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The low-temperature properties of dilute Ruderman-Kittel-Kasuya- Yosida (R KK Y) -coupled

spin systems have been investigated by computer simulation. Our results are based upon classi-

cal "ground states" for finite systems of spins distributed randomly in a cubic volume of fcc lat-

tice, generated by an algorithm which lowers. the system energy at each step. The (Heisenberg)
RKKY exchange interaction is taken to be of the form appropriate to local moments in noble-

metal hosts. In studying the number of such states which occur for a single system of 172 spins,

we found only seven independent equilibrium configurations (EC's) among 70 which were gen-

erated from different random starting orientations. EC's are found to possess short-range angu-

lar correlation, such that a suitably defined correlation volume contains an average of —two

neighbor spins. The latter result is found to be independent of concentration, is expected for

power-law range functions. The distribution Po(H) of exchange fields for EC's is compared

with an analytic expression derived for. randomly oriented spins in the dilute limit. The effect of
ordering is to broaden the distribution by —50% and to diminish the number of spins with very

small fields. Quantum equations of motion for small oscillations about equilibrium are derived

in a spin-wave approximation and are shown to be equivalent to their classical counterpart. Oth-

er features of the spin-wave picture are discussed. Low-lying modes related to rotational sym-

metry are discussed in detail in the Appendix. Calculated spectra are exhibited for systems of
96 and 172 spins and are found to scale correctly with concentration. Both local and dipolar an-

isotropy are found to introduce a zero-frequency gap in the excitation spectrum„ the classical di-

polar term is, however, too small to give an appreciable effect. A similar zero-frequency gap

results from the application of a uniform field. Treating the excitations as bosons leads to i suc-

cessful interpretation of specific-heat data for CuMn. For the case of AuFe generalagreement
is also found, but with a discrepancy in form attributable to the Kondo effect. Damping of the

RKKY interaction is found to cause a simple scaling of the excitation spectrum to lower fre-

quencies. These results are used to interpret the concentration variation of the specific heat and

the spin-glass ordering temperature for Cu Mn. We also employ EC's of 96 and 188 spins to cal-

culate the zero-temperature reversible susceptibility, yielding good agreement with Cu Mn data

(with S = —) and Au Fe data (with S = —).5 ~ 3

2 2

I. INTRODUCTION

Despite the eXtensive efforts which have been de-
voted in recent years to the analysis of the spin-glass
state it is fair to say that many important questions
remain unanswered. The pioneering treatment by
Edwards and Anderson' (EA) of a model with

random-exchange interactions introduced some basic
ideas about the possible nature of the spin-glass state,
a plausible order parameter and a demonstration that
the model would show, at least in mean-field theory,
a phase transition. The cusp in the magnetic suscep-
tibility observed by Canella and Mydosh' was also
predicted to occur at the transition; a similar peak
given for the specific heat is not observed experimen-
tally.

Extensive Monte Carlo calculations by Binder' and
Ching and Huber on both Ising and Heisenberg sys-
tems show that the peak in the susceptibility may be

reproduced. Binder also pointed out the relevance of
a different order parameter based upon the zero-
temperature configuration of the spins and studied its
temperature dependence. This work and some, but
not all, experiments seem to leave open, however,
the question of whether there is a genuine phase
transition or, simply, a "blocking" effect indicative
of extremely long relaxation times. A number of au-
thors' have attempted to take into account, in simula-
tions or in theory, the effect of clusters, defined rath-
er loosely as groups of spins with strong correlations.
There is some evidence that an explanation for the
smoothness of the specific heat may be indicated in

this work. There has been in addition, a great deal of
effort expended upon highly idealized Ising models,
which, significant in itself, does not immediately clar-
ify the behavior of laboratory systems.

In the present paper we have attempted to explain
some of the low-temperature behavior of spin-glasses
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with Ruderman-Kittel-Kasuya-Yosida (RKKY) in-

teractions m'aking extensive use of computer simula-
tion. These systems are reasonably well characterized
and a good deal of experimental data is on hand.
There is probably fairly general agreement that a
disordered system of spins will, in the absence of ex-
cessive quantum fluctuations, possess a number of
low-lying configurations nearly degenerate in energy.
Because of the presence of energy barriers between
these states one may expect them to exhibit some de-
gree of permanence at sufficiently low temperatures.
If the time spent by the system in any one of these
configurations is long enough, it is reasonable to sup-
pose that it will have a set of low-lying excitations
analogous to those of an ordered spin system in its
ground state. Since the system (and the configura-
tion) have no translational invariance these excita-
tions have no simple labeling by wave number; they
belong exclusively to their parent configurations. In
other respects they resemble magnons. As the solu-
tion of a linearized set of equations of motion each
mode is capable of independent and mutliple excita-
tion; for thermodynamic purposes they may be treat-
ed as bosons. While these facts are formally clear
their relevance to the properties of a real system
depends upon a number of factors. It is clearly
essential that the original ground-state configuration
shall not be disrupted by zero-point effects or by mi-
gration over an energy barrier to another possible
configuration. To be confident about the calculation
of thermodynamic quantities one would need to
know the extent to which the excitations interact,
that is "How anharmonic is the system?"

In the present paper an attempt has been made to
investigate some of these questions by numerical
simulation of a real spin-glass system and, assuming
the simple picture of noninteracting boson excita-
tions, to evaluate some experimentally measured
quantities. Initially we investigate configurations of a
classical spin system which minimize the total ener-
gy.

' Such configurations, analogous to the Neel state
of an ordered antiferromagnet, provide a starting
point for the discussion of excitations. The equations
to be solved for the frequencies are the same in

quantum and classical treatments. The excitations
are then treated as bosons for thermodynamic pur-
poses at sufficiently low temperatures. Since our ini-
tial report of this work other studies along these
same lines have been published.

The question of the existence, number, and nature
of classical minimum-energy states is obviously of
considerable importance. Only if it is found that
these states are nearly degenerate in energy and pos-
sess similar statistical distribution of properties is it
reasonable to proceed with the second part of the
program. These matters are therefore discussed in
considerable detail in the first part of the paper.

In both the theoretical and experimental literature

the term "spin-glass" has come to be applied in a
very loose fashion to almost any disordered magnetic
system exhibiting a susceptibility peak of acceptable
acuteness. The term was originally applied to dilute,
RKKY-coupled systems' of spins such as Cu Mn and
Au Fe. We confine our attention here to systems of
this. type for a number of reasons. There is a consid-
erable body of experimental data on magnetic suscep-
tibility, remanence, magnetic time effects, specific
heat, electrical conductivity, and magnetic resonance
which covers a wide range of impurity concentrations.
The interaction between the spins is well character-
ized and, in some cases, known in magnitude; in low
concentrations, its variation with distance is such as
to predict certain scaling rules with concentration and
these are substantially verified. One finds therefore a
favorable opportunity to compare calculated and ex-
perimental results.

The scaling laws for RKKY (or any r ') interaction
potential require further comment. Attributed origi-
nally to Blandin" these are expected to apply strictly
in the limit of considerable dilution (c « 1.0
at. %).'2 In that limit not only is the deviation from
r ' behavior at short range relatively unimportant,
but also the cosine factor can be considered as an
essentially random modulation not affecting the basic
r ' character of the coupling. It follows that the en-
ergies of the system increase linearly with concentra-
tion c, and for example, the reduced specific heat
C~/c and magnetization M/c are then functions of
reduced field (H/c ) and temperature ( T/c ) vari-
ables. " Other properties of RKKY spin-glasses are
also expected to scale with e, as will be discussed in
the body of this paper. Experimentally, spin-glass or-
dering temperatures for Au Fe have been found' to
scale with c for e values between a lower limit deter-
mined by the Kondo effect and an upper limit
c —1.0 at. % which, we suggest, marks the onset of
self-damping of the RKKY coupling by the Fe impur-
ities themselves. " Curiously, the remanent magneti-
zation also obeys scaling. "

While existing treatments of RKKY-coupled spin
systems will be considered at appropriate points in
the body of the paper, we offer one general comment
at the outset. The RKKY interaction' is clearly un-
derstood to be of isotropic (Heisenberg) form.
Nonetheless, many authors' "have considered sim-
plified treatments of RKKY-coupled systems in terms
of the Ising approximation. This may give an ade-
quate account of properties in the vicinity of the
spin-glass temperature 7~ and above; however, it is
unlikely to yield valid results at low temperatures
0 & T ( Tg. In the latter case the properties of any
isotropically coupled spin system are dominated by
magnonlike excitations, and spin-glasses are presum-
ably no exception. Such excitations are only possible
with transverse as well as z-axis coupling, making
the Ising picture clearly inappropriate. In addition,
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we find dramatic differences (Sec. II B) between the
energies and distribution of Ising-like and isotropic
ground states, further emphasizing the inadequacy of
the Ising approximation.

The paper is organized in the following way. In
Sec. II we discuss the computer generation of classi-
cal minimum-energy states and their properties. In
Sec. III we examine the quantum-mechanical calcula-
tion of the excited states near to the energy minima,
show its relation to the associated classical problem,
and carry out in Sec. IV the calculation of excitation
frequencies and eigenfunctions for a number of
cases. The density of states of these modes and their
spatial dependence are considered, as well as the ef-
fect of introducing self-damping of the RKKY in-

teraction, dipolar and local anisotropy, and applied
magnetic fields. The low-temperature specific heat
and susceptibility are evaluated. Section V summa-
rizes our results.

II ~ CLASSICAL MINIMUM-ENERGY STATES
AND THEIR PROPERTIES

A. Formulation and methodology

= ——Z, JJn; ~ nJ
iWJ

(2.1)

The specific choices of the interaction, "J(~ r
~ ), and

of the crystal lattice to be used in the simulation will

be discussed below.
One is interested first in locating configurations,

} n; }, for which the energy, E (n, },has a local
minimum. When these are found a number of ques-
tions may be asked. Some are as follows: In a sys-
tem of a given size, how many such minima are
found? Do the energies of such minima lie in a nar-
row range or not? Are the characteristics of these
configurations, such as the distribution of field
strengths, the range of correlation, and their excita-
tion spectra, identical within statistical fluctuation? If
the answers to the last two questions are affirmative,

It was pointed out in the Introduction that to make
an analysis of low-energy excitations in the spin-glass
one wants to start from configurations of the spins
which are local energy minima. We start by consider-
ing this problem for a general Heisenberg system; ex-
tension to arbitrary two-spin interactions is straight-
forward, merely requiring more subscripts.

The classical Heisenberg spin system is to be
represented by a collection of vectors n;, each of unit
length, assigned to a set r;, of randomly selected
sites of a regular lattice. The fraction of available
sites occupied is c. The energy E is taken to be of
the form

E=——,
'

X J(lr; —r, l)n; n;

E2= ) $X;II;'nI; T~ X Jvrrl;'RI (2.3)

Introducing at each occupied site a triad of mutually
orthogonal unit vectors, a;, b;, n, we may write

m;=n;a;+P;b;
and E2 becomes

E, = —,
' X),(n,'+P,')

(2.4)

$ J„"(n;a;+P;b;) ( a n+PJ, bj)
I WJ

(2.5)

which is a quadratic form in the 2N variables n;, P;.
If } n; } is a true local minimum this must be non-
negative definite. Since, in the present Heisenberg
case, the energy is invariant with respect to rotations
of all the spins, the associated matrix of E2 will have
three zero eigenvalues corresponding to three in-

dependent rotations. The remaining 2N —3 eigen-
values must be positive. The analytic expression of
conditions for this to be true are unfortunately far
too complicated to be put to practical use. It is, how-
ever, feasible to use a direct diagonalization of the F2
matrix associated with a given configuration of the
} n; } as a verification of its minimum character.

There are exceptional classes of solutions to Eq.
(2.2). The first of these is that of Ising states, for
which each spin lies parallel or antiparallel to an arbi-

it will be reasonable to argue that the system has a
number of essentially degenerate ground-state confi-
gurations.

If E is varied, subject to the constraints n; n; = 1,
the variational equations for stationary F. are

QJ&nj=k;n;, i =I, . . . , IV (2.2)
J

J%

where the A.; are Lagrange multipliers. These equa-
tions have an obvious physical significance.

$i JJ n, = h, is the exchange field which acts on
spin i and Eq. (2.2) says that each h; is parallel or an-
tiparallel to n; when E is stationary. A necessary,
but in no way sufficient, condition for a configuration
( n; } satisfying Eq. (2.2) to be a local-energy
minimum is that all associated A. ; be positive since
this guarantees that changes in the orientation of any
single spin will increase the energy. Similarly it can
be shown that for stability against changes in the
orientation of any pair of spins one must have
h. ;X& ) (J&n; n& )' and so forth for larger groups.
The full conditions for a configuration ( n; } to be a
minimun can only be found by examining the change
in energy E2, to second order in the first-order dis-
placements iR;, when n;. is replaced by

~0 I ~0
n +m ——rii 6 n +I I 2 I I I

where n; m;=0 and ~m; nI;~ (( l. E2 is given by
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trary direction, np. We may write n; = 0-;np, with

cr; =+1, for such states and then
'

A

X/ —CTI $ JIJ Crj

J
(2.6)

There are clearly 2~ such states where N is the
number of spins. Whether or not any one of them is
a local minimum involves exactly the same con-
siderations as before. The quadratic form E2 is now
somewhat simpler in form but its properties again
depend upon the particular set of J's involved. It
may be noted that the Ising solutions represent a
solution to the original optimization problem subject
to an additional constraint, n; =+np. The other class
of solutions will be planar ones corresponding to the
constraint n; x np = 0, Again the existence of stable
minima of this class has to be investigated for each
case.

The location of possible energy minima by any
direct solution of Eq. (2.2) seems not to be feasible.
The apparent linearity of the equations is unhelpful
when the side conditions, n; n; = 1, are recalled.
Similar considerations arise if one thinks of applying
standard minimization procedures to the original qua-
dratic energy form in 3N variables.

Our approach was therefore to generate solutions
of Eq. (2.2) which minimize F. [Eq. (2.1)J by means
of an iterative computer algorithm. For this we
chose simply to rotate the spins sequentially into
coincidence with their instantaneous fields h; a se-
quence of N such rotations constituting a single itera-
tion. While it would be possible to move two or
more spins in a single step, the added complexity of
such schemes renders the possible advantages ques-
tionable. Since the instantaneous energy at any point
in the equilibration process can be written

AE=—n; h; ——X J~gnj nq . j,k Ni, (2.7)
JWk

where the entire dependence on E on n; is embodied
in the first term, the change b,E resulting from rotat-
ing n; h;/( h; ( is simply

hE; = —(1 —cosH; ) i h; i (2.8)

Js = A cos(2kFrs)/I'g~ (2.9)

where 8; is the initial angle between n; and h;. Thus,
one is guaranteed a reduction in the system energy at
every step with this algorithm. Rigorous analysis of
this procedure is difficult because it acts on one spin
at a time. However, since points in the configuration
phase space which are stationary in energy, but are
not true local minima (saddle points), have neighbor-
hoods at lower energy, it is almost certain that an al-

gorithm having some random character such as is
used here will avoid such points.

In the present calculations J„" is taken to have the
form of the long-range part of the RKKY interac-
tion, ' or for two sites r; and r,

with r& ——
~ r; —r;~ and kF the Fermi wave vector. J;,

is truncated such that each spin interacts with an
average of —50 neighbor spins. More distant cou-
plings affect equilibrium energies by 0.2% or less.
The lattice is taken to be fcc and. the lattice constant
a, and free.-electron wave vector kF, are chosen to be
those of Cu metal, with the application to Cu Mn in
mind. Appropriate values for A will be given in Sec.
Iy 2P

Equilibrium configurations (EC's) have been gen-
erated with the above procedure for systems contain-
ing N = 96 and —180 spins randomly distributed in a
cubic section of fcc lattice at concentrations of c =0.3
at. % and 0.9 at. %. Periodic boundary conditions
were imposed in order to minimize edge effects. In
each case the spins were given random starting orien-
tations and the algorithm iterated until no further
reduction in E (outside roundoff fluctuations result-
ing from the eight-digit computer accuracy) could be
achieved. The number of iterations required to reach
equilibrium tended to increase with N and varied in
individual cases from several hundred to more than
2000. The validity of the foregoing criterion for
equilibrium was confirmed by diagonalizing the qua-
dratic form [Eq. (2.5)] for the energy for small dis-
placements from equilibrium. The absence of nega-
tive eigenvalues confirms that an energy minimum
had been reached.

The behavior of F. during equilibration consists of a
rapid initial drop followed by a very slow and gradual
decrease near equilibrium. We see from Eq. (2.8)
that the steps AF.; become quadratically small as
8; 0. Meanwhile, the vectors n; were found to ex-
ecute relatively smooth trajectories on the unit sphere
at small deviations from equilibrium. This was taken
advantage of in the equilibration procedure by pro-
jecting the n s ahead along their trajectories every
five or so elementary steps. A factor 2-3 in iteration
time was saved in this fashion. Interestingly, it was
found that even after the deviations 8; had been re-
duced to less than 1' the n s were found to be dis-
placed significantly from their final equilibrium orien-
tations. In a typical case, for example, spins which
deviated initially by a mean angle (H;) —0.2' from
their exhange fields were found to rotate further
through an average angle of —20' before reaching fi-
nal equilibrium, during which the energy diminished

by only —0.1%. Thus it appears that these systems
are magnetically very soft, a fact which is undoubted-
ly related to the low-energy excitation peak reported
in Sec. III.

8. Independent equilibrium configurations

One of the interesting questions regarding the for-
mation. of EC's is that of how many independent
EC's can be found for a given spatial distribution of
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62+= —X in; + R n;I' (2.10)

with respect to the rotation operator R, where the
positive sign in Eq. (2.10) corresponds to having in-

verted one of the EC's. The minimum values of A2+
can also be expressed as

(5)+);„=—2(1 —P +,„)-, (2.11)
I

where P -„.„ is the maximum projection of the n; onto
the (+)R n;, norma1ized so that 0 ~ P„„„~1. The
problem of determining R so as to minimize 5+ is

reduced in a straightforward manner to a 4 & 4 matrix
eigenvalue problem. In the discussion belo~, com-
parisons of sets of EC's are presented by quoting
values of P-,, „.+

W'ith the methods of Sec. II A, 70 EC's were gen-
erated from independent randomly oriented starting
configurations, out of which only seven unique
members were found. Whether any of' these would
merge if the equilibration process were to continue
with greater than eight-digit precision is a matter of
conjecture. Thus there is a possibility that the
number of independent EC's is smaller than 7. It is
rathe'r unlikely that it is larger, i.e. , that there are ad-
ditional independent EC's which did not occur in the
random sample of 70 examined. In the simple case
that all EC's have equal likelihood of being detected„

N spins. An important related question is that of
how independent EC's differ in detail. We have car-
ried out an empirical examination of these questions
using a single spatial distribution of N =172 spins.
Since EC's have rotation and inversion symmetry, it

was necessary to develop calculational machinery to
distinguish genuinely independent EC's from those
which differ only by a uniform rotation and/or inver-
sion, We begin by describing the procedures used for
this purpose.

To establish the "true" difference between a pair
of EC's (denoted n; and n;, i =1, . . . , /V) we seek
to minimize the two mean-square difference expres-
sions

the probability that there are Z independent EC's and
only Z —1 occurred in a random sample of N, start-
ing configurations is

Pt(W, ) =Z(1 —Z ') ' (2.12)

For Z =8 and Ã, =70, Pi(N, ) =7.0x 10 ~. Further,
the probability of two such EC"s not occurring is

1
JV

P, (JV, ) = —,'Z(Z —1)(1—2Z ') * (2.13)

which for Z =9 and N, =70 is 8.2 x 10 ', i.e., negli-
gibly small. Of course, if there are one or more
states with a statisitical weight of order N, ', their
probability of remaining undetected remains finite.

W'e have compared the members of our "com-
plete" set of EC"s in a variety of ways, including
state energies, maximum mutual projection, and the
number of spins on which the major differences
between a pair of EC's resides. Considering these
results in turn, we exhibit in Table I the energies of
the EC's as well as the values of P „. „ for all 21 pair-
ings. The energies are in reduced units. ' The ener-
gies are seen to be very narrowly grouped, with a
standard deviation of only 0.02% of the mean value.
Since the exchange is of order unity at near-neighbor
distances, the differences among EC's must be con-
fined to variations in rather remote exchange bonds.
For any fixed spatial distribution of spins the same
narrow spread in the equilibrium energies is to be ex-
pected, but there may be a substantial discrepancy
between the energies of different distributions. This
is a finite-size effect principally arising from the sta-
tistically fluctuating numbers of spins with very
strong interactions.

We have also studied .the energies of Ising EC's to
compare with the isotropic case. Ising equilibriums
were generated in two distinct ways. In the first, the
spins were restricted to lie along a particular direction
in space. Beginning with the spins randomly up or
down, a simple equilibrium is achieved by iteratively
reorienting them to point along their local field. In

TABLE I. Energies and mutual projections Pm„. „ for the seven unique EC's of 172 spins described in the text. The larger of
P~„„is listed, with the n. otation ( —) when Pm„. „&P~„„The mean energy . (.E) = —17.510191 with a standard deviation

(EE),a ——1.8 x 10 4(E)

EC No. 1 2 3

E = —17.513 388 —17.510 368 —17.513 006
4

—17.513 483
5

—17,507 343
6

—17.507 633
7

-17.506 113

P
„, ,=0783

0.961(-)
0.749
0.691
0.925 ( —)
0.770(-)

0.811(-)
0.826 (-)
0.820 ( —)
0.693 ( —)
0.877(-)

0.744(-)
0.709(—)
0.906
0.713

0.892
0.747(-)
0.798

0.647(-)
0.903 0.674
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FIG. 1. Comparison of the energy distributions of two

sets of Ising EC's (obtained as described in the text) with

that of the seven unique isotropic EC's found for a specific
spatial distribution of 172 spins at c =0.9 at. %. The inset
sho~s a bond diagram for the seven EC's based on the Pm, „
values in Table I.

Fig. 1 (Ising EC's No. 1) we display the energy distri-
bution of several hundred Ising EC's generated in

this fashion. The energies of these states are broadly
distributed and well above those of the isotropic case.
It is well known, however, that much lower Ising en-
ergies can be reached with special procedures. In
case No. 2 we begin by first bringing an initially ran-
dom set of spins into near-equilibrium with isotropic
coupling. The transverse-coupling terms are then re-
duced linearly to zero over a space of 50 iterations.
The resulting Ising EC's (No. 2 in Fig. 1) are below
set No. 1 and mare narrowly distributed in energy,
but still well removed from the isotropic EC's. These
results demonstrate that it is the isotropic character
of the exchange which permits the EC's to be very
nearly degenerate. %e also conclude that it would be
very unlikely to find an Ising state lower than the iso-
tropic EC's.

The projections P,„are shown in Table I, with no-
tation (—) where an inversion was also required.
P,„values are seen to range from 0.647 (columns 5

and 6) up to 0.961 (columns I and 3). For randomly

oriented spins one finds P,„—0.1, and thus, all

seven EC's are seen to have a large region or regions
of common orientation, with a number of pairs
differing by ony a handful of deviated spins. On the
basis of the P,„values of Table I, one can construct
a "bond" diagram as in the inset to Fig. I showing
that the EC's naturally divide into two groups on the
basis of how large their mutual projections are, with
weaker projections coupling to members of the oppo-
site group. It is interesting to note that the groups in

Fig. 1 are not ordered according to energies, so that
proximity in orientation is not strongly correlated
with closeness in energy.

One can also characterize pairs of EC's in terms of
the numbers of spins over which their differences are
distributed once they are rotated so as to maximize
their mutual projection. For this purpose we intro-
duce the mean fourth-power difference

44+ = —g I n,
' + R n, i'

l

(2.14)

It is clear, then, that A4 gives additional information
as to how the differences n; —n; are distributed
over the N spins. To illustrate this we take a simple
example where for ND "deviated" spins

r r

(n; —n;) (n; —n;) =d
I

and for the remaining N —ND spins, n; —n;=0.
One then fi tds 52= (N~/N )d and 54= (ND/N )d',
so ND can be expressed'

Ng =N522/h4 (2.1 5)

In a general case we may take Eq. (2.15) as an ap-
proximate measure of the number of spins on which

the difference between a pair of EC's is distributed.
ND values for the seven EC's discussed previously

in the same notation as Eq. (2.10). We also define
n; = + R n; to be rotated, and if necessary, inverted
n s which minimize 52+. The corresponding values
of 52+ and 64+ are denoted A2 and A4, respectively.
Thus

1 ~ ~ 2 4a, 4=——XIn, —n;i24
I

TABLE II. ND values computed from Eq. (2.15) for the seven independent EC's discussed in

the text.

EC No.

48.3
15.6
46.7
58.3
21.0
56.0

48.4
79.0
63.4
61.0
27.6

50.4
59.8
26.8
63.9

24.9
49.5
49.5

65.4
48.9 82.7
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FIG. 2. Plot of Pm, „vs Ã& for all possible pairings of the
seven unique EC's as given in Tables I and II. The line

drawn corresponds to ÃD spins with zero mutual projection
and N —N& spins with a projection of unity.

C. Range of angular correlations

The equilibrium states we have found represent a
cooperative effort of the interacting spin system to

are given in Table II, where they are seen to vary
from the minimum of 15.6 to a maximum of 82.7.

Comparison of P „. „values in Table I with ND

values in Table II suggests that these quantities are
strongly correlated. This effect is illustrated in the
plot of P,„vs ND in Fig. 2. The straight line in Fig.
2 corresponds to having the ND "deviant" spin pairs
at an average angle of 90' to one another (i.e. , with
zero mutual projection) with the other N —Na spins
perfectly aligned. The actual behavior lies above this
curve, so that the mean angle between the ND spins
is somewhat less than 90'. Interestingly, points in

Fig. 2 corresponding to pairs of random spin distribu-
tions fall well below the curve at P,„—0. 1 and
No —120. Even the most disparate of the EC pairs
does not approach these parameter values.

The data of Tables I and II show that the extent of
differences between pairs of EC's of 172 spins can
vary over wide limits. It is noteworthy that the
minimum deviation between independent EC's is
found to occupy nearly 16 spins. While it is possible
that a smaller minimum number would occur for a
different spatial distribution, it appears that the
minimum cluster size which can achieve different
states of ordering is many correlation volumes in size
(see Sec. 11C, where it is shown that a correlation
volume contains —2 spins).

reduce its total energy. Clearly, because of the spa-
tial disorder, the resultant states can show no obvious
pattern of organization. Visual examination of the
array of spin vectors in an equilibrium state has sug-
gested evidence for various types of local structure in
the pattern to various observers. To test for such
properties is very time consuming. If the local struc-
ture exists it implies that the vector n; is related on
the average to another vector nj, in some way which
depends upon the vector r; —rj, joining their sites.
Only if some specific assumption is made about the
form of this relation can it be tested, and there are
far too many possible assumptions. We have, there-
fore, analyzed only the simplest parameter of this
type, namely the angular correlation or average of
n; n, over all sites with a fixed separation, ~ r; —r, ~.

The range of angular correlation may be roughly
characterized by a correlation volume 0, within
which spin alignment is substantial. We discuss dif-
ferent measures of O„beginning with a simple phys-
ical model to elucidate the factors which determine
this fundamental quantity. One may estimate 0, by
assuming that a spin no at the origin will be strongly
correlated with spin n; at r; if the coupling Jo; is

stronger than the net exchange field at no caused by
more distant spins. Since Jo; 0 r;, whereas the rms
field from spins at r, ) r; varies approximately as
r;

' ', there will be a crossover point r; = r, between
these (suitably averaged) fields which we shall use to
estimate the correlation volume. Denoting the rms
field from sites at r, ) r as J„,(r), we have

J, ,(r) = $ n)JO,
j(occ),r. ) r'J

(2.16)

where for simplicity we average over RKKY phase
and all possible neighbor configurations (occ = occu-
pied). Using Eq. (2.9) for J„" we find for the correla-
tion volume

f), = , rrr, ' = 2a'/7r'c—4 (2.17)

Thus the mean number of neighbors in a correlation
volume is 8/n', independent of concentration. in-
terestingly, the latter property, which is implied by
the form 0, ~ c ', holds for any power-law variation
of J~ for which the system is stable. Thus, it is more
general than the scaling laws described in Sec. I. One
also notes that the correlations are strikingly weak,
with each spin only being strongly aligned on the
average with a single neighbor.

As noted above, the ground-state energy is a

consequence and thus in some sense also a measure
of angular correlation. For a large system we can
rewrite Eq. (2.1) in terms of the average values
(n;. n&)„of n, n, over all nth neighbor pairs in the
lattice

F. = ——,Nc QZ„J„(n n, )„
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By introducing the correlation coefficient

C„=sgn(J„) (n; n, ) „

for n th neighbors, the energy becomes

E=—,'Nc Xc„z„[IJ„I,,

(2.18)

(2.19)

l.2

l P —- o- - - - -e- - - o. - - - - --

0.8

0.6

0,4—

1,C„=~

0,

~n & I'c

rn &rc (2.20)

where Z„ is the number of sites in the n th neighbor
shell, J„.is the corresponding exchange constant, and
e is the occupation probability per site. As defined in

Eq. (2.18), one expects C„~0, but C„will not
necessarily be smoothly varying. Using Eq. (2.19)
one may again make a rough estimate of the correla-
tion volume, using in this instance energies of simu-
lated EC's. For this purpose we take the simple form

0.2—

0D

ooo

-e---'tIo-------~----e
ooo oo

III I I I I I )Ill I I I I I flll I I I I I llll I I I I I ill l I I I I I

lp lp lp ]0 IO lp

FIG. 4. Plot of Cn [Eq. (2.18)] vs log~oJ„ for 1~ n «90 us-
ing average correlation data from ten spatially independent
EC's of 188 spins each at c =0.3 at. %. The straight line is
for comparison purposes only.

where r„ is the separation of n th neighbor pairs.
With Eq. (2.20), the energy becomes simply

Nc

(2.21)

where n, is the neighbor shell index corresponding to
r, rr, = a ( —,n, ) ' ' for the fcc lattice]. In Fig. 3 we

plot Eq. (2.21) on scales of E vs Iogto(n, ) for the case
of ten independent spatial distributions of 188 spins
each at a concentration of c =0.30%. Thus N =1880
and the Z„'s are combined values for all ten distribu-
tions. Equation (2.21) diverges as logto(n, ) in the con-
tinuum limit, a behavior which is shown as a straight
line in Fig. 3. The combined energy of the ten EC's
generated (one for each spatial distribution) is shown
as a dashed line in the figure, giving a value of
n, =25 for the neighbor shell enclosing the correla-

tion volume as defined by Eq. (2.21). It follows that
the correlation volume defined this way contains 2.2
neighbor spins, i.e. , about twice the number obtained
using Eq. (2.17).

Perhaps the most direct method of measuring an-
gular correlation is to plot mean values of C„[Eq.
(2.18)] derived from the simulation mentioned above.
It is not clear at the outset whether C„ is determined
by the distance r„or the coupling J„of the n th
neighbor shell. To investigate this point we plot the
C„data against the logarithm of J„ in Fig. 4 and that
of r„(which mimics the variation of J„) in Fig. 5.
Although there is scatter in both cases, it is clear that
J„ is a stronger influence on C„ than r„. %hile some
of the scatter in Fig. 4 is statistical, it seems unlikely
that C„ is exclusively a function of J„. Data from a
much larger simulation volume are needed to exam-
ine ~his question further.
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n . + o-o. --ln~ 0/ o

0.8— o
o oo

o
o o o

50

40

p4,

0.2—

0Q

o%
o o

o oo oo
oo

o oog
o SS&peo oo o

oo o Q

o o

ooo 88

30
4 6 8 Q

nc

I I I

40 60 80 100
III I I I I I ]III I I I I I (ill I I I I I ]Ill I I I I I

lp Ip '
IO lp

lllll I I I I

Ip

FIG. 3. Plot of —E(nc) from Eq. (2.21) in the text vs

log~o(nc) for 1 ~ n, ~ 31, using energies and z„data from ten
distributions of 188 spins each at c =0.3 at. %. The straight
line represents the asymptotic (continuum limit) variation
E = 242Nc logto(n, 1—+ Co, where Ca is adjusted to produce
agreement at large n, .

(ro/r. )'

FIG. 5. Plot of Cn [Eq. (2.1&)].vs log~o(IO/~n), where the
abscissa is the logarithm of J„with cos(2krrn) replaced by
its average magnitude. The cross is used to estimate the
correlation volume.
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The foregoing discussion demonstrates that the
concept of a spherical correlation volume surrounding
a given site is rough even on a large system average,
since there will be weakly correlated spins within
such a volume and strongly correlated ones outside.
Nonetheless, we may estimate an approximate corre-
lation volume with Fig. 5 by taking the radius where
the middle of the C„distribution drops to C„—0.5.
This point is indicated by a cross. The resulting
volume contains 1.8 neighbors, only slightly smaller
than the number estimated from EC energies using
Fig. 3.

We have also obtained correlation data for ten spa-
tial distributions containing 177 spins each at c =0.9
at. %. Corresponding values of C„are plotted versus
logtaI J„I in Fig. 6 as they are in Fig. 4. The correlation
curve in Fig. 6 is moved to larger IJ„I values as ex-
pected for a higher concentration. If we consider the
IJ„I scales in Figs. 4 and 6 to be approximate inverse
volume scales, then by the scaling laws outlined in

Sec. l, the correlation curves should (in the dilute
limit approximation) be parallel and displaced from
one another by a factor of 3 on the J„axis. The
straight lines drawn through the data in these figures
are so constructed and illustrate that the scaling effect
is well obeyed.

I.2 ——
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0.4 —,
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0.0 ——
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We also wish to point out that there is considerble
information in the raw correlation data that is last in
the averages presented in Figs. 4—6. To illustrate
this we present in Table III a two-dimensional histo-
gram of regional occupation probabilities in the C vs

loglpI J I plane of Fig. 4, where the numbers in each J

FIG. 6. Plot of C„[Eq. (2.18)] vs log&0(J„) for 1 ~ rz ~ 180
using average correlation data from ten spatially independent
EC's of 177 spins each at c =0.9 at. %. The straight line
drawn is parallel to that in Fig. 4 and shifted to values of
IJ„I smaller by a factor of 3.

TABLE III. The data used to compute the average correlations in Fig. 4 are presented as regional occupation probabilities in
the C vs logio{J) plane. Correlation intervals are defined as shown on the left and the log|0(J) scale of Fig. 4 has been divided
into ten intervals, where the first is 10 'i ~ J ( 1, etc. The probabilities of any column sum to unity, with the total number of
neighbor pairs in each is shown in the bottom row.
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interval (column) are normalized to unity. It is in-

teresting to note significant deviations from uniform
(random) probability even for the column (No. 10)
in the table representing weakest coupling. Further,
there is also a significant excess probability for spin
pairs aligned opposite to their exchange coupling (bot-
tom row of Table III). This would appear to arise out
of strongly correlated clusters (of 3 or more) when
conflicting bonds are the inevitable result of "frustra-
tion" inherent in the bond topology of spin-glasses.

exp( —qk ), with

q = gvrcA /3a3 (2.24)

Spherical symmetry leads further to P„(H)
=4mH'P„(A) and thus

where J0 was taken from Eq. (2.9). Substituting back
into Eq. (2.22) one immediately obtains

D. Internal field distributions
P, (H) = (4q/vr) H'/(H'+v)')' . (2.25)

The distribution of internal-exchange fields played
a major role in early models of spin-glass heat capaci-
ty, which is proportional to the density of nearly van-
ishing fields in single-particle theories. '4 ' It is of
interest to examine these distributions both from that
standpoint and as a foundation for the elementary
excitation spectra derived in Sec. III. In order to
study the effect of ordering on field distributions, we
first consider the case of randomly oriented, static
spins.

In contrast with the ordered case, the case of ran-
dom spins can be treated in a straightforward manner
in the dilute limit. The corresponding field distribu-
tion P, (H) was first derived by Rivier and Adkins'6
for the special case of an exchange coupling which
varies randomly in sign. %e present a derivation of a
more general result using methods applied earlier to
the problem of RKKY hyperfine broadening in ran-
dom alloys. " This technique begins with the relation
P„(A) = (8(A —A;)), where H; is the field at a typi-
cal occupied site and ( ) denotes an average over all

sites and all possible orientations of the spins, Using
an integral representation of the 5 function one has

Equation (2.25) has been derived by Held and

Klein ' as the "random molecular-field approxima-
tion" to the field distribution in a spin-glass. As we

have shown, it corresponds to totally random spins.
In Fig. 7, Eq. (2.25) is compared with a computer-
generated histogram of fields corresponding to 25 in-

dependent sets of random orientations of 324 spins jn
a single spatial distribution at c =0.3 at. %. The field

scale is in reduced units (ru). 'o The only fitting pro-

cedure used in Fig. 7 was to equalize the areas under
the curves. The simulated curve is seen to agree
with Eq. (2.25) within statistical error except in the
vicintity of h —0.05 ru, where a weak satellite is

found, attributable to the seventh neighbor shell. It
is not surprising to find a visible satellite at concen-
trations as high as this. '

The field distribution Po(H) for ordered spins is il-

lustrated. in Fig. 8, where we show a composite his-

trogram of molecular fields for EC's from the 10 spa-

700

P„(H) = — -
J dk e'" ~(e ')

(2n )' (2.22)

RANDOMLY ORIENTED SPINS

We represent A;= $&xJJ&n, , where x, = I if site j is

occupied, 0 otherwise. Then the average ( ) in Eq.
(2.22) becomes

400—
O

300—

sin(J;~k)
m&(exp( —X,J;,.n, . k)),. =exp —c g I—

J IJ

200 0

(2.23)

where ( ), is the occupational and orientational

average for site j and the equality holds in the limit

of small c = (x&). In this limit the lattice sum in Eq.
(2.23) can be represented as an integral. Using the

same low-concentration approximation as in earlier

work, '2 the rhs of Eq. (2.23) is shown in a straight-

forward fashion to be asymptotically given by

0-
0

I

10 20 30

~ ~ ~
~ ~

40 50

h(0.002 r. u. )

FIG. 7. Comparison of computer-generated histogram of
exchange fields with Eq. (2.25) from the text (dots). His-

trogram results are derived from 25 independent spatial dis-

tributions of 324 spins each at c =0.3 at. %.
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contrary to suggestions that the ordered state would
be Ising-like' ' and thus have a finite density of
spins at H =0 as assumed in the specific-heat model
of Marshall. " Thus, we do not expect the single-
particle theory of specific heat to be viable on the
basis of the present results. Moreover, the vanishing
of Po(H) as H 0 is thought to be true for Ising sys-
tems" as well as for isotropic exchange.

020-'

O~ l 1 I I I I I
0

0 10 20
h(0.002 f. u)

FIG. 8. Histogram distribution of exchange fields derived
from EC's for ten independent spatial distributions of 188
spins at c =0.3 at. %. The dots show the random-spin curve
[Eq. (2.18)j normalized to the same area as Po(II).

tial distributions of 188 spins (c =0.3 at. %) used ear-
lier to generate the data for Figs, 4 and 5. %e also
plot for comparison the random spin curve Eq. (2.25)
with its area normalized to the same value as the his-
trogram. The main effects of ordering are seen to be
a shift in Po(H) to fields larger by a factor —1.5 and
a vanishing of spins with very small fields. As noted
earlier' these effects can be understood in terms of
the correlation phenomena discussed in Sec. II C.
Using the correlation factor Eq. (2.18) the exchange
field at site i can be seen to consist of two contribu-
tions, namely a correlated component

(2.26)
j (occ)

where each neighbor is assumed to contribute an
amount proportional to the correlation coefficient for
that site, and an uncorrelated or random component
which will only serve to broaden the distribution of
H;"'" values. Because the correlations are strong for
J~'s near the peak of Pp(H) (see Fig. 4), the corre-
lated components dominate Po(H) and the broaden-
ing effect of the random field contributions is rela-
tively slight. With Eq. (2.26) we can understand the
qualitative features of Po(H). The general increase
in magnitudes comes from the fact that Eq. (2.26)
sums absolute magnitudes of contributions which
would otherwise combine randomly. The extent of
this increase is limited to a factor of —J2 since there
are, from Sec. IIC, an average of only —2 contribu-
tions from within the correlation volume. Further-
more by Eq. (2.26) it is relatively difficult to have
nearly zero field at a site since this requires a large
volume around that site to be unoccupied. Hence,
very small fields are quite rare.

The appearance of a "hole" in the distribution
Po(H) at zero field has been noted before. '" It is

III. ELEMENTARY EXCITATIONS
OF A SPIN-GLASS

1H = —— J"S S~J i J
I,j

We suppose that {n; ) is a configuration of unit vec-
tors such that the associated classical energy,

A

, J;, n; n, , is a minimum locally. Let, as be-

fore, a;, b;, n; be an orthogonal triad of unit vectors
and let p; = ( /1&2)( a+i b;), p; = (I/J2)
x (a; —i b;). Then write

(3.1)

S;=S a;+S; b;+S;"n;

(SP —iS) p; + (S;+iS ) p; +Sfn;v'2

S; p;+ S; p;+S;"n;
2

' '
2

(3.2)

The procedure of spin-wave theory as familiarly
used for ordered spin systems is the following. A
ground state is assumed which has each spin S;, of
magnitude S, in a state such that S = S, where the
local axis of qu ~ntization z;, has some assigned direc-
tion in space. These directions are usually clearly in-
dicated by symmetry. The spin operators are now ex-
panded in boson operators, c; and c;, following the
method of Holstein and Primakoff or its equivalent.
In the Hamiltonian, terms up to second order in c,c
are retained. A check on the fitness of the assumed
ground state is the vanishing of all linear terms in c
and c . The procedure is essentially an expansion in
powers of S; it is justified, in part, when one calcu-
lates a new ground state and shows that it is not radi-
cally different from the original. Further justification
requires that one show that higher-order terms in the
Hamiltonian, leading to finite lifetime, scattering, and
frequency renormalization effects, are not obtrusive
in the physical context. There appears to be no rea-
son why a formally similar program cannot be carried
through for the spin-glass. However, any evaluation
of the validity of the result as an approximation to
the physical situation is obviously a very difficult
problem in the absence of simplifying symmetries.
Beyond an examination of the zero-point effects we
shall not attempt to deal with these questions.

To avoid unnecessary complications we consider
for the moment only isotropic exchange interactions.
Thus the Hamiltonian is
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Now put

S;"=S—c, c;+O(S ')

S,'= (2S) '"[c,+ O (S-')],
S; (2S)'i2[c; +O(S ')]

(3.3)

or
0 + g — g pS;=Sn, +JS (p; c; + p; c;) —c; c;n; +

The Hamiltonian becomes

(3.4)

H= ——,S XJin, nj —zS XJ;;(n; p&c&+n; p, c&+n& p;c;+n; p;c;)
ij Ij

+ g — + g — 0 0—2S XJ&[(p; c, + p, c, ) (p, c& + p, cj) —n, n, (c; c;+c, c, )]+higher-order terms
I'j

(3.5)

Since X.JJn& = X; n; the linear terms vanish as they

should and for the quadratic excitation Hamiltonian
we have

Hz=S XX;c; c;
I

In terms of the n's and P's we then have

~, =+),p, -xJ„[(b, aj)~, +(b, b, )p, ] =

(3.9)

XJII(p; c; +p; c;)' (pj cj +p~ cj)
ij

P' X'cl' + XJ'i[ ( a; ai)a, +( a; bj)P, ]
9Ep

Qo!I

(3.6)

We note that if we were considering the small oscilla-
tions of the classical system about an energy
minimum we would write

0 i 0
n, = n; + rri; ——,(rtl; iB; ) n; +

or24

BE2
ZI = I

Qzi

QE2
ZI = I

uzi
(3.10)

with
The quantum-mechanical equations of motion are

06; n;=0.

Then with

+
rti; = a;a;+P;b;=z; p; +z; p;

where

. t 9H2
ic; = [H—q, c; ] or c; =i

Bci

QH2
ic; = [Hq, c 1

—or c;= i-
c/

(3.11)

z;+-= (n, +i p;)/J2,

the classical quadratic Hamiltonian becomes

F. ,= Xi,z,+z,

——, XJs( p; z; + p; z,+) ~ (pj zJ + p,. z,+) .(3.7)
i,j

The quantum and classical Hamiltonians are the same
in form with the identification c; z;, c; z;+,

A

A.; =S 'A.;, and Jj =S 'Jj. The z's are to be associat-
ed with the two components of circular polarization
about n;. Classically the equation of motion of the
6;sls

where the last pair of equalities follows from the bo-
son commutation relations. Thus since H2 is the
same function of c; and c; as E2 is of z; and z;+, the
classical and quantum-mechanical frequencies are
equal and the transformation matrices effecting the
diagonalization of the energy are also identical. The
matrix to be diagonalized is non-Hermitian as is al-

ways true in magnon problems. The form of the
transformation matrices emerges naturally in the
quantum-mechanical formulation. " The quantum
equations of motion are

cI= I XP)ci + XQ,Jci
j j

(3.12)

rrl, . = ni, . x h.; n; + n; x XJ,,rri,.

j
(3.g)

T

c; =i XQ~"c, + QP,J'. c,
j j
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~here
+

P„=h„"5„"—Jo( p; p, )
(3.13)

and the asterisk indicates the complex conjugate. If
we write c and c for the S-component vectors whose
components are c; and c;, we have

If we compare these equations with the classical ones
we find that they are identical with the latter if
f; = z;+ and g; = z; . Now that the restrictions en-
forced on f and g, Eq. (3.16), by the commutation
relations have been -found, it will be convenient to
employ the notation z;+ and z; [Eq. (3.7)1 in place of
f; and g;. Rewriting Eq. (3.16) in these variables we
obtain the appropriate orthogonality and normaliza-
tion relations for the classical modes

c P ——Q c

drc Q' P' c (3.14) $(z,+z —,—.,-„.+, ) =0,
(3.21)

We now make a Bogoliubov transformation to new
boson operators, d and d,

c =g'd + fd (3.15)

g'f' fg =o, —g'g' .f.f =I—
where g and f are W x N matrices. If the boson com-
mutation rules are preserved

It may be remarked that one can verify readily
that, if the energy matrix (see Sec. II) has no nega-
tive eigenvalues, thus guaranteeing the existence of
an energy minimum, then all the frequencies A„are
real.

We may now write down expressions for the ener-

gy and for the magnetization of the system. Replac-
ing the c; and c; in H~ by their expansions in the
d„'s and d„'s one finds

ol

g'.f —I o g" f
g 0 +1 g' g 0 +I (3.16)

H, = , X), + -X—(n„+,') n„, —

where

(3.22)

From this it follows that
—1

,f g .f
.
f'

g
(3.17)

d d .
—0 0 d=/

dtd 0 Od (3.18)

where I) is the diagonal matrix of eigenfrequencies
We therefore must have

d
g' fd g' .f —I).

dr/ g d

If the new variables are to diagonalize H2 then we re-
quire

f7„=d„d

The zero-point energy is —
—, g).; + —, $ II„, which

I 1

may be manipulated into a form which shows that it
is negative as it should be. The spin deviation opera-
tor at site i is c; c;. This is not diagonal, but its ex-
pectation value is

&c; c;) = $(lz, +„I'&n„+I) + Iz;„ I'&n„) )

with &n„) the expectation value of'd,'d„. The mean
spin deviation for all sites is

—g &c c;) = glz, +„I'+X &n„) X(lz, + I'+ Iz;„ I')
I V P I

(3.23)

—P —Qg'f
Q% P% f% dt

g'f —& 0 —P —Qg'f
f'g o I& Q'

.
P' f'g.

or if v labels the eigenvalues

.f;.&.=- $P;, fj.—$Qt g, , —
.

g/P~P —$ Qff fJP+ $ tj gJV

(3.19)

(3.20)

the first term being the zero-point spin reduction and
the latter the thermally dependent part, The ground-
state wave function can be found by a technique fam-
iliar in ordered systems. " If IG) is this wave func-
tion it satisfies the equations

or

X[(z ')„,c, —(z+')„,c,'1IG) =0 .
I

Since I G ) consists of excitations from the original
classical ground state, IC) (with c;IC) =0), it may
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be written

and then we have

X(z ') = $(z+') c; F

90- ..~
8O-', . J"
70
60-
50-
40-
30-

—c=0.3 at. %
--- c-09at '/

and
1

F = exp Xe,'[(z ) '(z+ ) ] Jc)'
ij

10-

"'I

.-~---n-M~
0.01 0.02 Q03 0.04 0.05 0.06 0.07 0.08 009 QIO
0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.30
0) (r.U ) (UPPER SCALE, c=0.3 Qt. %; LOWER SCALE, c&.9 Qt, %)

It would be possible to study the nature of the
ground state in some detail by examining the magni-
tude of the pair-flipping matrix elements
[(z ) '(z+ )],&. This state, like other magnon
ground states, contains a nonphysical component,
consisting of excitations out of the manifold of real
spin states.

IV. COMPUTED SPECTRA AND COMPARISON
WITH EXPERIMENT

In this section we present and discuss a number of
examples of excitation frequency spectra computed
by solving Eq. (3.9) or a generalized version thereof
for simulated systems of spins. The cases have been
chosen to illustrate a wide variety of properties and
effects. For example, Alloul' and Monod and
Prejean" have carried out experiments demonstrating
the presence of anisotropy energy in dilute CuMn.
Accordingly, we have examined the effect of various
types of anisotropy on the frequency spectra and give
a preliminary account of our results in Sec. IV 8.

A. Spectra with purely isotropic exchange

Equations (3.9) have been solved for EC's corre-
sponding to two series of ten spatial distributions of
96 spins each, one series with c =0.3 at. % and one
with c =0.9 at. %. The structure of the mode distri-
bution varied relatively little from one 96-spin case to
the next, consisting of two zero-frequency modes fol-
lowed by a low-lying peak in the mode density. At-

the top of the spectrum one always finds a set of
modes at a frequency approximately t~ice the
nearest-neighbor coupling strength. These are easily
identified as nearest-neighbor pair modes. In plotting
the spectra (Fig. 9) we show only the low-frequency
portion of primary interest. Further, the three modes
which are related to the rotational symmetry of the
system (see Appendix) have been removed from the
spectrum, since they are apparently unrelated to the
thermodynamics of a macroscopic spin-glass. The
spectra in Fig. 9 are plotted on frequency scales
differing by a factor of 3 to illustrate the scaling ef-

FIG. 9. Elementary excitation frequency spectra for two
sets of ten spatial distributions of N =96 spins at e =0.3
at. % and 0.9 at. %, respectively. The abscissas are scaled by
&& 3 to make the spectra coincide, illustrating the RKKY scal-
ing effect,

100-

v) 70
(0 60-
O 50-

40 ~

lL

3
30.
20-

I

10:
0 I' I I I I

0 0.03 006

—EXCITATION SPECTRUM
--- EXCHANGE FIELD DISTRIBUTION

c=o.9at. y.

I

009

~'
I

012 0.15 018 Q21 024 Q27 Q30

FIG. 10. Excitation spectrum N(cv) for c =0.9 at. %
derived from seven spatial distributions of N =172 spins
each (solid line). Distribution P(h) of exchange fields from
EC's for 10 distributions of 177 spins each at e =0.9 at. %,
normalized to the same total area as N (co) (dashed curve).

feet with concentration. The spectral width is seen to
vary linearly with c (as expected) within statistical er-
ror. Higher-frequency modes associated with identifi-
able pairs and close-neighbor clusters do not, of
course, scale.

Since the foregoing results were published, ' addi-
tional spectra have been obtained with simulations
using N = 172 spins, permitting us to examine the
dependence, if any, on N and to scrutinize the low-

frequency portion of the spectrum. Results are
shown in Fig. 10 using a histogram interval half that
of Fig. 9. The gener'al shape and width of the spec-
trum in Fig. 10 is the same as before, suggesting that
either size of sample gives a good approximation to a
macroscopic system (except at the lowest frequencies
as discussed in Sec. IV C). The additional detail near
co =0 sho~s the mode density dropping sharply to-
ward zero at co 0. It Is necessary that this should

happen if the ground state is to be stable in the spin-
wave approximation, since the mean spin deviation
given by Eq. (3.23) diverges at finite T if N(co) ) 0
as ao 0. This drop in N('co) is responsible for the
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fact that experimental specific-heat curves CM(T) are
not linear at T 0, but vary as higher powers of T.
The variation of N(ro) as co 0 is not inconsistent
with the form N (co) =—8 co' which results from the
linear dispersion law for long-wavelength excitations.
The finite sample size precludes a more precise state-
ment on this matter.

For comparison in Fig. 10 we also show (dashed
curve) a distribution of exchange fields for ordered
spins at this concentration. It is clear from the strik-
ing contrast between P (h) and N(co) at low energies
that a specific heat calculated on the basis of single-
particle excitations [from P(h)] would be drastically
different at low temperatures from that derived from
N (co).

The elementary excitations of magnetic systems
with crystalline order are states which extend over
the entire sample. It is interesting to inquire whether
extended states are also present in spin-g'lasses, as
would be suggested by the cooperative nature of the
spin-glass transition. We probe this question by

studying a form of localization index for the modes p,

(4.1)

where

is a weight coefficient for mode p, ', W;„ is actually the
time average value of rn, m;, where rn; is the dis-
placement of spin i from equilibrium [see Eq. (2.4)].
L will vary from a value of unity for a completely
localized mode to a value of order N ' for a mode
which involves the entire system. A plot of L„
values versus co for a system of 96 spins at c =0.9
at. lo is shown in Fig. 11. A distinct trend in L

N ' X (c c;) —0.15 (4.2)

which is a reduction by —6% for an S = —, system

such as Mn in Cu. This is a reduction comparable to
that of two-dimensional crystalline antiferromagnets,
and is a sign of good stability in the ground config-
uration. Substantially larger reductions at some sites
could, however, be concealed in the average in Eq.
(4.2). For S = —, , however, the deviation would be
—30% and the ground state is therefore very
"mushy. " Klemm' has argued that spin-glass order-
ing is not possible for S = —, ~ We have also calculat-

ed the quantum correction to the ground-state energy
given by Eq. (3.22) (with (n„) =0) for the same
case. This is

1
A

AE = —, $ 0„——, Xh.;=—0.75 (4.3)

values is noted, starting from L„—0.5 for pair
modes at the top of the spectrum to strongly extend-
ed modes (L„—N ') at the lowest frequencies.
Visual examination of the lowest modes failed to re-
veal any wavelike character. Ching et al. have exam-
ined the excitation spectra of finite simulations for
wavelike behavior using several model interaction
laws by calculating dynamic-structure factors. Such
modes, if they exist, are apparently beyond the spa-
tial resolution of the finite systems investigated.

For the success of the spin-wave-type approxima-
tion employed here it is'necessary for the ground
state to be stable. One measure of its stability is the
extent of zero-point fluctuation in the magnetization
as reflected by the zero-temperature value of the spin
deviation in Eq. (3.23). This quantity has been
evaluated for the same mode distribution used in Fig.
11 to give

0,6-
expressed in reduced units, to be compared with the
classical energy [Eq. (2.1) l

0 0Eo= ——, XJ;, n; n, = —11.66 (4.4)

0.2-
~ ~

again in ru. lLE is negative as expected. To compare
b, E with Eo for a system of spins S we note that AE is
multiplied by S (Ref. 19) and Eo by S2 [Eq. (3.15)].
Again, the zero-point correction is modest for spins

5S=—
2

'
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FKJ. 11. Plot of localization indices L„calculated with

Eq. {4.1) vs mode frequency cu for a system of 96 spins at
c =0.9 at. %.

B. Effects of various additional interaction
terms on the frequency spectra

It is important to ascertain the effect of various
modifications of the interactions on the frequency
spectra, even though such changes are small com-
pared with the RKKY exchange. Thus, we have in-
vestigated how the results are changed by two forms
of anisotropy, dipolar and local (cubic), and by an ap-
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plied field. We further studied the effect of damping
of the RKKY interaction. Inclusion of these effects
modifies the equilibrium condition [Eq. (2.2)] and
equations of motion [Eq. (3.9)], so we begin by stat-
ing these relations with all effects included We work
throughout in reduced units. ' ' The equilibrium
condition becomes

n; h.;= ho+ QJ&n&+d X[n& —3U;,.(n,. u„")]r;, 3

J J

+6, [ i (n,„')' +j (ny')'+ k(n;,')'], (4.5)

where ho is the applied field, d =D/A, where
D = (gp, sS) is the dipolar coefficient, u„" (s the unit
vector r,&/r&, and 5, is the cubic anisotropy parame-
ter. The cubic anisotropy energy is given by

The corresponding equations of motion, using Carte-
sian representation of the spin displacements [Eq.
(3.9)], are

+P; n; ho+ XJ&n& +5, { (ng )4+(n~~)4+(n;o)~ —3[(b;,n,„) +(b~n~~) +(b;,n;, ) ] ]
J

+d Xr,& [a&(b; a, —3b; u,&a, u;,.) +P, (b; b&
—3b; U,&b, U;, )] —XJ;,(a&b;. a, +P, b; b,).

J I

(4.6a)

p;=a; h, (3[(a;„n;0) +(a,~n;~~)2+(a;, n;0) ] —(n;0) —(n;0)4 —(n;o)4) —n; ho+X J,&n&
J

+3&,p, [a b;„(no)'+a~b~(n~~)'+a;, b;, (no)']+ XJ&(a& a; a, + p&a; b&)
J

—d Xr& '[u&(a; a&
—3a; u&a, u„") +P&(a; b, —3a;. u„"b& U;, )]

J
(4.6b)

Particular cases from Eqs. (4.5) and (4.6) will now be
discussed in turn.

0.12

1. Effect of RI& EY damping 0.$0

As mentioned in the Introduction, there is a possi-
bility that self-damping effects on the RKKY oscilla-
tions may be important for concentrations of magnet-
ic ions even as low as c —1 at. %. On the de Gennes
model this damping is asymptotically exponential;
this form has been adopted in the present work. To
investigate the effect this has on the frequency spec-
trum, we compare a 96-spin c =0.9 at. % spectrum
without damping with spectra calculated with two lev-

els of exponential damping in Fig. 12. There we plot
individual mode frequencies with damped RKKY
against the same mode frequency without damping.
The result is a striking one in that modes in the low-

frequency peak of the spectrum are simply scaled to
lower frequencies by the factors 0.89 and 0.67 in the
cases considered. The exponential damping lengths,
ro= 28.5a and 8.41a shown in the figure were chosen

O.OS

0
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FIG. 12. Plot of mode frequencies co„(DAMPED) vs 0),
(UNDAMPED) for corresponding modes for a distribution
of 96 spins at c =0.9 at. %. The damping lengths ro em-

ployed are shown with the resulting asymptotic (~„0)
slopes.
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to correspond to narrowing of the distributions of ex-
change field components [e.g. , P (h, ) J by 10% and
30%, respectively. " The effect of damping on the
spin-glass frequency spectra is seen to consist of nar-

rowing by -the same amount with very little change in

shape. The higher-frequency modes are affected
more weakly. This is to be expected, since the
stronger RKKY fields are changed less by the damp-
ing. It is also clear from these results that the shape
of the low-frequency peak in the spectrum (Fig. 10)
is not uniquely related to the long-range character of
the RKKY interaction. Indeed, the EA model in-

teraction yields a similar spectral shape. These
results are used in Sec. IV C to discuss the concentra-
tion dependence of the specific heat and the spin-
glass ordering temperature.

2. Bipolar anisotropy

When dipolar interactions are added to the RKKY
exchange, the rotational symmetry is broken and the
spins now take on a preferred orientation relative to
the crystal axes. A full study of the behavior of this
model in the presence of anisotropy is under way and

only a preliminary report on the resulting spectra
will be given here. The classical dipolar field at site i

is stated in the equilibrium equation (4.5). The clas-
sical coefficient D is rather small compared with
RKKY exchange, having a ratio D/A —5 x 10 ~ for
dilute CuMn. Fields of this magnitude were found
to have a negligible effect on the computed frequency
spectrum.

To consider the electron-spin analog of pseudodi-
polar coupling ' we have also studied dipolar interac-
tions of the form given in Eq. (4.5) but with bigger
coefficients. To obtain these spectra the spins were
first equilibrated using Eq. (4.5), then the frequen-
cies were obtained with Eqs. (4.6a) and (4.6b).
Results are shown in Fig. 13 for d =0.002 and 0.01,

oat
LLI

+

o.c6
O
CL

0.0

where mode frequencies with dipolar coupling added
are plotted against those with exchange alone. In this
and subsequent plots of this nature it is assumed that
no mode crossing occurs. Breakdown of this assump-
tion would result in some artificial "smoothing" of
the resulting curves, but would not alter the general
trend. For the smaller d value in Fig. 13 (—4 times
the classical dipolar value) there is a small increase in
frequencies below cv —0.02 such as to introduce a
small zero-frequency gap in the spectrum. The effect
essentially disappears above ai —0.02. For D/A five
times larger the gap effect is considerably greater and
extends over about twice the frequency range.
Again, it collapses quite abruptly above an upper lim-

it o) —0.04.
The foregoing results bear a qualitative similarity to

the effect of anisotropy on the spin-wave spectrum of
a simple antiferromagnet, i.e., a large effect at the
bottom of the spectrum which diminishes to zero at
higher frequencies. However, we see no obvious rea-
son for the abrupt high-frequency cutoff found here.
We might add that these results are changed only
slightly and in an unexpected way by truncating the
dipolar coupling range. Truncation to zero beyond
the third-neighbor shell for D/A =0.02 was found
only to increase slightly the frequency shift of the
lowest half dozen modes or so, the effect diminishing
rapidly with frequency.

Si ngle-ion cubic anisotropy

A similar study to that described in Sec. IV B 2 has
been carried out for the case of purely cubic single-
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FIG. 13. Plot of mode frequencies eo„with dipolar cou-
pling magnitude shown against corresponding frequencies
with exchange alone. A line of unit slope is drawn for com-
parison,

FIG. 14. Plot of mode frequencies co„with cubic crystal-

field anisotropy as shown (units of 242A /a ) against corre-
sponding frequencies with exchange alone. A line of unit

slope is dragon for comparison,
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ion anisotropy energy as embodied in Eqs. (4.5) and
(4.6). The results are shown in Fig. 14, in the same
format as in Fig. 13, using crystal-field coefficients
5, =0.005 and 0.01 units of 242A /a3. Unlike the di-

polar terms, crystal-field anisotropy has the effect of
producing an approximately uniform frequency in-

crease of 0.5b, over the frequency range in the fig-
ure. There are also noticeable nonlinearities in many
instances. At higher frequencies the effect of 5, di-

minishes. It is interesting to note that the detailed
peaks and valleys in the shift effect of Figs. 13 and
14 (for the larger values of d and 5,) are quite simi-
lar for these two rather disparate forms of anisotropy.
Further, it is not surprising that the effect of 5, on
the spectrum is more global than that of d, because
5, affects all spins whereas there may be many loose-
ly coupled spin clusters with very small dipolar aniso-
tropy.

4. AppIied uniform field

Finally, we exhibit the low-frequency portion of
two spectra obtained in applied fields hp=0. 005 and
0.01 in Fig. 15. Again, the frequencies with ho

present are plotted against those found with exchange
alone. Below cv =0.035 one finds an approximately
uniform increase in frequency which appears to be
somewhat nonlinear in hp. Individual modes are
found to vary in a strongly nonlinear fashion. At
higher frequencies the field effect is essentially ran-

dom in sign and again highly nonlinear. Since
hp=0. 01 corresponds to roughly 35 kG from CuMn
at this concentration, these results suggest that the
specific heat in this case would be only slightly modi-

0.07

0.06

0.05

Q04

fied by laboratory fields of this magnitude. Of the
two zero-frequency modes noted in the Appendix,
one remains at zero for all hp, the other is equal to
hp in frequency and is the EPR mode of the system.

C. Specific heat

Since our initial report on this work, comprehen-
sive results for the magnetic specific heat CM of
CuMn spin-glass have been reported by Fogle et al. '
and by Martin. " These new data not only give the
detailed variation of CM throughout the ordered tem-
perature region, they also provide a reasonably com-
plete account of the concentration dependence. It
has been noted '" that the results do not obey the
scaling law [CM/c =f(T/c) j expected for a system
with an r interaction potential. We address our-
selves to this question below, and, in particular, seek
an explanation in terms of self-damping of the
RKKY oscillations. " Larsen' has incorporated self-
damping into the Edwards-Anderson model' expres-
sion for the ordering temperature T& in an effort to
understand the failure of T~ to obey scaling laws.
Our approach is based on the results of Sec. IV B1.
The specific-heat data of Refs. 32 and 33 are in good
accord with one another and with eariler results of
Wenger and Keesom. " In the discussion below, we
shall make use of the convenient numerical represen-
tation of specific-heat data given by Martin' for
Cu Mn and the results of Wenger and Keesom for
Au Fe.'6

It should be emphasized that the use of the data
we have gathered on the excitations to calculate
specific heat is an exploratory exercise. Since we do
not know the range of validity of the analysis which
yields the modes, it is clearly not possible to estimate
a temperature range over which one may legitimately
do thermodynamics. So we are, in effect, exploring
the consequences of assuming the theory valid.

The specific heat CM(T) for 0.88 at. '/o Mn in Cu
was evaluated from our model assuming Bose occu-
pation factors for the elementary excitations, which
were assumed to be distributed according to the his-

togram in Fig. 10. CM can then be written

0.03
3

0.02

OO

C~=WpckaTr X fm X (FI i
—F(~.

m 1 I 1

(4.7)

OCNt

0'-
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where Wp is Avogadro's number, T, is the (reduced)
temperature in units of the histogram interval, f is

the fraction of calculated mode frequencies which oc-
cur in the mth histogram interval, and

F, = (m'I'/T'+2ml/T, +2) exp( ml/T„)—
FIG. 15. Plot of mode frequencies cu„ in fields hp as

shown against corresponding frequencies in zero field. A

line of unit slope is- drawn for comparison.

Noting that CM is a function only of T, and the f 's
we have fitted Eq. (4.7) to the specific-heat data of
Martin" by adjusting the RKKY constant A which
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FIG. 16. Plot of both "experimental" specific-heat data
(from numerical representation of data in Ref. 33) and

model calculations as described in the text for 0.88 at. % Mn
in Cu.

defines the T, scale. For this purpose we use as a
guide the experimental measurements by Smith. "
The fit shown in Fig. 16 is obtained using
A =1.02 && 10 ' ergcm', which is 15% smaller than
the value A = 1.20 x 10 ' erg cm' derived from
Smith's data. The size and direction of this
discrepancy is not surprising in view of the self-
damping effects to be discussed below.

Regarding Fig. 16 we note that the model calcula-
tion underestimates CM at the lowest temperature,
followed by a region of good agreement, then falls
below experiment for T & 3 K. Since T~ —10 K for
this concentration, our spin-wave type of model is ap-
parently valid up to some temperature T —0.3TG.
The discrepancy below 1 K is more interesting, how-

ever, and presumably arises from a defect in the cal-
culated spectrum stemming from the finite size of
our simulation volume. Such a finite volume is ex-
pected to distort the spectrum by attenuating the den-
sity of very low-frequency modes whose wavelength
will not fit into its dimensions. Assuming linear
dispersion and taking a rough estimate for the con-
stant ru//c" one finds that for frequencies in the mid-
dle of the first histogram interval (Fig. 10) the
wavelength is greater than the simulation cube di-
mension. This strongly suggests that the number of
modes in that lowest interval is underestimated. Ac-
cordingly, we have also calculated CM(T) assuming
one additional mode per 172-spin sample in the
lowest interval, The results are shown in Fig. 16
(augmented spectral density) and. are seen to be in

significantly better agreement with experiment.
In calculating CM(T) for 0 ~ T ~ 3 K one might

question the validity of Eq. (4.7) since the histogram
interval itself is nearly 2 K. We examined this point

\
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FIG. 17. Plot of experimental specific heat for 1 at. % Fe
in Au from Ref. 36 with model calculation curve fitted as
described in text.

by recalculating CM( T) using a parabolic representa-
tion for the mode density over the first two histo-
gram intervals. The results were only distinguishable
from those in Fig. 16 at T & 1 K, where the differ-
ence was also very small.

Further calculations show that introduction of an
energy gap in the spectrum such as is caused by dipo-
lar or cubic anisotropy (Secs. IV B2 and IV B3)
causes the agreement with experiment to deteriorate.
The results are consistent, of course, with the pres-
ence of the classical dipolar interaction because of its

negligible effect on the spectrum. From the results
in Fig. 14 we can state that cubic anisotropy present
must satisfy 5,/ks ( 1 K. To our knowledge there
are no published measurements of CM(T) with

T && TG for CuMn in an applied magnetic field.
Before considering the concentration dependence

of CM ( T), we present in Fig. 17 a comparison of
model calculations with experimental specific-heat
results for 1 at. % Fe in Au. The model curve cor-
responds to A =1.20 && 10 ' ergcm', the value for
0.1 at. % Mn in Cu given by Smith. " To our
knowledge there are no experimental data on A for
A u Fe. There are striking differences between the
Au Fe and the Cu Mn cases,

'

most likely resulting
from the fact that Fe impurities in Au undergo Kon-
do condensation at TK —0.5 K. ' As a result, the ex-
citation spectrum of AuFe probably tends to collapse
to lower frequencies as T approaches TK from above.
Thus, one finds a more nearly linear behavior of
CM(T) as T 0 than the present model can explain.
The apparently good agreement between model and
experiment at higher T (Fig. 17) must not be taken
seriously without an independent measure of A for
this case.

Martin" has noted that experimental curves for



22 COMPUTER MODEL OF METALLIC SPIN-GLASSES

ff(ro) =A exp( —1.75N, ' ' ) (4.8)

where A,« is the effective value of the RKKY con-
stant. When the damping is caused by the magnetic
impurities themselves, one has ro ' ~ c and"

/4 ff(e) =A exp[ —1.77(pc ) o M„n ] (4.9)

where o-M„ is the appropriate scattering cross section
and n is the number of conduction electrons per
atom. We use the scaled temperature value T/c at
which the scaled specific heat CM/c in Martin's Fig. 6
(Ref. 33) equals a typical value (0.35 cal/Kg atom
Mn) as a measure of A,rr(e). In Fig. 18 these quan-

tities are plotted semilogarithmically against c and

are seen to be consistent with the functional form of
Eq. (4.9). In the same figure we also plot the varia-
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CM(T) do not scale correctly with concentration c.
In fact, they behave as though A were decreasing sig-
nificantly with increasing c for c —1 at. %. The
spin-glass ordering temperature T~ also deviates"
from the scaling law TG ~ c in this concentration
range. It is very likely that both effects are caused by
self-damping of the RKKY exchange oscillations.
The importance of self-damping in these systems has
been pointed out. "' We shall combine the results
of Ref. 12 with the RKKY damping studies of Sec.
IV B 1 to examine the magnitude and concentration
dependence of these effects. The half-width (HW) of
the distribution of any RKKY field component" has
been found to vary as HW n exp( —1.59AI; '~3 ),
where N, = —,mpcro is the average number of mag-

netic impurities within a sphere of radius ro, the ex-
ponential damping length and p is the volume density
of available impurity sites. Since the scale of the fre-

quency spectrum was found to vary (Sec. IV B /) in

nearly the same way with ro as the half-width above,
we may express

tion of experimental T& values' for Cu Mn relative
to the linear variation at low concentrations given by
[1.87(c/1 ppm) +6.6] x 10 ' K as reported by Hir-
schkoff et a/. In Fig. 18 TG is seen to vary in a
manner similar to the scaled temperatures. '

We conclude that the deviation from scaling in

Cu Mn is consistent with the self-damping rnechan-
ism. From the slope of the line drawn in Fig. 18 and

Eq. (4.9) one finds the value o.M„=3.1a', which is

considerably larger than the resistivity value

cr, =0.54a . ' There is evidence that the RKKY
damping cross section for Al in Cu (Ref. 12) is also
considerably larger than the resistivity value. Finally,
it is interesting to note that the measurements of
RKKY coupling in Ref. 37 show a concentration
dependence consistent with the results in Fig. 18.

, The 15% discrepancy between A, ff as derived at
c =0.88 at. % from CM(T) and the value in Ref. 37
obtained at c & 0.1 at. % is at least in qualitative ac-
cord with the present arguments. Using the straight
line drawn in Fig. 18 and taking the specific-heat
value 1.02 x 10 ' erg cm as A, rr in Eq. (4.8), we

deduce A =1.82 x 10 ' ergcm for an isolated pair of
Mn impurities.

D. Zero-temperature susceptibility

Previous theories of the magnetic response of
spin-glass systems have been based on a picture com-
bining the molecular-field distribution P(H) for
bulk, reversible magnetization with a model of mag-

netic "monodomains" "' consisting of n spins each
with a magnetic moment p, ~ v n In consid.ering the
small-field reversible'3 ("first-magnetization "42)

susceptibility both the bulk-polarization and domain-

rotation contributions should have to be considered.
However, there is some question about the domain
contribution because of recent evidence presented by

Alloul that there are no such domains in a zero-
, field cooled sample. We shall comment further on
this question in our discussion below. We present in

this section a computation, based on our model, of
the bulk-polarization contribution to X'(0). X'(0)
was measured by Careaga et al. ' The bulk contribu-

tion will be calculated here both by perturbation
theory and by measuring the response to an applied

field in the simulation.
To calculate the magnetic response of a system of

N spins to a small applied dc field Ho one adds a term
—g psHp X,. S ~ to tile Hamiltonian [Eq. (3.1)]. The

classical equilibrium condition [Eq. (4.5)] may be
reexpressed as

FIG. 18. Plot of relative values of Jeff as measured (i) by

the T, intercept value with specific heat (Ref. 33) described
in the text and (ii) by experimental TG values relative to the
low-concentration variation T& (HS%) given in'Ref. 40.
These data are plotted against c ~ [see Eq, (4.9)j.

n; && ho+ g J& n&
= 0

J

With the usual expansion

n;=n, +n;a;+P;b; ——,(n +P )n;+

(4.10)
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for small deviations from equilibrium vectors n;, Eq.
(4.10) leads in first order to the equations

QJ;, (n, a; a, +/3, b; b, ) —n;)t; = —a;. hp, (4.11a)
J

XJJ(a/b; a/+ pib; bj) —p;h. ; = —b; hp . (4.11b)
J

In vector form this becomes

80-

70- o 00
0

~ex)ooo'

(p 0~0 oo

CO
0

0 0

r 'I

A 8
8r C,p;

where

a; hp

b hp
(4.12)

60-
l

5Q-

40-

00

~ ~ s

~ ~

BE= BT

is the matrix of the quadratic form for the energy for
small displacements from equilibrium [see Eq. (2.5)].
Equation (4.12) can be solved by expanding

20-

10-

00 0 EC WITH MAX. X (0)

~ EC WITH MIN. X (0)

in terms of the eigenvectors of E having eigenvalues
& 0. To ensure that the zero-energy eigenvectors are
not admixed into

I I I I I I

0.00] 0,002 0.003 0.004 0.005 0.006 0.007
(r.u. )

FIG. 19. Plot of accumulated energy eigenstate suscepti-
bilities X„X„(0)vs e„, where X„(0) is the summand in

Eq. (4.13). Results from 96-spin EC's at c =0.3 at. "io with

maximum (114) and minimum (82) X(0)'s are shown.

their projection onto the right-hand side of Eq. (4.12)
is rendered zero by aligning hp with the net moment
M = X,. n; of the system. The susceptibility

5IMI/Ihp[ is then

X„(0)= N ' X' e„' X (g~; a; up+ r)„;b; up)

(4.13)

where the p, th eigenvector of E is

with eigenvalues e& lip= hp/~lip~, and X is taken
over the N —3 eigenstates with E„&0. To convert
X.„(0) to emu/mole, multiply by A(pcg'ps2a'S/2423.
Apart from the changes in A [e.g. , Eq. (4.8)], X„(0)
(emu/mole) is then independent of c as required by
scaling.

Equation (4.13) has been employed to calculate
X„(0) for 10 systems of 96 spins at c = 0.3 at. %.
The result is X„(0)= 89.9+ 33% ru. In addition to
this, results from 10 EC's of 1SS spins each with an
applied field hp = 0.0005 gives X„(0)= 110 + 33% ru.
What is striking here is the large error margins which
occur with relatively large simulation samples, much

greater than found in calculating the frequency spec-
tra in Sec. IV C. Considerable insight into the reason
for this can be gained through Eq. (4.13). Since the
energies e„vary over several orders of magnitude,
Eq. (4.13) suggests that X,,(0) may be dominated by
a small number of low-energy eigenstates. That this
is the case is illustrated in Fig. 19, where we plot the
susceptibility contribution of all eigenstates with ener-
gies less than e„as a function of e„. Results are
shown for those 96-spin samples giving the largest
and smallest susceptibilities. In both cases one finds
large and widely varying contributions from a few
states near the bottom. Thus a much greater number
of simulation samples than one might have thought
are required to produce statistically accurate results.

Equation (4.13) can also be recast in terms of indi-
vidual spin contributions X;(0) to throw further light
on the magnetization process. We plot X;(0) vs )t;
in Fig. 20, since molecular-field models suggest that
spins with small h. s should dominate X.„(0)." Not
only is the correlation with A. ; weak at best, there
are many spins with X;(0) (0. Ferromagnetically
coupled nearest-neighbor pairs are an interesting case
in point. Although their A. s are large, such a pair
can behave as a free spin if it is relatively isolated.
The X s for such pairs are seen to vary widely. Be-
cause of the strongly-interacting nature of the system
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FIG. 20. Plot of individual spin susceptibility contribu-

tions X, (0) vs corresponding inverse molecular fields A,
'

for a system of 96 spins at c =0.9 at. '/o.

there is no clear domination of X„(0) by a few large
X s.

%e compare the calculated susceptibilities with the
experimental data for Cu Mn and Au Fe in Table IV.
The numbers we quote are from averages of both
kinds of calculation described above. To evaluate the
conversion factor given with Eq. (4.13) for Cu Mn we

take g = 1.65 from p,rr=4. 9 (Ref. 37) and consider
the variation of A with concentration discussed in

Sec. IVC. The data in Table IV show the expected
trend of increasing X'(0) with c that follows from the
decrease in A. Calculated values of X'(0) are shown

for c =0.9 at. % and c 0, using the values of A and-
A ff from the previous section. Although the error
limits are large, the calculated results are in good ac-

cord with experiment.
Susceptibilities for Au Fe are smaller by a factor 2

or so than the Cu Mn values, but show a similar
trend" with e. Diminished X'(0) values are presum-

ably a reflection of the smaller effective moment

(p,rr=3. 1 from data in Ref. 13) for Fe impurities in

Au. However, since p,rr=g[S(S+1)]', specific
knowledge of g or S is required to discuss X'(0) in

detail. In the absence of such knowledge we may

pursue a rough argument as follows. By comparing

TG and specific-heat data for Au Fe and Cu Mn one
can deduce that S is smaller for the Fe moment than
for Mn. This follows because even though there is

no reliable theory of T&, elementary theories of T~
and T& for conventional ferro- and antiferromag-

TABLE N. Comparison of extrapolated experimental values of X, (0) for Cu Mn and AuFe with model calculations described

in the text.

Authors Alloy x, (0)

Cannel)a"'

Careaga et al.
Careaga et al.
Careaga et al.
Careaga et al. b

Careaga et al. "

1,3 at. % Mn in Cu
0.97 at. % Mn in Cu
0.196 at, % Mn in Cu
0.099 at. % Mn in Cu
0,044 at. % Mn in Cu
0.0186 at. % Mn in Cu

1.4 x 10 (emu/mole)
2.0 x 10 (emu/mole)
1.0 x 10 (emu/mole)
1.0 & 10 (emu/mole)
1.0 x 10 (emu/mole)
1.0 x 10 (erhu/mole)

Present model
Present model

Tholence and
Tour nier'

&0.1

0.9

0.5
0.2

at. % Mn in Cu
at. % Mn in Cu

at% Fein Au
at, % Fe in Au

o.95 & 10 (emu/mole)
1.70 x 10 (emu/mole)

0.75 x 10 (emu/mole)
0.53 x 10 (emu/mole)

Cannella and
Mydosh"

1.0 at. % Fe in Au 0.41 x 10 3. (emu/mole)

'Reference 2.
"Reference 42.

'Reference 13.
dReference 2.
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nets43 always give Tciv oo S(S + 1). It is reasonable,
then, to take TG ~ VOS(S+1), where Vo is the
RKKY coefficient. " On the other hand, the tem-
perature scale for C~(T) is proportional to A = VoS.
Taking c =1 at. % for example, one has from Sec.
IVC ( VoS)ioi„/( VoS)„,—0.85, whereas TG(Mn)/
TG(Fe) —1.25 (Refs. 13 and 39). This strongly sug-

5
gests SF, & S&„. .With the assignment S&„=—,, these

numbers are consistent with SF,= —,. Adopting this,

it follows from p, ff that g =1.60 for Fe in Au. These
parameters. lead to an expected reduction of
X'(0) oo g'S/A, rr for Au Fe by a factor 0.48 below the
Cu Mn value, which is consistent with the data of
Table IV. While the foregoing picture is somewhat
speculative, it gives a consistent account of all the
data available.

Returning to the discussion of the first paragraph,
we conclude that X'(0) is accounted for the by the
bulk-polarization contribution alone. However, let us
estimate the "domain-rotation" contribution to X"(0)
for Cp99Mnpp& using Alloul's finding of a relatively
uniform anisotropy field H~ —1.3 kG and an esti-
mate of n —250 for mean domain size. " Assuming
the domains to be randomly oriented one finds

2N peg p, gS
) domain

3&n H&
(4.14)

With the parameters quoted above this gives X"(0)
('domains) —9 x 10 ' emu/mole. Since this is larger
than the experimental value one is forced to conclude
with Alloul' that such domains are not present.

V. SUMMARY AND CONCLUSIONS

A simulation model has been developed to study
the properties, of spin-glasses at temperatures well
below the ordering temperature TG. Our procedure is

patterned after the spin-wave treatment of multisub-
lattice systems, treating deviations from a classical
ground state in a quadratic Hamiltonian quantum ap-
proximation. The main investigation has been limit-
ed to (isotropic) RKKY exchange couplings with pilot
studies of effects of small dipolar and local anisotro-
pic terms and of an applied field.

With isotropic coupling the energies of distinct
equilibrium configurations (EC's) were found to vary
among themselves by less than 0.1%. In contrast, Is-
ing equilibrium states were found to be considerably
higher in energy and broadly distributed. In an ex-
tensive search, only seven unique EC's were found
for a distribution of 172 spins, and all 7 have sub-
stantial mutual projection when inversion and rota-
tion symmetry operations were optimized. Angular
correlations of equilibrated spins have a very short
range, with an average of only two neighbors within a
suitably defined correlation volume. Angular correla-

tions, as well as subsequent properties calculated,
were found to obey the scaling laws appropriate to a
system with inverse r' interactions.

The distribution of exchange fields P (H ) for
disordered spins at c =0.3 at. % was found to agree
with a functional form derived in the limit c 0..
Ordering was found to broaden P(H) by —50% and
to reduce greatly the number of spins with very small
fields. A single-particle specific-heat calculation
based on P(H) would clearly be unsuccessful.

A second-order expansion of the system Hamil-
tonian about a classical EC leads to a linearized set of
equations of motion for creation and annihilation
operators for local spin deviations. These equations
are shown to be identical to the corresponding classi-
cal ones. The quantum equations are solved by the
usual Bogoliubov transformation employed in mul-
tisublattice spin-wave theory with normalization im-
posed by the commutation relations. For a system of
N spins the excitation frequencies, which occur in
pairs + co„are the solutions of a non-Hermitian
2N x 2N matrix. Expressions are given for the mean
spin deviation at temperature T and the ground-state
energy correction. In the Appendix there are shown
to be three low-lying modes which are related to the
full rotational symmetry of the system Hamiltonian.
Such modes are believed to be unrelated to the ther-
modynamics of macroscopic spin-glasses and thus
have been removed from calculated excitation spec-
tra. Certain low-frequency macroscopic modes in
spin-glasses have recently been calculated by
Saslow44; we believe these to be unrelated to the
modes considered in the Appendix.

Excitation spectra presented for series of N = 96
and 172 equilibrated spin distributions give similar
results for the most part, with finite sample effects
confined to the lowest frequencies. The spectra exhi-
bit a low-frequency peak which evidently controls the
low-temperature thermodynamics of the system;
below the peak the mode density N (rd) diminishes
rapidly, consistent with N (0) =0 as required for the
stability of the spin-wave-like solution to the Hamil-
tonian. The modes in the low-frequency peak are
found to be moderately extended in space, although
our sample size is too small to determine whether ex-
tended solutions with an associated wave vector exist
as suggested by several authors.

In studying the effect of various modifications to
the Heisenberg RKKY interaction, we found that
both dipolar and local (cubic) anisotropy have the ef-
fect of introducing a low-frequency gap in the spec-
trum when large enough. The classical dipolar in-
teraction is too small, however, to have an appreci-
able effect. A similar gap is produced by an applied
uniform field, the effect being rather modest for,
e.g. , 0.9 at. % Mn in Cu with hp —35 kG. Exponen-
tial damping of the RKKY range function is found
simply to scale the mode frequencies in the vicinity
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of the peak to lower values, thus in effect to decrease
the value of the RKKY coupling constant. The
amount of scaling is comparable to the narrowing ef-
fect on field-component distributions reported ear-
lier. "

Model specific-heat calculations are compared with
recent data for CuMn (Refs. 32 and 33) and for
AuFe (Ref. 36). With the RKKY amplitude as the
only adjustable parameter, we find good accord with
data for 0.88 at. '/o Mn in Cu (Ref. 32) up to

1T ——, TG, as large a range as can be expected for this
type of calculation. A small discrepancy near T =0 is
attributed to finite sample distortion of the excitation
spectrum. For 1 at. % Fe in Au, good agreement is
found with experimental specific heat over a wider
range of T, but with a much more serious discrepan-
cy near T =0. There one finds a more nearly linear
specific heat than the model can produce, a result
very likely attributable to the Kondo effect in AuFe.
The concentration dependence of the CuMn specific-
heat results is shown to be in accord with that of TG

and to be accountable in terms of self-damping of the
RKKY interaction. Considering the effective c
dependence of the RKKY coefficient A, ff, the value
of A, [f derived for the 0.88 at;% Mn in the Cu case
above is in reasonable agreement with the data of
Smith. '

The classical model ground state yields an expres-
sion for the zero-temperature susceptibility in terms
of the eigenfunctions and eigenvalues of the energy.
Using A,rr(c) from the specific-heat work, one finds
values of X(0) for CuMn in good accord with avail-
able data' ' including the trend with concentration.
The diminished value of X(0) for AuFe as compared
with CuMn is shown to be consistent with its lower

TG and larger specific heat in a picture where the Fe
moment has a spin S = —,. We have estimated the
"domain rotation" contribution to X(0) which would

be present in the monodomain theory of spin-glass"
in addition to the bulk-polarization result given by

our model. Since the domain-rotation effect is large,
we must conclude with Alloul that such domains
are absent in a zero-field cooled sample.

It should be emphasized that in our discussion of
the excitations in this model system we have con-
fined our attention entirely to the regime in which

the equations of motion can be linearized. This will

certainly exist below some temperature, but we have
not considered how this limit might be determined.
In order to do this it would be necessary to consider
the interactions between the excitations and also the
renorma1ization of their frequencies with increasing
amplitude. These will presumably signal the first
departures from the linear regime. Such problems
are clearly very much more difficult here than in uni-

form systems, since we are linearizing the equation
of motion of the individual spins, each of which has
its own particular environment. Linearization may.

well be adequate for some spins and fail for. others.
A further effect, which presumably sets in at higher
energies of excitation, is the migration of the system
as a whole to the vicinity of another equilibrium con-
figuration. To investigate this possibility it would be
necessary to determine the path in configuration
space between initial and final configurations which
has the lowest maximum energy.
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APPENDIX

P Q
(b) = Q. P»

t

(Al)

where P and Q were defined by Eq. (3.13); we have
P = P and Qr= Q, so that (g) is Hermitian. It has
three zero eigenvalues corresponding to independent
rotations of the system and the other eigenvalues are
positive. In the Cartesian representation all eigenvec-
tors are real so that in the polarization representation

P Q w+
(g) = » p» = (e)(w rw+r)

I

(A2)

where w+ and w are lV & 2W matrices and (w+)'
= w; (a) is the diagonalized energy matrix. It will

be convenient to add to the energy a term,
—g X,. n;. n;, arising from a small "shattered" field,

g, with $ )0. All eigenvalues in (e) are then raised

by g without changing the eigenvectors.
The frequency matrix [Eq. (3.12)] may be written

In a numerical simulation of a random system with

a limited number of spins, where one is trying to
gather statistics from a number of samples, it is irn-

portant to eliminate bias. This may arise in the
present problem in connection with the counting of
modes. All systems, small or large, with purely iso-
tropic interactions will have some small number of
zero-frequency modes associated with the rotational
invariance. Clearly since these have negligible weight
in a real system they should be excluded from the
counting in a simulation. We shall examine these
modes in some detail and conclude that 3 is the
number to be dropped.

We approach this problem by relating it to the
properties of the matrix, ($), of the classical qua-
dratic energy:[Eq. (3.7)l. This can be written in the
polarization representation as
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Eqs. (A6) we obtainas

—1 0
l) 1

(8)
O„XK „s„„+OzX XK „(g+e—O„K')

PP

(A7)X K i Sn„= (Smvnvand is diagonalized by the transformation [see Eq.
(3.19) with f; =z;+g;=z; ]

which is a formally exact reduction of the frequency
problem to a set of three equations in s~„, s2„, and

S3v.

In a finite system there will be a finite interval
between zero and the lowest positive eigenvalue of
(8) and, in this case, we may, for sufficiently small
O„and g, replace ((+e —O„K') ', by en'8, . We

now have

r r r

(z )" z+ —O 0 (z ) z+ —1 0
(+)',—

O O (+)' z- =
O 1

(A3)

($) may now be eliminated from Eqs. (A2) and

(A3) to yield
r

—0 0
(S) 0 O

——(w+rw —w rw+)(e)(S), (A4)
t

O„xK „s„„+O„XK „e„'K„„s„„=gs „ (A8)
p„n

where

( )"
(S) = (w ~w+ ) ( +),

(S) has the form (s's ), where s is a 2N x N matrix.
We may now consider only the equation

(s)(O) =(w+ w —w w+)(e)(s) =(K)(a)(s)

(K)(s)(O) = (e)(s)
0.010 I-

the last line following from (K') =1. This, in turn,
follows because

0.009-

LOW - LYING MODES IN

A SHATTERED FIELD

C =0.9at.%

is unitary. We shall also need below the relations
ECT= —E and K'= —K.

If m, n = 1, 2, 3 are associated with the rotational
eigenvectors of (rtr), p„p,

' =1, 2, . . . , 2N —3 with

the remaining ones and v with a frequency mode, we

may write

Q007~

0.006
(

'3
0.0053.

(
0.004XKmnSnvOv+ XKm&S&vOv 4Sm„

(A6)

XK„„S„„O„+XK is i O„= (g+e~)s„„
I 0.001

CV

3
0.002-

For a fixed v we solve the second set of equations in
the form

0 ' 05
g BIO'rd")

Q001&

I I

4

$(10~ru.)

Ot
0

s„„=X (g+ e —O„K') ', XK, ,s„„O„
I

FKJ. 21. Ten )owest mode frequencies for a sample of 96
spins at e =0.9 at. % plotted as a function of the shattered
field parameter ('. The inset illustrates the ('~ behavior of
the second mode.

where E' is the 2N —3 x 2N —3 matrix with ele-
ments E . Substituting this result in the first set of

Making use of the fact that the matrix elements of E
are pure imaginary and that E is antisymmetric one
finds, on calculating the determinant associated with

Eq. (Ag), a cubic in O'„. For small g, examination of
this cubic indicates three possibilites, u&' = 0 (g'),
rnz=o($), and rnz=o(1). Confining attention to
0 & 0 there are thus two modes whose frequency
goes to zero as ( 0 and one which goes to a finite
frequency. The latter appears in our experience to
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det(R )
M (R)M

M (R)M
M (x)M

M (x)M
det(x)

(A9)

where M = X,. n; is the total moment, (R) is a 3 x 3

matrix whose elements are

where the n;, o, = x,y, z, are the Cartesian com-
ponents of n; and (x) is the dc susceptibility matrix
mentioned in Sec. IV whose elements are

have a frequency below that of the lowest positive
energy mode so that its derivation as given here has
some degree of self-consistency. From these results
we conclude that three modes, two zero frequencies
and the first positive frequency should be excluded
from mode statistics. In Fig. 21 are shown the mode
frequencies found by direct diagonalization as a func-
tion of g. The g'i' and g dependence of the lowest
modes is clear; the next highest mode shows a
dependence upon g which is distinct from all higher
modes which move linearly with g.

It is possible to derive explicit expressions for the
frequencies of these low-lying modes. The details are
tedious and we shall not describe them; it is clear
that they depend upon finding explicit expression for
w+ and w . The results are

It is easily verified that [X&,T] =0, so that the com-
ponents of T are constants of the motion. It is also
true that

[ T", T~] = I'I„[T~, T*] = iM„

[ T; T"] = iMy

where M = X,. n; is the total moment of the system.
If the z axis is chosen to lie along M then

[T'.Tv] = i IM I, [TJ', T'] =0, [T', T"]=0 .

T+ = T"+i T~ and T = T"—i T~ are Hermitian conju-
gates and may evidently, after normalization, be as-
sociated with the d and d+ of one co=+0 pair. This
leaves one operator, T', which is a constant of the
motion, which commutes with T+ and T, but is un-
fortunately self-adjoint, so that it has no conjugate
mate. This is an indication of the fact that the purely
isotropic H2 is not strictly diagonalizable in the sense
of having a complete set of 2N linearly independent
eigenfunctions. This difficulty, which has no adverse
repercussions, occurs only for one co =0 pair. It
disappears in the presence of suitable perturbations.

If a dc magnetic field Ho is applied in the direction
of the total moment the system will reequilibrate.
For the new equilibrium state we may define new
operators T+, T, and T* obeying the same mutual
commutation relations. The equations of motion of
these operators are

o +
T = + HOT+-

where 6„is the total moment of the p, th energy
mode and a, P =x,y, z.

It was mentioned in Ref. 25 that a slight complica-
tion appears in the quantum-mechanical diagonaliza-
tion procedure. This is, in fact, connected with the
zero-frequency modes and we discuss it briefly here.
Suppose we form the vector operator T, where [see
Eq. (3.2) for notation)

T= $(p, c;"+ p;c;)

T'= 0

This makes it clear that T- are associated with rota-
tions in the plane normal to M, and thus, with small
precessional motions of M about the applied field; T',
on the other hand, is connected with rotations of the
whole system about the M axis. These considera-
tions will apply to a macroscopic system in a field
whose induced moment is of order N; in the absence
of such a field the moment is of. order N'~' and they
are somewhat irrelevant.
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