '" However, we
are not interested at present in studying any spe-
cific case or structural model. We can safely
assume the existence of a number of materials
exhibiting a dielectric behavior which is inter-
mediate between that of a normal semiconductor
and that of a metal. Our purpose is to study the
implications that such a DDS would have on the
IIL mobility, according to Refs. 4 and 5. We wish
to study in particular the case represented in

Eq. (1), since that is exactly intermediate be-
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tween a metal and a normal semiconductor. We
call, for convenience, such a behavior semi-
metallic.

III. POTENTIAL OF AN IONIZED IMPURITY

Following the approach of Refs. 4 2nd 5 we ob-
tain the total static dielectric function e„,(k) of
the doped material as

g (k) 1 + 4v& t (tk):c (k) + (kypc /k) (2)

where k~pq is the characteristic wave vector of
the free carrier polarizability. Equation (2) is
obtained within the framework of the theory of the
linear response in a homogeneous and isotropic
medium. Equation (2) reflects the general result
that the total static polarizability n„,(k) is simply
the sum of the static polarizabilities of the back-
ground and of the free carriers. Indeed, [e(k) —I j/
4m is the static polarizability of the background,
whatever it is, whereas (I/4n)(k~pc/k)' is the
static polarizability of the free carriers within
the TF approximation (for metallic behavior). The
results of the traditional theories' ' are recovered
by simply replacing in Eq. (2) e(k) with c,.

The characteristic wave vector k~pc of the free
carrier polarizability is obtained within the
linearized TF approximation. " In the completely
degenerate limit it is simply related to the Fermi
wave vector as"

(3)

In the classic limit, it is

(4)

where ka is the Boitzmann constant (kD„ is the
same as in the classic Debye-Huckel theory of
electrolytes except for a factor of 2). In general,

2m~~ k2k' = (2k r)'kF~Pc v & 2mk 5

("(n) f, ),(
=.

1 (6)

The Fermi-Dirac integrals E(q) were tabulated
by Dingle, " and they certainly do not rept esent
a problem for today's computers.

We are now ready to obtain the Fourier trans-
form of the potential of an ionized impurity (posi-
tive point charge) in the doped material. According
to the linear response theory, this is simply

Q(k) =
k'e„,(k) k'e(k) +k2»c

Equation (7) reflects the general result that the
dielectric screening is local and dispersive in
k space (and hence translationally invariant but

nonlocal in r-space). '
ln a semimetal (at low k) Eqs. (1) and (&) then

yield

4m

i,(k'+Xk) +k2~pc

IV. IONIZED-IMPURITY-LIMITED MOBILITY

The collision time is given by the angular in-
tegration2

7' '=n, v2r 0 8 1-eos8 sin8d8,
0

where v is the carrier velocity and o (6) the dif-
ferential cross section. Within the first Born
approximation

(~) =( '/4 ')~e(k)~' (10)

It is clear from Eqs. (7)-(13) that the III. mo-
bility is dominated by low-k (momentum-trans-
fer) processes. In a normal semiconductor,
since E(k) & &, in that region, it has been shown'
that the DDS of the background only produces a
small reduction of the III, mobility with respect
to the traditional theories. ' ' In Eq. (1), how-
ever, e(k)»q, at low k. In a semimetal, there-
fore, a strong dielectric enhancement of the III.
mobility is expected with respect to the traditional
theories (A. =0).

The integration of Eq. (9) in a semimetal can
be performed analytically. The results are re-
ported in the Appendix. To study some examples,
a numerical integration is more convenient. We
do that with parameters' appropriate to n-doped
cy-Sn at 4.2 K. In that case, the carriers become
completely degenerate at concentrations of the
order of 10" cm or higher. We then use Eq.
(3). The results are reported in Fig. 1, and com-
pared to the result which would be given by the
traditional theories' ' (X =0). We can see that
there is a strong dielectric enhancement of the
IIL mobibty, especially at low concentrations.
The effect is, however, greatly exaggerated be-
low n, =10"cm '. In that range we should have
used the general expression (5) and (6). With re-
spect to Eq. (3), Eqs. (5) and (6) give a smaller

with

k =2mv sin( —,'8) .
Jn the completely degenerate limit, only the car-
riers at the Fermi surface are scattered; their
velocity is

v =(3v'n, )'~'/m.

The IIL mobility is then given by
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FIG. 1. IIL mobility in n-Sn at 4.2 K (Ref. 13). Form
factor of Eq. (8) (solid line). Dotted line: Dingle
mobility P.= 0}. Experimental data: triangle, Ref. 14;
circles, Ref. 15; crosses, Ref. 16.

and smaller kT„C, more and more as we depart
from the completely degenerate limit. A smaller
k»c reduces the mobility, especially in the
general case (XIO). In Fig. 1 we also report

some experimental data, ' "which are consistent
with the results of this approach. However, the
experimental results for the IIL mobility in the
specific case of n-Sn are also consistent with
quite different theoretical approaches. "-"

In conclusion, we have shown how, in general,
a dielectric singularity of the background can
produce even a quite large effect on the IIL mo-
bility of a class of materials having intermediate
dielectric characteristics. Notice, in particular,
that what is important for the IIL mobility is the
behavior of the e(k) of the background at low k,
but not necessarily at k= 0. This is expected
since the factor (1 —cos6)sin& d8 cck'dk strongly
reduces in Eq. (9) the contribution of ~P(k)~ in
the immediate vicinity of the origin.
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APPENDIX

When the Dingle form factor, Eq. (8) with X=0, is used in Eqs. (9)-(13), one obtains' '""in the com-
pletely degenerate case"":

u, =-.'~(e./m)'lh (1 +P') P'/(I -+P') l ',
I

where

p' = (2m'~)', Rn =E,/kTFc .

With use of the dispersive screening for semimetals at low k, Eq. (8), the mobility is

3 ~i
' 2EP+2(2 -E)P' 2E(2+E) (EP+2P' EP

2 I
I' El '

I
l'"

D =I +RA P+P'

E =AH~,

F =4 A. RD y

Ar =arctanh for F &0, Ar =arctan for F &0,
)2 3 +5P'+4 3

p. =—2m)~
~ ~

ln(l+P)' —,for E=0.
(m& ( (1 +P)'

Notice that Eq. (A3) reduces to (A1) for X-O.
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