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Nuclear tluadrupole resonance studies of amorphous, orthorhombic, and rhombohedral arsenic
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Pulsed nuclear quadrupole resonance (NQR) experiments have been performed on three forms of elemental arsenic:
amorphous (a), rhombohedral (rh), and orthorhombic (or). The temperature dependence of the spin-lattice
relaxation time (T,) provides evidence for the existence of disorder {tunneling) modes in a-As. It is found that the
NQR line shape of a-As is highly asymmetric, and this asymmetry is attributed to a distribution of dihedral angles
in a-As. The observed NQR frequencies indicate that the amount of bonding s admixture is different in each
material (rh-As:3%, or-As:7%, a-As:10%). Simple calculations in comparison with x-ray results indicate that the
bonding configurations in these three forms of arsenic do not necessarily correspond to maximum overlap of
bonding orbitals on adjacent atoms.

I. INTRODUCTION

Amorphous arsenic (a-As) is of particular in-
terest, as a prototype amorphous solid for two
reasons. First of all, since a-As is an elemental
solid, its structural and electronic properties
should be easier to understand than those of more
chemically complex amorphous solids, such as
most of the chalcogenide glasses. Second, all
atoms in a-As are threefold coordinated; this co-
ordination in arsenic falls between the tetrahed-
rally coordinated amorphous solids, such as a-Ge
and a-Si, and the chalcogenide glasses in which
the chalcogen elements (S, Se, Te) are predomi-
nantly twofold coordinated. Therefore, due to its
threefold coordination, many of the structural
and electronic properties of a-As have character-
istics similar to those observed in both group-IV
and in group-VI amorphous solids.

The similarities and differences between the
properties of a-As and group-IV or group-VI
amorphous solids are emphasized by the results
of several experiments. First of all, the infra-
red and Raman vibrational spectra ' in a-As re-
flect predominantly the phonon density of states
as is the case in a-Ge and a-Si. There is, how-
ever, some evidence for effects due to the differ-
ent Raman and infrared matrix elements as one
observes in the chalcogenides. ' Secondly, the
linear term in the low-temperature specific heat,
which is present in all chalcogenide and oxide
glasses but absent in a-Ge, is at least an order
of magnitude smaller in a-As than in the chalco-
genides. However, as we shall demonstrate be-
low, there is evidence from the spin-lattice

relaxation time (Tt) measurements of As for the
existence of disorder or tunneling modes in a-As, '

such as those contributing to the linear specific
heat. Finally, some of the defects observed by
photoluminescence (PL) or optically induced ESR
in a-As are similar to those encountered in the
chalcogenide glasses, but additional defects are
also observed. Some weak features in the Raman13

and infrared spectra of a-As have been attributed
to defects, but there is no evidence for counter-
parts in the spectra of the chalcogenides.

Nuclear quadrupole resonance (NQR) is a use-
ful probe of local order which is often very sensi-
tive to small changes in the immediate environ-
ment; however, due to the weak signals observed
in amorphous solids this technique has been rare-
ly used to study these materials. The only previ-
ous NQR results of an amorphous solid are the

As pulsed measurements of Rubinstein and Tay-
lor on As2S3 and As2Se3. These previous mea-
surements include the NQR line shape and the
temperature dependence of the spin-lattice and
spin-spin relaxation times, Tj and T2, respective-
ly. From the line-shape results, it was concluded
that the AsS3 and AsSe3 pyramidal units were well
preserved in the glasses, and that they resembled
those occurring in the corresponding crystalline
solids. The Ti data were interpreted as evidence
for the existence of tunneling modes in these
glasses. Recent B pulsed nuclear magnetic11

resonance (NMR) data ' in BsOs glass have also
been interpreted ' in terms of Raman processes&Ss&9 ~

involving tunneling modes, although the exact
mechanism is still a matter of some debate.
The T2 data were analyzed by Rubinstein and Tay-
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lor ' in terms of a dipolar dephasing between like
arsenic nuclei. Recently Szeftel and Alloul have
employed a novel pulsed NMR technique to deter-
mine the asymmetry in the quadrupolar interac-
tion of As in vitreous As2Se3. They find two sites
in the glass, one of which does not appear to coin-
cide with any sites occurring in crystalline A@Se3.

In general, NQR and NIVIR (on nuclei with nuclear
spin» —,') techniques as applied to amorphous
solids provide very sensitive probes of local struc-
ture and electronic bonding from the observed
NQR and NOR line shapes. Measurements of Tq

provide a probe of low-frequency excitations in
amorphous solids, and measurements of T2 give
information on separations between mutually reso-
nant nuclei and perhaps on such esoteric mecha-
nisms as nuclear-spin diffusion. This informa-
tion is even more useful when direct comparisons
can be made between glasses and crystals of the
same chemical composition.

In this paper we present pulsed NQR measure-
ments of 7'As in three solid forms of arsenic:
a-As, orthorhombic arsenic (ox-As), and rhom-
bohedral arsenic (rh-As). The local environment
in all three forms is very similar in that each As
atom is threefold coordinated in a bonding ar-
rangement which has a local three-dimensional
character. In the common, semimetallic crys-
talline form (rh-As) the layers are formed
which are of semi-infinite extent and are com-
posed of six-member rings in which the As atoms
are aligned in a staggered configuration [see Fig.
1(b)J. In the less common, semiconducting crys-
talline form (or-As) layers are formed with six-

{a)

FIG. 1. Projections of atomic layers found in bvo
crystalline forms of arsenic: (a) projection along the
P00] direction of orthorhombic arsenic; (b) projection
along the [111]direction of rhombohedral arsenic.

member rings which are composed of As atoms
in a "semistaggered'* or "chair" configuration
[see Fig. 1(a)I. The detailed structure of a-As
is not known, but continuous random network
(CRN) models ' suggest that both the local
three-dimensional character and some vestiges
of the quasi-two-dimensional ring structure re-
main. The As NQR measurements on those
forms of arsenic are consistent with these gen-
eral structural features. The NQR results of a-As
provide experimental evidence for second-nearest-
neighbor structural correlations which are implicit
in the CRN models from variations of the dihedral
angle.

In Sec. D we present a brief summary of those
theoretical concepts necessary to understand the
pulsed NQR experiments. Sections III and IV de-
scribe the experimental procedure and results,
respectively. The spin-lattice and spin- spin re-
laxation measurements in a-As are discussed in
Sec. V. Section VI describes the local bonding
information which can be inferred from the NQR
line shape. Finally, the results are summarized
in Sec. VG.

II. NQR BACKGROUND AND THEORY

Nuclear guadrupo1e resonance (NQR) spectro-
scopy has been used for many years as a sensi-
tive probe of local electronic structure. As the
theory is well developed and given in standard
texts, m' "only a brief explanation of NQR will be
presented here.

The nucleus 'As is 100% naturally abundant
and possesses a spin r= 2. Since this spin is
greater than —,', the 'As nucleus also possesses a
nuclear quadrupole moment (Q). This quadrupole
moment interacts with the electric-field gradient
(EFG) at the site of the nucleus and results (for
the case of I= —,') in two doubly degenerate energy
levels given by

&,=+(Q../4)&(I + n /3)'", (I)
where Q„ is the quadrupole coupling constant (Q„
=e Qq/h where eq=eq„ is the component of maxi-
mum magnitude of the EFG tensor in the principal
axis system), and q is the asymmetry parameter
[defined by (q„„-q»)/q„]. The quantity Q„ is a
measure of the strength of the quadrupole interac-
tion, while g is a measure of the departure of the
EFG tensor from axial symmetry. If the system
is in thermal equilibrium, then the populations
of the two levels can be determined by Boltzmann
statistics for any temperature above O.I K.

If the sample is placed in a radio frequency (rf)
magnetic field, transitions between these two
levels can occur when the frequency of this rf
field is
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v = 1(E+ —E-)/&
I
= 1(g„/2)(I + n'/3)'"

I
. (2)

In general, the transition probability is a function
of the angle between the rf field and the principal
axis system.

Once the nuclear system is taken out of equili-
brium, it will normally return to equilibrium ex-
ponentially. The spin-lattice relaxation time (&q)
is a measure of the time it takes to reestablish
the Boltzmann distribution, and is therefore a
measure of the energy exchange of the spin system
and the lattice. The spin-spin relaxation time
(T2) is a measure of the dephasing time of the spin
system, ' this time represents only a change in the
entropy of the system and can be thought of as
being the characteristic time required for the off-
diagonal elements of the density matrix between
states of different energy to go to zero.

For the purposes of this paper, we define the
following pulsed excitations of the sample. a
"90"' ("180"')pulse is of sufficient duration and
magnitude to induce just enough transitions to
equate (invert) the populations of the &, and &

states. As is conventional we shall henceforth
omit the quotation marks froxn future references
to 90' or 180 pulses. For a powdered or glassy
sample, the 90' pulse corresponds to the first
maximum of the spherical Bessel function
j(v 3&uqr„), while the 180' pulse corresponds to
the first zero (other than r =0) for this same
function (here, &uq=yIIq, y is the gyromagnetic
ratio, &q is the magnitude of the rf magnetic field,
and r„ is the pulse width). Therefore the 90'
pulse requires VS+~r„=0.66&, while the 180'
pulse requires WS&uqr = 1.43m.

All measurements employed the following pulse
sequence" ":

90'- & —&80'- t —90'-7 —&80 —t —' ' '.

r is constant)

M(t) =~( )(1 e '"~), (3)

where M(~) is the height of the signal when t» Tq
Equation (3) is valid only for exponential decay,
which was the case for all decay observed (see
Fig. 2). For a constant t, the height of the echo
is given by

M(2r) =M(0)e (4)

IH. EXPERIMENTAL CONSIDERATIONS

The NQR measurements were made using a
MATEC Model 5100 main frame (which employed
a MATEC Model 525 gated amplifier for frequen-
cies between 20 and 140 MHz), a MATEC Model
625 broad-band receiver with the appropriate tuned
preamplifier, and appropriate auxiliary equipment
arranged in a single-coil, phase-detection sys-
tem. The receiver-preamplifier system output
was linear and flat versus frequency over the
operating range of the preamplifier. Because the
signal to be observed (especially for the case of
a-As) was so weak, a high-Q circuit was used
which resulted in a large receiver recovery time
(-150 csee). The signal was enhanced using a
NICOI ET 1074 signal average, an SD-77 fast
digitizer plug-in, and an SW-77 sweep unit plug-

Therefore Tq (or T2) can be measured by plotting
[M(~) —M(t)]/M(~) [or M(2r)/M(0)] semilogarith-
mically versus t (or 2r) and taking the slopes.

Though it is well known that the 'As nucleus
possesses a quadrupole moment, its magnitude
is not well determined. We have used the standard
value @=0.29 barn (1 barn=10 cm ), which is
accurate to about +15%.

The application of the first rf pulse results in a
transient excitation of the nuclear-spin system,
and a response [called the free-induction decay
(FID)] is normally observable immediately after
the pulse. The application of the second rf pulse
leads to a response at time 2&, which is called
the "spin-echo. " The duration of the FID is in-
versely proportional to the linewidth of the NQR;
therefore, for the eases of or-As and a-As (see
Sec. IV), no FID was observable due to the large
NQR linewidth The spin-lattice relaxation time
T~ is obtained by observing the height of the spin-
echo as a function of the time between each 90'
—r —180' pulse sequence (t), while the spin-spin
relaxation time T2 is obtained by observing the
height of the spin-echo as a function of r (assum-
ing that t» Tq). 8' It is found that the height of
the echo M(t) is given by the equation (assuming

2
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FIG. 2. Spin-lattice relaxation time in a-As at 77 K
as determined from the normalized magnetization curve
(semilogarithmic scale).
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in. This signal-averaging system allowed a max-
imum time resolution of 1 psec, and a maximum
digital signal resolution of 4 bits. Temperatures
between 4.2 and 300 K were obtained'using a gas
flow (either helium or nitrogen) system; temper-
atures were measured using a copper-constantin
thermocouple in intimate contact with the sample.

The data for Tq and &2 were measured as de-
scribed in Sec. II and were fitted by a least-
square procedure for all data points to either
Eq. (3) or Eq. (4). The line shape (for a-As and
or-As) was obtained by observing the height of
the spin echo as a function of operating frequency
at constant 7 and t. This procedure required
tuning the pulser, receiver, and matching net-
work at each frequency and recording the best
signal height obtained (after signal averaging for
several hundred pulse sequences). This process
was not too difficult for the case of or-As, since
the linewidth is only 340 kHz and only one receiver
preamplifier had to be used; however, due to the
large range of NQR frequencies two preamplifiers
had to be used for the case of a-As. Data were
taken in an overlap region using both preampli-
fiers, and the resulting signal heights were then
normalized to obtain the entire spectrum. The
signal amplification of the active system (preamp-
lifier, amplifier, tuned matching network} was
linear in frequency within approximately +10%
over the range investigated. Linearity was check-
ed at selected frequencies by measuring the ampli-
tude of a reference pulse of calibrated intensity
which was inserted into a pickup coil (physically
well separated from the sample coil).

The samples of a-As and rh As (both -99.9999%
pure) were obtained from Atomergic Chemetals
Corp. (the manufacturer of a-As was MCP, Ltd. ).
Samples of or-As were obtained from the Smith-
sonian Institution (natural mineral arsenolamprite
from Chile) and A. J. Leadbetter (synthetically
grown and doped with about 2% Hg}. X ray analy--
sis of the natural or-As sample indicated that it
contained 10-30% xh-As. (This was confirmed
by NQR studies of the natural or As sam-ples; see
Ref. 31.)

IV. RESULTS

The spin-lattice relaxation time Tq, taken as a
function of temperature, is shown in Fig. 3 for
a-As, or-As, and a-As, Se,. In aB cases,

Py CX (6

where P =1.6 for a-As, 1.6 for or-As, and 1.8 for
a-As2Ses. [7'q is not shown in Fig. 3 for xh-As,
but was found to be proportional to & (see Ref.
31); the relaxation was attributed to the hyperfine

~o'
I I I llll Io

I I I I I I I) I I I I l I
'~

lo
Vl

I
O
O
O
Vl

I
L-
O

O
Ol
lh

h.

fO
Ol

M
lh

I
O

&o-i g

h

I l l I ill I I I I I I I II

10~
'

102

7(K)

—&0 ~

I

IIEET

&o'

FIG. 3. Spin-lattice relaxation time (T&) plotted ver-
sus temperature for a-As, or-As, and a-As2Se3 Note
the difference in scale between or-As and a-As and
a-As2Se3. The filled-in square at 4.2 K for or-As was
determined using the synthetic or-As sample and is dis-
cussed in the text. The data for a-As2Se3 represented
by the open circles are from Bef. 15.

coupling of the "As nuclei to conduction electrons
in the semimetal. ] The magnitude of Tq for a-As
is about a factor of 3 smaller than Tq for or-As.
The filled-in square for Or-As in Fig. 3 repre-
sents the lowest-temperature point taken with the
synthetic sample. As was mentioned in Sec. III,
this sample contained about 2% Hg; therefore, it
is reasonable that the low-temperature relaxation
in this sample is due to paramagnetic impurities.
The Tq data for a-As2Se3 taken below 4.2 K are
from Ref. 15, and are represented in Fig. 3 by
circles.

At &=77 K, T~ and T2 were measured as func-
tions of frequency across the a-As line shape;
the results are shown in Fig. 4. As can be seen
T~ and T2 are independent of frequency within
experimental error. Also, &2 was measured as
a function of temperature (at vo = 63 MHz); it was
found that 7'2 —200 + 20 p sec and was independent
of both 7.' and vz. In or-As &2 was measured to be
170+ &0 p sec independent of the temperature. Un-
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FIG. 4. Spin-lattice (a) and spin-spin (b) relaxation
time (T&, &2) for 5As NQR at 77 K in a-As as a function
of resonant frequency.

like the situation in As, S, and As, Se„ the longi-
tudinal relaxation was found to be exponential for
both o~-As and a-As within experimental accu-
racy.

Table I lists the central NQR frequency at 4.2
K (vo) and the full width at half maximum for the
three forms of arsenic, plus the results for a-15

v =vo[1 —K/8, eoth(8, /2T)], (6)

where K is a constant, and ~, is the equivalent
temperature of the torsional vibration (the fre-
quency v, =k8„/h). In fitting Eq. (6) to the data
in Fig. V, we obtained vp" ——46.65 MHz, K= 0.885
K, and v, = 85 + 15 cm,' the resulting fit is shown

As283, c-As283, a-As2Se» and c-As2Se3 for pur-
poses of comparison (a =amorphous, c = crystal-
line), Also listed in the table are x-ray re-
sults '~3'~ '~' of bond angles (o.') and bond lengths.
Figure 5(a) shows the NQR line shape for a-As at
T =4.2 K. [Figure 5(b) shows a calculated line
shape that will be discussed in Sec. VI.] The
experimental line shape was also evaluated at T
= VV K, but there was no discernible difference
between the two temperatures. For comparison,
a schematic of the o~-As line shape at T =4.2 K
is included in Fig. 5(a). The NQR line shapes for
a- and c-As,S, and As, Se, are shown in Fig. 6
(after Ref. 15). Two features of Figs. 5(a) and 6
must be noted: First of all, the a-As line shape
is asymmetric, whereas the line shapes for a-As2S3
and a-As2Se3 are symmetric within experimental
error. Second, the crystalline NQR frequencies
for the cases of As283 and As2Se3 fall within the
widths at half-height of the amorphous NQR line
shape, while this is not the case with a-As; i. e. ,
xh-As, or-As, and a-As all have quite different
NQR frequencies.

As was previously found-for a-As2S3 and a-
As28es, ' the NQR frequency distribution of a-As
was found to be temperature independent. How-
ever, the NQR frequencies in xh-As, ox-As, and
c-As2S~ (Ref. 15) exhibit definite temperature
dependencies. The temperatur e dependence of
v~ for or-As is shown in Fig. V. This depen-
dence can be explained in terms of torsional vi-
brations using a simple harmonic oscillator model
due to Bayer. In this model

TABLE I. The central NQR resonant frequency (vg), full width at half maximum (F%HM)
of the NQR line measured at 4.2 K, arsenic bond angles (n) and bond lengths of the three forms
of arsenic, and of amorphous (a) and crystalline (c) As2S3 and As2Se3. The roman numerals
(I and II) after c-As283 and c-As28e3 refer to the two different sites in the crystals.

NQR data
Sample &~ (MHz) FWHM (MHz) Ref.

X-ray data
Bond lengths (A) Ref.

rh-As
Or-As
a-As
a-As2S3
c-As2S3 I

II
a-As2Se3
c-As2Se3 I

II

23.56
46.32
63.5
70.0
72.86
70.38
57.8
56.0
60.0

&0.03
0.34
9.0
7.0
0.1
0.1

12
0.1
0.1

97.1
94.1

~97
15
15 97.1
15 95.2
15
15 98.2
15 102.7

94.5 106.5 2.21 2.28 2.22 33
106.1 92.7 2.26 2.26 2.23 33

104.8 95.9 2.37
91.8 105.0 2.32

2.44 2.56 34
2.37 2.36 34

97.1 97.1 2.508 2.508 2.508 22
98.5 98.5 2.49 2.49 2.48 23

-97 97 25 25 25 23
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FIG. 7. NQR frequency versus temperature for or-
thorhombic As. The solid line is the best fit to the data
using Eq. (6).

as the solid curve in Fig. 7. Similarly, we have
fitted the data of Sharma on rh-As with Eq. (6);
the resulting parameters are.' vo" —24.13 MHz,
K=6.00 K, and v, =175+15 cm

Figure 8 shows the NQR line shape for or-As at
4.2, VV, and 300 K; note that the line shape is
asymmetric and rather broad compared to line-
widths generally observed in unstrained crystals.
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FIG. 6. NQR absorption in amorphous As2Se3
and As2S3 versus NQR frequency at 4. 2 K. The resonant
frequencies of the corresponding crystalline materials
are shown by the vertical lines (after Ref. 15).

FIG. 5. {a) NQR absorption in amorphous As (cir-
cles and solid line) and orthorhombic As (dashed line)
at 4. 2 K. (b) Calculated contribution to NQR line shape
from bonding electrons on nearest-neighbor atoms as
described in the text. {The points refer to a calculated
histogram through which a smooth curve has been drawn. )
Inset: dihedral angle distribution from Ref. 24.

The data in Fig. 8 were taken with the synthetic
sample of ox-As. Similar results were obtained
with the natural ox-As sample, where the resulting
linewidth was about 20% less than the synthetic
sample. These very broad crystalline lines are
not surprising when one considers that both
samples are highly strained. These strains lead
to a distribution of electric-field gradients at the

As nuclear sites which creates a broad distribu-
tion in NQR frequencies.

V. NUCLEAR-SPIN RELAXATION

A. Spin-lattice relaxation

As described in Sec. II, spin-lattice relaxation
is the process by which the magnetization of an
ensemble of nuclei approaches thermal equilibri-
um after excitation by, for example, an appropri-
ate rf pulse of energy. The relaxation process is
generally exponential and the inverse of the rate
of decay is termed the spin-lattice relaxation
time Tq (see Sec. II). In crystalline solids quad-
rupolar spin-lattice relaxation results normally
from first-order Haman processes involving either
acoustic' or optical phonons. At low tempera-
tures these two processes depend on the tempera-
ture, respectively, as Tq~ T or T (acoustic
phonons) and Tq~ exp(&/0T), where & is an optical-
phonon energy (optical phonons).

'In amorphous solids the low-temperature spin-
lattice relaxation rates are always dramatically
faster than those in corresponding crystalline
solids, and the temperature dependences are al-
ways weaker (Tq~ T where 1 sP s2). For ex-
ample, Rubinstein and Taylor found P =2 for
As283 and As28e3. More detailed experimental
measurements by the present authors over a wider



NUCLEAR QUADRUPOLE RESONANCE STUDIES OF. . .

I I I I I I I l

LLj

C~

cn

Q I
g a

LP

05
QJ

L
O

UJ
0'

THORHO

7 7K 4.2K

0
44.5 45.0 45.5

I/Q (MHz )

46.0 46.5

FIG. 8. NQH absorption versus frequency for orthorhombic As at 300, 77, and 4. 2 K.

temperature range (see Fig. 3) indicate that P
=1.8+0.1 in As, Se,. In B,O„P=1.3, and in sodium
silicate and sodium borate glasses, P =1.4 for both
the "Na and "Bnuclei (see Ref. 16). These results
are not restricted to quadrupolar nuclei. In cal-
cium phosphate glass, Jellison" found that P = 1.0
at low temperatures even though the nuclear spin
of "P is ~. For protons (I=—', ) in various organic
glasses, Haupt and Muller-%armuth obtained
values of P between 1.6 and 2.

It is clea.r tha.t the relaxation processes important
for crystalline solids at low temperature are not
sufficient to describe the enhanced rates observed
in amorphous solids. This situation is not sur-
prising in view of the low-temperature specific-
heat measurements ' on amorphous solids which
indicate that all amorphous solids exhibit both (1)
an "enhanced Debye-type" specific heat (&„~+)
over that which is observed in crystalline counter-
parts and (2) a linear term in the specific heat
(&,~ T) at the lowest temperatures (T s 1 K)
which is not observed in pure crystalline semi-
conductors or insulators. Other measurements,
such as far-infrared and microwave absorption,
low-frequency Raman scattering, thermal con-
ductivity, ' also reflect the increased densities
of low-frequency vibrational degrees of freedom
in amorphous solids.

There is considerable evidence for the existence
of modes which are not phonons (not harmonic)
from both the linear term in the specific heat '

and low-temperature contributions to the ultra-
sonic attenuation and microwave dielectric
loss, ' which saturate as functions of microwave
power. A model description of these modes (cal-
led tunneling or disorder modes) which are pecu-
liar to amorphous solids was suggested by Ander-
son, Halperin and Varma and by Phillips. This
model employs two-level modes with a continuous
distribution of energy splittings and appreciable

potential barriers between the levels. These
modes are considered to arise from the motion of
an atom or group of atoms between two positions
of local equilibrium which are nearly degenerate
in energy. The structural disorder in amorphous
solids is invoked to explain the presence of such
modes. The tunneling-mode model has been used
successfully to explain a variety of physical pheno-
mena in addition to those mentioned above.

The models generally employed to describe spin-
lattice relaxation in amorphous solids attribute
the observed relaxation to various Raman proces-
ses involving tunneling modes and phonons. In
their original paper, Rubinstein and Taylor sug-
gested that the spin-lattice relaxation resulted
from either a Raman process involving two very-
low-frequency phonons or an analog to relaxation
by paramagnetic impurities where the role of the
"impurity" is played by a tunneling mode. Neither
suggestion can explain all the data which are now

available, the first explanation cannot yiej.d values
of P & 2 and the second predicts a strong frequency
dependence for T~ which is not observed in pulsed
NOR measurements ' (where the frequency can
be varied).

Szeftel and Alloul have suggested that at low
temperatures Tq is dominated by a Raman pro-
cess involving a phonon and a tunneling mode,
but Reinecke and Ngai obtain P ~ 4 for this pro-
cess. Recently Lyo and Orbach have suggested
that this process can yield P ~ 2 provided that
spectral or spin-diffusion processes are taken into
account, but these authors are not able to account
for values of P less than 2. Spin diffusion in NMR
and NQR is the process by which energy is trans-
ferred within the nuclear spin system via mutual
spin flips of physically close nuclei. Because the
tunneling modes are two-level systems they can
be described by the long-established formalism
for an ensemble of spin- —,

' particles, and a mecha-
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nism similar to nuclear spin diffusion might also
be possible in the tunneling-mode system. Rei-
necke and Ngai suggested that a Raman process
involving two tunneling modes yielded P = & + 2p
where q represents the (weak) energy dependence
of the density of tunneling modes'(p~ E"). This
suggestion has been criticized as being unrealis-
tic because it requires the existence of two tun-
neling modes with nearly identical energy differ-
ences at the same physical location. We believe
this criticism is valid, but suggest that "spin-dif-
fusion" within the tunneling-mode system might
alleviate this difficulty.

In fact, earlier measurements of Szeftel and
Alloul provide an indication of the possible im-
portance of spin diffusion in Tq processes. In
NaB407 glass, both the 'Na and the B nuclei have
identical temperature dependences which indicate
that they may both sample the same energy-depen-
dent density of tunneling modes. However, the
magnitudes of T~ for these two nuclei do not scale
with the square of their respective quadrupole mo-
ments, as they should if the coupling were identi-
cal in both cases. If the coupling is different,
then it is at best fortuitous that both nuclear spin
systems couple to densities of tunneling modes
which possess the same energy dependence. Spin
diffusion in the tunneling-mode system would pro-
vide a natural explanation for the same value of P
for both Na and B without the necessity for the
coupling to be the same for both nuclei.

Spin diffusion i's known to be important in ultra-
sonic echo experiments in glasses ' where this
mechanism dominates the 'temperature dependence
of the tunneling-mode relaxation rate which is
analogous to T~ in NMR. There is thus some
supportive evidence for the existence of spin dif-
fusion in the tunneling-mode system.

Because the Raman process involving two tun-
neling modes is the only one capable of obtaining
the appropriate temperature dependences for T~,
we restrict the present discussion of Tj in a-As
to this process. The weak temperature depend-
ence of &z in a-As shown in Fig. 3 strongly indi-
cates the existence in this amorphous solid of
very-low-frequency vibrational degrees of free-
dom which are similar to those present in all
other amorphous solids. If tunneling modes are
responsible for the temperature dependence of
T~ in other amorphous solids, as is presently
thought tobe the case, then the T, results ina-As
provide evidence for the presence of tunneling
modes in this solid as well. This result is par-
ticularly significant in view of the fact that no
linear term in the low-temperature specific heat
is observed in a-As. The specific-heat results
imply that the density of tunneling modes with en-

ergy differences ~10 eV (=l K/0) is about an
order of magnitude less than in other amorphous
solids.

The Tq and specific-heat results in a-As are
also suggestive of the importance of spin diffusion
in the tunneling-mode system (or perhaps the
nuclear-spin system) because the magnitudes of
Tq at any given temperature in As2Se~ (where a
linear term in C„ is observed) and a-As are com-
parable. Without spin diffusion, it is difficult to
explain comparable magnitudes for Tq in As2Se3
and a-As when the densities of tunneling modes
differ by at least an order of magnitude. More
detailed theoretical studies of Tq, which include
the effects of spin diffusion in the tunneling-mode
systems, are indicated.

S. Spin-spin relaxation

In earlier pulsed measurements of As in glassy
and crystalline As283 and As2Se3, Rubinstein and
Taylor ' concluded that the magnitudes of T'2 in
these solids (T2-600 psec) were consistent with
those expected for a dipolar interaction between
like nuclei. Although these authors utilized an
axially symmetric expression due to Abragam and
Kambe to describe an admittedly anisotropic
situation for crystalline As283 and As2Se3, this
conclusion will probably not be altered by a con-
sideration of departures from axial symmetry.
Using the expression of Abragam and Kambe, ' we
obtain similar agreement with the measured value
of T2 for or-As (16V p, sec) where all the arsenic
sites represent mutually resonant spins. Be-
cause T2 for a-As is similar (-200 p, sec) to that
observed in ox-As, we conclude that in both of
these solids the spin-spin relaxation rates are
determined predominantly by dipole-dipole inter-
actions between mutually resonant spins.

VI. LINE-SHA&E AND FREQUENCY ANALYSES

A. NQR line shape: Effects of outside atoms

Figure 5(a) shows the NQRline shape for a-As. As
can be seen from this figure, the line shape is
broad and quite asymmetric. It will now be shown
that much of the width of the line, as well as the
asymmetry, can be accounted for by orientational
arrangements of atoms directly-bonded to the
central atom. (The term "central atom" will rep-
resent the atoms whose NQR frequency we are
calculating, ' the term "outside atom" will refer
in general to all atoms other than the central-
atom. The outside atoms of primary importance
in the following calculations are those directly
bonded to the central atom. )

Atoms surrounding the central atom can be
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thought of as consisting of bonding, nonbonding,
and antibonding electrons, core electrons and a
nucleus. As we are interested in an elemental
material and all sites are chemically equivalent,
there is to first order no charge transfer from
one atom to another, ' therefore we assume that the
total charge on any atom must sum to zero. How-
ever, there will be a charge distribution, where
the bonding, nonbonding, and antibonding elec-
trons mill be further from the nucleus, on the-

average, than the core electrons. This distribu-
tion of charge will create an additional electric-
field gradient (EFG) at the site of the central
atom, in addition to the EFG created by the elec-
trons of the central atom itself. Normally, this
effect would be ignored; however, for the case of

As, which has a large quadrupole moment (Q
= 0.29 barn), as well as a large value of the
Sternheimer antishielding factor ([1' =-7.332 (Ref.
52)]; the Sternheimer antishielding factor accounts
for polarizations of the core electrons caused by
charges outside the core"), it cannot be.

A calculation was performed to obtain an esti-
mate of the contribution to the coupling constant
from such an effect. All outside atoms were as-
sumed to consist of five hydrogenlike 4s and 4p
electrons (total charge: -5e}and a nuclear core
with charge +5e. The five 4s and 4p electrons
were assumed to be hybridized in a pyramidal
structure, consisting of a lone-pair density of
two electrons, and three bonds with one electron
each (see Ref. 26 for a description of the hybridi-
zed wave functions}. This hybridization scheme
pulls the center of the electronic distribution
away from the nuclear site in the direction of the
lone-pair orbital. The additional EFG from a
particular outside atom was then calculated by
numerically integrating over the entire spatial
distribution of the hybridized orbitals of the out-
side atom and subtracting the effects of the nu-
clear core.

For the case of xh-As, the above calculation
was performed by summing the effects over 47
nearest-neighbor atoms. This resulted in a
change in the coupling constant, AQ„=+6.77 MHz.
Since Q„will most likely be negative in As ma-
terials [a single unbalanced p electron results in

Q;, =-412 MHz (Ref. 27)], the change in resonant
frequency is Ev —-3.38 MHz. This value agrees
remarkably well with the value obtained by
Sharma" (AQ„= 24vQ =6.74 MHz), where he used
the ionic-model calculations of the EFG of Tay-
lor and Hygh. ' Considering the vast differences
in the models, the agreement must be fortuitous,
but it does indicate that the calculated value of
AQ„are correct to within a factor of 2 or 3. A

similar calculation for ox-As showed that 4Q„

=+6.43 MHz, resulting in a hvz ——-3.22 MHz.
In both cases, as is well known, the effects of the
outside atoms are not responsible for most of the
EFG; the predominant effect must come from the
bonding and nonbonding electrons of the central
atom.

The contribution to the EFG from outside atoms
in a-As was obtained by varying the dihedral angle.
(The dihedral angle is the angle of rotation along
the As-As bond required to bring the pair into an
eclipsed position. } The change in coupling con-
stant AQ„was calculated for 18 values of the di-
hedral angle, ' each value of the dihedral angle was
appropriately weighted, and a histogram of 6Q„
as a function of intensity was constructed. This
is shown in Fig. 5 for the dihedral angle distribu-
tion of Greaves and Davis. (A similar dihedral
angle distribution of Beeman and Alben" resulted,
in a similar NQR line shape. ) Note that the model
predicts the observed asymmetry in the NQR line
shape. This asymmetry is due to the asymmetry
of the dihedral angle distribution —a flat dihedral
angle distribution results in a symmetric NQR
line shape. The degree of asymmetry of the NQR
line shape depends upon the asymmetry of the di-
hedral angle distribution-a steeper dihedral angle
distribution results in a more asymmetric NQR
line shape.

Note also that the calculation linewidth of the
spectrum is about 3 the width of the experimental
spectrum. This lack of quantitative agreement
could possibly come from several sources of er-
ror in the calculation. ' First of all, because we
are concerned with various forms of solid As,
the concept of hydrogenlike orbitals is at best an
elementary approximation. Second, the values
of the nuclear quadrupole moment and the Stern-
heimer antishielding factor are not well known, '

conservative estimates support that both are cor-
rect to only+20/p. Third, the effective Bohr
.radius of the hydrogenlike orbitals is difficult to
estimate. %e calculated the quantity to be ao
=0.0467 A from hyperfine measurements of
(1/2) [(1/r ) =51&&10 cm (Ref. 56)] for atomic

As. Comparison of calculated charge densities
versus distance from the hydrogenlike orbitals
described above and those of Golin and Stocco'
for rh As [who u-sed orthogonalized plane wave
(OPW) wave functions] indicate that the above
value is too small: The value ao —0.047 A does
not predict a large enough electron density near
the midpoint of an As-As bond. Therefore one
must conclude that these calculations are prob-
ably in error by a factor of 2 or 3. Since the value
of ao used predicts a smaller charge density near
the center of the As-As bond than the more accu-
rate OP% wave functions, we must conclude that
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the calculated effects are too small. In fact, if
0

one arbitrarily increases ap to 0.0V A, the result-
ing a-P.s calculated linewidth is doubled, and the
charge-density distribution in rh-As becomes
more realistic.

Therefore it can be seen that this very simple
model for the effects of outside atoms on EFG's
in a-As explains the observed asymmetry of the
NQR line shape, and predicts, within a factor of
2 or 3, the correct linewidth. Hopefully this
simple calculation will stimulate more sophisti-
cated theoretical investigations.

Material v (MHz) v (MHz)

rh-As
or- As
~-As

23.56
46.32
63.5

20.56
43.32
60.5

0.033
0.070
0.098

91.9
94.7'
96.3'

B. NQR frequencies: Townes-Bailey model

It was noted in Sec. IV that, although the x-ray
data indicated that the local structures of the
three forms of As are similar, the NQR frequen-
cies are quite different. We have just shown that
this difference cannot arise from variations in the
orientation of outside atoms; therefore the dif-
ference must arise from subtle changes in the
local configurations of bonding and nonbonding
electrons. The approach employed here is the
simplest possible bond hybridization calculation
(due to Townes and Dailey' ).

For the case of a symmetric pyramidal bonding
structure, the calculated frequency due only to
bonding and nonbonding s and p electrons is given
by

vo" = (Q,',/2)(3 cos'e —1)/sin'e

= SQ'„cosP/(I —cosP), (I)

where Q,, is the coupling constant due to a single
unpaired p electron (Q„=-412 MHz), e is the
pyramidal apex angle, and P is the angle between
the hybridized bonding electronic wave functions.
Using the wave functions given in Ref. 26, the
fractional s character is given by.=(-:). /Q.'. .

By assummg that the outside atoms contribute
approximately -3 MHz to v, the fractional s
character can be calculated and is given in Table
II. Clearly, the different NQR frequencies lead

TABLE II. Calculation of the fractional s character
(s), the angle between the bonding wave functions (~|j)
from the observed resonant frequency in the three forms
of As using Eqs. (7) and (8). The quantity v@t is the NQR
frequency resulting from effects only associated with the
bonding electrons.

to quite different estimates of the s character and
bonding wave-function angle Q. Note that the
angle P is reasonably close to the x-ray value for
the actual bond angle o. (Table I) for a-As, but
quite different for the two crystals. We attribute
this discrepancy to the fact that the bonds in xh-
As and or-As (and probably also a-As) do not
have maximum overlap. Since bonding in this
case results from a minimization of the energy
for two processes-bond overlap, decreasing the
energy, and s admixture, increasing the energy-
the energy minimum may occur for angles of P
somewhat different from the bond angles derived
from x-ray measurements.

The use of the symmetric pyramid for or-As,
crystalline As2SB, or crystalline As28e3 is less
appropriate because the pyramids (from x-ray
data") are asymmetric. Therefore an asymmetric
pyramidal calculation was performed (this is
shown in the Appendix; an earlier calculation by
Rubinstein and Taylor contained several errors)
the results of which are summarized in Table HI
for the situation where the wave functions are
assumed to lie along the bond angle determined
from x-ray diffraction studies. The quantity 4
is the net charge left in each bonding orbital of the
As atom after charge transfer, ' this quantity was
calculated using the electronegativity formula for
percent ionic character of a bond due to Hannay
and Smyth. The quantities p, ~y, $2 and ~3 are
the fractional s characters of the lone-pair orbi-
tal and bonds &, 2, and 3, respectively. As can
be seen, calculated results are in very poor
agreement with the experimental values. X-ray
photoemission spectroscopy (XPS) work in As2S~,
rh-As, and a-As (Ref. 61) has indicated that the
s character of the bonds in all these materials is
low. Therefore the Tow'nes-Dailey calculation in
conjunction with the x-ray determination of bond
angles, indicates that the bonds do not have maxi-
mum overlap in the As283 and As28e, systems,
just as was determined above for the various
forms of A s.

Several calculations were performed using the
equations of the Appendix to check the effects of
bond distortion. One set of calculations simulated
the "pinching together" of two bonds while another
set simulated one bond bending while keeping the
other two in place. Both sets of calculations indi-
cated that the total s character of the three bonds
was very insensitive to any sort of distortion, but
that the quadrupole coupling constant, on the
other hand, was very sensitive to the value of apex
angle ~, the type of distortion, and the magnitude
of the distortion. We suggest that these results
indicate that the Townes-Dailey calculation, when
adjusted to fit the observed NQR frequency, may
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TABLE III. Calculation of the resonant frequency v@ and fraction s character of the lone-
pair orbital (Sp), and bonds 1 (S&), 2 (S2), and 3 (S3) from the Townes-Dailey approach shown in
the Appendix. The quantity & is the amount of charge left in an As bonding orbital, calculated
from electronegativity considerations. The values of the angles used in the calculation were
determined from. the x-ray work of Goldstein (As2S3 and As28e3) and Smith et al. (Or-As).

Site v (expt) (MHz) v+ (calc) Sp s) S2 S3

0y-As
As2S3 I

II
As2Se3 I

II

46.32
72.86
70.38
60.0
56.0

76.1
130.1
111.8
208.4
113.2

1.000
0.911
0.911
0.933
0.933

0.631
0.418
0.501
0.052
0.484

0.239
0.497
0.368
0.942
0.372

0.065
0.029
0.037
0.001
0.049

0.065
0.054
0.094
0.004
0.094

be a good indication of the average s-p hybridiza-
tion but a very. unreliable method of estimating-
details of the bonding wave functions such as
asymmetries.

In conclusion, the Townes-Dailey calculations
which employ x-ray bond angles to describe the
bonding wave functions cannot be used with any
degree of accuracy, even to predict trends. This
is probably due to the fact that the actual bonds
are not pointing directly at the bonding atom and
that maximum overlap is not occurring. In fact,
taken at face value, the Townes-Dailey calcula-
tions suggest that the s-p hybridization is small
in all the arsenic and arsenic chalcogenide mater-
ials investigated. It should be pointed out that
the NQR frequency is a very useful parameter: If
one has the correct wave function, it is a simple
task to calculate the NQR frequency. Thus the
NQR frequency is a valuable constraint on theo-
retical calculations. Hopefully, this fact will
encourage more sophisticated theoretical investi-
gations into the detailed electronic structure of
these materials.

C. Temperature dependence of NQR frequencies

In a-As the NQR line shape is so broad that any
temperature dependence of the peak frequency is
unobservable. However, in the two crystalline
forms the temperature dependence is easily mea-
surable (see Ref. 32' and Fig. 7 for xh-As and
or-As, respectively) and well fit by the Bayer
model described in Sec. IV. The oscillator fre-
quencies obtairied for ~h- and ox-As using Eq.
(6) are approximately 175 and 85 cm, respec-
tively. It is interesting to note that the lowest-
energy peaks in the phonon spectra obtained from
neutron scattering experiments occur at -100
and -50 cm for xh- and ox-As, respectively.

-1

These values agree remarkably well with the
predictions of the simple Bayer model. We con-
clude that the Bayer model provides a good, al-

beit elementary, picture of the influence of vibra-
tional degrees of freedom on the temperature de-
pendence of the NQR frequencies in these two
elemental compounds.

VII. SUMMARY

Pulsed nuclear quadrupole resonance NQR mea-
surements have been performed in the three
forms of elemental arsenic: (1) the amorphous
(a) semiconducting phase, (2) the semimetallic
rhombohedral (xh) phase, and (3) the semiconduc-
ting orthorhombic (ox) phase. The measurements
included: (1) spin-lattice relaxation times (Tq)
and spin-spin relaxation times (T2) as functions
of temperature in all three materials (the Tj vs
T for rh As wa-s reported in Ref. 31), (2) the
NQR frequency (vo) as a function of temperature
(the vo vs T for xh-As was reported by Sharma ),
(3) T, and T, as a function of vo at 77 K for a-As,
and (4) the NQR line shape at 4.2, 77, and 300 K
for all three forms.

It was found that T~o- T ' in a-As; this depen-
dence has been interpreted as evidence for the
existence of tunneling or disorder modes in this
material. This result is surprising in that the
normal technique for determining the existence
of disorder modes (observing a term linear with
temperature in the low-temperature specific heat)
indicated a much smaller density of these modes
in a-As than in many other amorphous materials.
Spin diffusion is invoked as a possible explanation
of the discrepancy between these two experiments.

The NQR line shape of a-As was found to be
highly asymmetric, with a full width at half maxi-
mum of 9 MHz. This, asymmetry is probably due
to a distribution of dihedral angles. A simple
calculation was presented to demonstrate this
possibility.

The observed NQR frequencies for the three
forms of arsenic have been interpreted using the
Townes-Dailey model. The results show that
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there are differing amounts of s admixture in the
bonding wave functions of the three forms of ar-
senic (rh-As:3%, or A-s :7.%, a-As:10%) and
that the bonding configurations do not correspond
to maximum overlap of hybridized bonding orbi-
tals on adjacent atoms.
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APPENDIX

A previous Townes-Dailey calculation performed
by Rubinstein and Taylor ' contained several er-
rors (typographical and otherwise) which are cor-
rected in this Appendix. The coordinate system
used here is rotated about the z axis by 1.80' from
that used in Ref. 15. We assume the following
wave functions: four directed orbitals, three

(l)() =S(t), + (1 S )'/'(a&]&, + bp„+cp,),

gq =Sq&f&, + (1 —Sq)" ((p, cos8 + g„sin8) )

Q =S3 (t), + (1 —S3)" ((t), cos8 + &f „sin8 cosb
(Al)

+ (t), sin8 sinb),

(13 S3$,+ (1 —S3) '
((p, cos8 + (t)„sin8 cosy

+ (t)„sin8 siny) .

Normalization requires that ae+ b'+c = 1. The
orthogonalization of these wave functions yields

bonds, and one lone pair, hybridized from the
neutral configuration (in As, the neutral configura-
tion is 4e 4p ). Furthermore, we assume that the
apex angle 8 is the same for all three bonds (this
assumption is equivalent to assuming that the bond
lengths are all the same). The angles 6, y, and
& are defined with respect to the bond projections
onto the plane connecting the three outside atoms.
The angle & is the counterclockwise angle from
bond & to bond 2, y is the counterclockwise angle
from bond 1 to bond 3, and E is the clockwise
angle from bond 1 to bond 3 (i. e. , & =360' —y)
The four wave functions are given by

us =S3/(1 —S,') =-[(cos 8+ sin 8 cosy)/(cos 8+ sin 8 cos&)](cos 8+ sin. 8 cosb),

u3 =s3/(1 —s3) =-[(cos 8+ sin 8 cos~)/(cos 8+ sin 8 cosy}](cos 8+ sin 8 cosa),

u3 ~3/(I s3) =—[(cos 8 + sin 8 cos&)l(cos 8 + sin 8 cos&)](cos 8 + sin 8 cosy)

(A2)

a=c tan~~
)' »n~(u3/u~ —cosy) —siny(u3/uy cosb)
((u3/uq —cos&)(u3/u3 —1) —(u3/uq —cosy}(u3 juq —1) ) '

b=c sin&(u3/u~ —1) —siny(u3/ug —1)
(uc /uc —cos S)(us/uc —)) —(us/uc —cosy) (uc /uc —1)) '

u = S /(I -S )=-( a cos8 + b si n8) /uq .
By choosing the sign of c to be positive, c = (1 —a —b )

' .
We can now calculate the elements of the electric-field-gradient tensor by the equation

3

Q'f. —
QO eg L

At=O

where L'~ is calculated using the Wigner-Eekart theorem and is given by

I-'~ = —,'[- —3'(l, lq + lql,.) + b„l(l + 1)],

(As)

(A4)

(A6)

(A6)

(A7)

where the l, are angular momentum operators within the L =1 manifold for p electrons. In Eq. (A3), q,
"

is the electric-field gradient from a single unbalanced p electron, and e& is the occupation of the ith orbi-
tal. The resulting 3&&3 matrix for the EFG is given by

q„„=q„„=-,'q'"[e3(1- S )bc+ e3(1 —SI) sin'8 cosb sinb+ e3(1 —S3) sin 8 cosy siny],

q =q„,= —,'qo'[e3(1 —s )ab+ e3(1 —s&) cos8 sin8+ e3(1.—s3) sin8 cos8 cos&+ e3(1 —s3) sin8 sin8 cosy],

q„=q„,=-,'q", [e3(1 —S )ac + e3(1-S3) sin8 cos8 sin& + e3(1 —S3) sin8 cos8 siny],
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q„„=qo((eo/2)(1- S )(Sb —1) + eq(1 —Sq)(sin 8 —cos 8/2)

+ e2(1- S2)[sin 8(cos b —sin b/2) —cos 8/2]+ e3(1-S~)[sin 8(cos y- sin y/2) —cos 8/2]j,

q» ——qadi(eo/2)(1- S )(2- Sa —Sb ) —(e&/2)(1-S&)

+ eq(1- S2)[sin 8(sin b —cos b/2) —cos 8/2]+ e~(l —S~)[sin 8(sin y- cos y/2) —cos 8/2P,

q„=qo((eo/2)(1 —S )(Ba —1) + (cos 8 —sin 8/2) [eq(1 —Sq) + e2(1 —S2) + e~(1- S3)jj .
(A9)

(A10)

This matrix can then be diagonalized with diagonal components q,„, q„, q„, and the hQR fretluency is giv-
en by

v = —,'(e Qqo/@)(1 —&'/2)

where the asymmetry parameter is given by

n = (q„„-q,„)/q„.

(A11)

(A12)

*Operated by Union Carbide Corporation for the U. S.
Department of Energy under Contract No. W-7405-
eng-26.

'G. N. Greaves, S. H. Elliott, and E. A. Davis, Adv.
Phys. 28, 49 (1979).

G. Lucovsky and J. C. Knights, Phys. Bev. B 10,
4324 0 974).

3J. S. Lannin, Phys. Bev. B 15, 3863 (1977); Structure
and Excitation of Amorphous Solids in Proceedings of
an International Conference on Structure and Excitation
of Amorphous Solids, edited by G. Lucovsky and F. L.
Galeener (AIP, New York, 1976), p. 123.

4A. J. Leadbefter, D. M. Smith, and P. Seyfert, Philos.
Mag. 33, 441 (1976).
F. Al-Berkdar, P. C. Taylor, G. D. Holah, J. G.
Crowder, and C. R. Pidgeon, in&morphous and
Liquid Semiconductors, edited by W. E. Spear (Uni-
versity of Edinburgh, Edinburgh, 1977), p. 184.

BP. C. Taylor, S. G. Bishop, D. L. Mitchell, and
D. Treacy, in Proceedings of the Eifth International
Conference on Amorphous and Liquid Semiconductors,
edited by J. Stuke and W. Brenig (Taylor and Francis,
London, 1973), p. 1267.

VG. Lucovsky, Phys. Bev. B 6, 1480 (1972).
B. C. Zeller and B. O. Pohl, Phys. Rev. B 4, 2029
(1971).

~C. N. King, W. A. Phillips, and J. P. de Neufville,
Phys. Rev. Lett. 32, 538 (1974).
D. P. Jones, N. Thomas, and W. A. Phillips, Philos.
Mag. B 38, 271 (1978).

"Preliminary results were presented by G. E. Jellison,
Jr. , G. L. Petersen, and P. C. Taylor, Phys. Hev.
Lett. 42, 1413 (1979).

2S. G. Bishop, U. Strom, and P. C. Taylor, Solid
State Commun. 18, 573 (1977).

3P. C. Taylor, E. J. Friebele, and S. G. Bishop,
Solid State Commun. 28, 247 (1978).

4R. J. Nemanich, G. Lucovsky, W. B. Pollard, and
J. D. Joannopoulos, Solid State Commun. 26, 137
(1978).

'5M. Hubinstein and P. C. Taylor, Phys. Bev. B 9,
4258 (1974).

6J. Szeftel and H. Alloul, Phys. Hev. Lett. 34, 657
(1975).

YM. Rubinstein, H. A. Resing, T. L. Beinecke, and
K. L. Ngai, Phys. Bev. Lett. 34, 1444 (1975).
T. L. Reinecke and K. L. Ngai, Phys. Hev. B 12,
3476 (1975).
J. Szeftel and H. Alloul, J. Non-Cryst. Solids 29, 253
(1978).
J. Szeftel and H. Alloul, Phys. Hev. Lett. 42, 1691
0,979).
See, for example, A. Abragam, The Principles of
Nuclear Magn etism (Clarendon, Oxford, 1961).
R. W. G. Wyckoff, Crystal Structures, 2nd ed.
(Wiley, New York, 1963), Vol. I.

23P. M. Smith, A. J. Leadbetter, and A. J. Apling,
Philos. Mag. 31, 57 (1975).
G. N. Greaves and E. A. Davis, Philos. Mag. 29,
1201 (1973); in Proceedings of the Tauelfth International
Conference on Physics of Semiconductors, Stuttgart,
1974 (Teubner, Stuttgart, 1974), p. 1047.
W. Matthews, E. A. Davis, and S. R. Elliott (unpub-
lished).

28T. P. Das and E. L. Hahn, Nuclear Quadropole Res-
onance Spectroscopy, Solid State Physics Suppl. 1
(Academic, New York, 1958).
E. A. C. Lucken, Nuclear Quadrupole Coupling Con-
stants (Academic, London, 1969).
E. L. Hahn and B. Herzog, Phys. Rev. 93, 639
(1954).
B. Herzog and E. L. Hahn, Phys. Rev. 103, 148
(1956).

3 S. Alexander and A. Tzalmona, Phys. Rev. 138, A845
(1965).

3'G. E. Jellison, Jr. and P. C. Taylor, Solid State
Commun. 27, 1025 (1978).
S. N. Sharma, Phys. Lett. 57A, 379 (1976).

33T. J. Bastow and H. J. Whitfield, Solid State Commun.
18, 955 (1976).

34N. Morimoto, Minerol. J. 1, 160 (I.954).
3~A. C. Renninger and B. L. Averbach, Acta Crystal-

logr. B 29, 1583 (1973).
36H. Bayer, Z. Phys. 130, 227 (1951).
3 J. Van Kronendonk, Physica 20, 78I. (1954).
38K. B. Jeffrey and R. L. Armstrong, Phys. Rev. 138,

A 845 (1965); B. L. Armstrong and K. H. Jeffrey,
Can. J. Phys. 47, 2165 (I968).



G. E. JELLISON, JR. , G. L. PETERSEN, AND P. C. TAYLOR, 22

3 G. E. Jellison, Jr. , Solid State Commun. 30, 481
(1979).
J. Haupt and W. Mull, er-Warmuth, Z. Naturforsch.
239, 208 (1968); 249, 1066 (1969).

4iB. B. Stevens, Phys. Bev. B 8, 2896 (1973).
U. Strom and P. C. Taylor, Phys. Rev. B 16, 5512
0.977).

43J. S. Lannin, H. F. Eno, and H. L. Luo, Solid State
Commun. 25, 81 (1978).

448. Golding, J. E. Graebner, B. I. Halperin, and
B. J. Schutz, Phys. Rev. Lett. 30, 223 (1973);
S. Hunklinger, W. Arnold, S. Stein, R. Nava, and
K. Dransfeld, Phys. Lett. A 42, 253 (1972).

45M. Von Schickfus and S. Hunklinger, Phys. Lett.
64A, 144 (1977).

46P. W. Anderson, B. I. Halperin, and C. M. Varma,
Philos. Mag. 25, 1 (1972).

47W. A. Phillips, J. Low Temp. Phys. 7, 351 (1972).
4~L. Lyo and B. Orbach (unpublished).
J. L. Block and B. I. Halperin, Phys. Rev. B 16,
2879 (1977). -

B. Golding and J. E. Graebner, Phys. Rev. Lett. ~37

852 (1976).
A. Abragam and K. Kambe, Phys. Rev. 91, 894 (1953).
F. D. Feilock and W. R. Johnson, Phys. Rev. 187,
39 (1969).

~3B. M. Sternheimer, Phys. Bev. 80, 102 (1950).
54T. T. Taylor and E. H. Hygh, Phys. Rev. 129, 1193

(1963).
~~D. Beeman and B. Alben, Adv. Phys. 26, 339 (1977).

R. G. Barnes and W. V. Smith, Phys. Rev. 93, 95
(1954).

578. Golin and J. A. Stocco, Phys. Bev. B 1, 390(1970).
C. H. Townes and B. P. Dailey, J. Chem. Phys. 17,
782 (1949).

59P. Goldstein (private communication); A. A. Vaipolin,
Kristallografiya 10, 596 (1965).
N. B. Hannay and C. P. Smyth, J. Am. Chem. Soc.
68, 171 (1946).

@S. G. Bishop and N. J. Shevchik, Phys. Rev. B 12,
567 (1975).


