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A zero-temperature real-space renormalization-group method for quantum systems is applied

to the S = —XY model with a Z field with the Hamiltonian H = —TJ $(,J) l(l+y)S,"SJ"1

+ (l —y)S~SJz] —h X,. S on quadratic, triangular, and hexagonal lattices in two dimensions

(2D) and on a cubic lattice in 3D. In all the isotropic (y =0) 2D cases the method gives no or-

der in the ground state ~0) but changes in the correlation functions at (h/J), = —z' iz' is the

number of nearest neighbors (NN)] are observed. An argument is presented that at (h/J), the

method becomes exact in the limit of infinite-size spin blocks. It is suggested that the correla-

tion functions (O~SaSg~01 (a=xy) for large R have a power-law behavior —R s for
0( )h/J~ & ((h/J), ~

with r)=15 for (h/J~ & (h/J), ( and r)=2 at (h/J), . The dynamical ex-

ponent z is obtained to be =0.3 for )lh/J( & —z' and at (h/J), close to 2. An indirect method

of calculating the ground-state energy is developed, and the results are compared with the

known estimates. For y & 0 and h =0 the y dependences of the order in the ground state

p,"(y) is calculated to be p,"-y ' for y 0 and h =0. In a 3D cubic lattice (y=0) the

analysis of recursion relations indicates the existence of order, in accord with recent exact
theorems.

I. INTRODUCTION

The phase transitions in quantum systems have re-
cently been an object of increased theoretical activity.
While it is generally believed that the critical behavior
of quantum systems at finite temperatures does not
very much differ from that of corresponding classical
systems, by lowering of temperature there is an in-
creasing interplay between quantum and thermal fluc-
tuations. In the immediate neighborhood of T =0
the quantum fluctuations prevail and there is a cross-
over to a different critical behavior at precisely T =0.
In certain cases there exists an exact equivalence
between the T =0 critical behavior of a D-dimen-
sional quantum system and the T A 0 critical
behavior of corresponding D +1 classical system. '

This is the case of the anisotropic S = —,XY model

with a transverse field. Most of quantum systems
have their T =0 critical behavior peculiar to their
own nature. Not all the details of the critical
behavior (critical exponents, etc. ) are at present
known. This is the situation for instance of the iso-
tropic XY model with a transverse field' and with dif-
ferent versions of Hamiltonians with coupled spins
and fermions (i.e. , Kondo lattice2 3). The exact solu-
tions for quantum spin systems exist only for very
specific cases in one dimension (1D).4 Therefore
there is a need for calculational methods especially
suited for quantum systems and not limited to D = 1.

Recently, a zero-temperature renormalization-
group method for quantum systems has been intro-
duced by the field theorists. This is variational-like,
perturbation-theory-free iterative procedure of recon-
struction of the ground state ~0) of a quantum sys-
tem and arbitrary expectation values on it. The
method was initially applied to several quantum field
theory problems. ' Subsequently it was extended and
critically studied for a large variety of quantum spin
systems like a 1D representation of the Kondo-lattice
problem, ' Ising model with a transverse field in 1D,
on bipartite lattices in 2D, ' on the triangular lattice
with antiferromagnetic couplings, ' and finally on dif-
ferent ramified comblike structures. Furthermore,
the 1D isotropic XY model with a transverse field was
examined' and the applications to disordered sys-
tem" and to the Yang-Lee edge-singularity problem
were made. " The studies of several other related
problems were also undertaken. "'

In this paper, we shall present the calculation of
the critical behavior at T =0 of the S = —,JY model

with a transverse field with the Hamiltonian

H = ——J X [(1+y)S;"SJ"+ (1 —y)S;SJ ] —h $S;*
(fJ& I

with exchange J, the magnetic field h, and the aniso-
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tropy y, and where

and

0 1
S"=1O

)

1 0S'=
O -1

) )

are a set of Pauli matrices on each site, (ij )
representing a nearest-neighbor pair on a lattice. The
case y W 0 belongs to the universality class y = 1 (Is-
ing model'5) and most of the paper will be concerned
with the isotropic case, y = 0,

H =—'J X (s"s"+s's') —/ Xs''
&J&

(2)

The information one has about the ground-state
properties of Eq. (2) is scarce. The ground-state
wave function i0) for h 0 in D & 1 is unknown.
For h =0, it is a singlet (doublet) and belongs to the
subspace X,. S =0, N even ( X,."S;*=—,, N odd). "
For h/J & (h/J), there is no gap between i0) and
the continuum of excited states. At (h/J ) = (h/J ),
a gap 6 opens with 5 —[h/J —(h/J), ]*, where in
1D s =1 exactly. '0 The value of (h/J), is known
exactly for all D to be'7' (h/J ),= —z' where z' is the

number of nearest neighbors. There is no order in
1D'; in 3D the order extends from some finite T,
down to T =0.' The case 2D is clearly a special one:
for finite T the Mermin-Wagner theorem' excludes
the existence of order. For T =0 this theorem ceases
to work and the existence of order is an open ques-
tion. There exist also several estimates of the
ground-state energy per spin (h =0) of Eq. (2)."
Furthermore, it is known, ' that for h/J & (h/J), the
Hamiltonian of Eq. (2) for D & I does not possess a
simple D +1 classical spin equivalence. The case
h =0 has been studied extensively in the past and
was applied to a large number of experimental situa-
tions. An extensive list of references can be found
in the article by Betts."

The Hamiltonian H [Eq. (2)] was already con-
sidered in Ref. 10 for the 1D case, where it has been
found that the renormalization group (RG) method
reproduces the exact solution' well. It is then natu-
ral to extend the study to higher dimensional cases
where no exact solutions exist at present.

%e shall address ourselves to the question of or-
dering, the structure of long-range correlation func-
tions, calculation of critical ratios (h/J )„and rescal-
ing properties of energy in 2D and partly in 3D. The
calculations will be performed on different 2D lattices
on the cubic lattice in 3D. The influence of shape
and size of spin blocks used in the iterative procedure
will be studied using 14 different spin blocks with up
to n, =27 spins.

The paper is organized as follows. In Sec. II we

present the method as developed in Ref. 10 and spe-
cialized for 2D case. Similarites and differences with
1D case will be stressed. In Sec. III, we discuss the
recursion relations for different blocks and lattices in
D = 2, 3 and emphasize the existence of the special
solutions (fixed cycles rather than fixed points). In
Sec. IV the crictical behavior of correlation functions
for all values of h/J will be discussed. Sec. V is de-
voted to an approximative calculation of the ground-
state energy. In Sec. VI we derive the recursion rela-
tions for the anisotropy y and discuss the behavior of
ordering as a function of y in 2D. The general dis-
cussion and conclusions will be presented in Sec. VII.
Finally, some analytic results which can be obtained
for supercubic lattices for arbitrary D will be derived
in Appendix A, while typical examples of recursion
relations for the hexagonal lattice will be illustrated in

Appendix B. The results on bipartite square and
hexagonal lattices do not depend on the sign of J but
the calculations on the triangular lattice will be here
limited only to J & 0 case. In the case of J & 0 on
the triangular lattice some kind of quantum frustra-
tion effect is expected' and this situation has been
discussed elsewhere. "

II. DESCRIPTION OF THE METHOD

/
(n) XSz(n) + C(n) X I (n)

I I

where the initial values of J'"', h'"', and C'"' are

J"'=J, h"'=h, C~ i=o,

(3)

I "' are unit matrices, (ij ) represents a pair of
nearest neighbors, and C'"' are constants. As in pre-
vious studies' "we now group the spins into spin-
blocks of n, sites and rewrite H'"' as a sum of single
block Hamiltonian HJ" and the terms describing the
interactions between neighboring blocks j, j', H'", '

JJ

H'"'=XH'"'+ X H", +c'"'X XI'"' , (5)
J (JJ ) J p

where

(
J.p J,p' J.p

h~"i ~ S'"'
Jp

p 1

(6)

In this section we adapt the formalism of Ref. 10
to the Hamiltonian Eq. (2) in D & l. As usual we
assume that at the iteration (n) the Hamiltonian can
be written in the form

Jf (N) J(N) % (Sx(n)SN(n) + S)'(N)s» (n) )J I J
&J&
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and

p.p
&i.ps, p &

(S ( )S ( ) +Sy(n)Sy(n) )Jp, / / Jp, / / ~

(7)

/' /

In Eq. (7) j,j' is a pair of neighboring blocks, and the
positions of spins within the blocks are denoted by p
and p'. The first step in the renormalization-group
(RG) procedure is to diagonalize exactly the spin-
block Hamiltonian HJ'"'. A number of lowest-lying
states of a block is retained. They form a new, trun-
cated basis in which the new parameters of the sys-
tem are recalculated by pulling back the interblock
couplings by H. .

" . The whole procedure is iterated
J.J

until under iteration no changes in the parameters are
produced, i.e. , until a fixed point of the RG transfor-
mation is reached. We shall limit ourselves in this
study to keeping only two (nL =—2) lowest-lying states
of a block, thereby ensuring that at each iteration the
Hamiltonian takes the form of Eqs. (5)—(7). (As in

Ref. 10, in D ~ 1 one could keep more levels,
nL ) 2, at the cost of considerable calculational corn-
plications. ) The search for the two lowest-lying states
of H,'"' with n, spins is facilitated by observing that
[X,("),H/(")] =0, where

M, 'VV A './V'~

FIG. 2. Spin blocks and their couplings (dashed lines) on
the triangular lattice.

( —n, +2q —2) of X,'"'. Let us denote by )q) the
ground-state wave function of HJ" in the subspace

Since all the diagonal elements of H,
"

in a given
e/~ are equal to (n, —2q +2)h'"', the ground-state en-
ergy E, of ~q) is equal to

Eq = (n& 2q +2)h " + e&

q=l, . . . , n, +1

where e~'"' is the lowest eigenvalue of
n

~(n) ~ ~z(n)
J ~ J'P

p~ [

(8)
(Sx(n)Sx( ) +S (n)S ( ) )J.p J p' J'p

6.p')

and consequently the eigenstates of H,
" can be con-

veniently classified in terms of eigenvalues of XJ" .
HJ" will be diagonalized in the basis of vectors of

the form ~e), . . . , ~„),where e, =+I is the eigen-

state of the z component of pth spin in the block.
The matrix representation of H,

'"' in this basis will

have a block-matrix form with n, blocks. If we
number the block matrices with q (q =1, . . . , n, + I)
then every block matrix is a representation of HJ" in
the subspace eJ' corresponding to the eigenvalue

For 20 blocks, which are not too large like H 1, T1,
T2, Q 1, Q2 (see Figs. I —3) all the e, 's can be calcu-
lated by hand. For larger blocks only e~ =e„+[and

' Q2

2

/
)--(

-2

FIG. 1. Spin blocks and their couplings (dashed lines) on
the hexagonal lattice.

FIG. 3. Spin blocks and their couplings (dashed lines) on
the square lattice.
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e2=en can be simply calculated. In fact, one can

suitably generalize the 1D calculation and obtain the
analytical expressions for e2= en for a D-dimensional

supercube with the edge length I —1(n, = ID) (see
Appendix A). Certain other cases will be calculated
by machine. As an illustration all the wave functions
and associated energies F., of a simple block Hl (see
Fig. 1) with n, =4 spins will be derived in detail in
Appendix B. The search for the two lowest-lying
states of HJ'"' is simplified by noting that for a given
h(")/J(") they are always two lowest states of adjacent
subspaces eq, e +'. %e introduce now the block spin
operator f& by rewriting H&" as.

(n) 1 (g (n+1) g (n+1) )g2(n+ ()

J 2 q q+1 J
1 (g (n+1) + g (n+1) )I (n+1) .

2 q+1 J

h (n+1 jgz (n+1)
J

+ 1 (p (n+1) + g (n+1) )I (n+1)
q q+1

(IO)

where, using Eq. (9)

(12)

In the above the states Iq ) and Iq + 1) are identified
with "down" and "up" states of S&

"+', called- I
—) ("+"

and I+)'"+'). The recursion relations for spin com-
ponents are obtained b~ calculating the matrix ele-
ments of operators SJ~ between the block states
I+ ) '+". Depending on the position of spin in the
block (p) we obtain, i.e., for the x component

is then enough to compute a pair of recursion rela-
tions (12) and (14) which can be compactly written
as

(n+1)
h

J i

= (g,j) '

' (n)

+ —,
' (e, —e, +1) (15)

III. DISCUSSION OF .RECURSION RELATIONS

The behavior of the recursion relations (15) is
found by iterating them and finding the eventual lim-

iting values, or fixed points, if any. The important
observation to make now is that at every iteration
step n one has to verify whether the resulting
(h/J )'"+" is still within the range of (h/J) for.which
the states Iq) and Iq+I) [used to derive
(h/J)'"+" 1 are still the two lowest ones. The closer
examination of spectra of all the blocks permits us to
write down the conditions of validity of Eq. (15) for
all the blocks of Figs. 1—4. Direct calculations indi-
cate that for a given block and a given pair of neigh-
boring subspaces, say eq and eq+', the ground states

Eq and Eq+1 of these subspaces are the two lowest
low-lying states of the set of all states belonging to eq

and eq+'. The same statement can be made for any

~, in particular about ~q+' and aq+'. The condition
of validity of Eq. (15) can be obtained by equating

Eq 1 Eq+1 for the lower limit and Eq Eq+2 for the

~x(n) ~ q~x(n+1)
7 (13)

and the same relation for y components.
The new coupling constant J'n+" is obtained by

computing the matrix elements of H "' between j
1

and j' blocks. The form of the resulting sum
depends on the shape of the blocks and will be
separately determined in each case. For example,
two blocks Q3 on the quadratic lattice (see Fig. 3)
are linked with two bonds "corner-corner" and the
one bond "face-face." Consequently

J(n+1)
g J(n)

qJ (14)

A' n
A& ni

with

where

/I i

I I
I

91
I

I

J'! i
I j j
1 si

ini

i1
I

i I
I ~ I

1

(a =X, Y), and the subscripts eo and f denoting a
"corner" and "face" spin, respectively. The quantity
fnj does not depend on n For a given s.ubspace a~ it

r 7
7

7

FIG. 4. Spin blocks and their couplings (dashed lines) on
the cubic lattice.
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higher limit. Using Eq. (9) one obtains

(16)

where

X, =-, (e„,-e, , ) .
I (17)

[For q = n, (q = I) only the left (right) side of the
inequality Eq. (16) remains. ] The relation (16) tells
us that we can proceed in iterating Eq. (15) as long as
the values (h/J)'"' satisfy Eq. (16) for all n Th.ere
is an important difference between the 1D case" and
D & 1 cases considered here: in 1D for every q we
can obtain a fixed point

' (n)
h

J

' (n+1)
h

J

whose value

/y ~q+I ~q

J 2(1 —gqJ)
(18)

(Il)
"'„'

2-
r

0.5

0;. 0,5

g [n]

(a) (b)

FIG, 5. Comparison of the h ) 0 recursion obtained for
two blocks of ns = 9 spins: (a) a chain (D = 1) of nine
spins, and (b) a D = 2 block Q3 (see Fig. 3). For (a) the
fixed points (fat circles) are all unstable and are always in-

side the zones of validity or recursion relations, denoted by
x, see Eqs. (16) and (17). For (b) only the last recursion
relation cuts the bisecting line giving an unstable fixed point.
The other relations do not give physical fixed points.

satisfies Eq. (16), whereas in 2D and 3D the fixed
points Eq. (18) for all q except q = I and q = n, lie al-

ways outside a corresponding region Eq. (16). There-
fore the fixed points for q ~ 1, q & n, cannot be
reached.

To compare 1D and 2D situations we present in

Fig. 5 two sets of recursion relations for h ) 0 for
two blocks with n, = 9: a chain of nine spins and the
Q3 block on a quadratic lattice. [The structure of re-
cursion relations as illustrated in Fig. 5(b) in 2D
remains qualitatively the same for C1 and C2 blocks

in 3D, see Fig. 4.] In ID we have obtained in the
range ~h/J ~ & I, n, =9 unstable fixed points,
(h/J)~. If the initial value was (h/J)'0~ = (h/J);
we always stay at this point with both h'"' and J'"'
tending to zero. Since h' '=0 the system has a gap-
less spectrum. If we chose I(&/J)"'I ) I(&/J)ycI,
with K = 1 or n„we find a gap 3 in the spectrum
with 5 = 2h' ' and J' ' = 0, which corresponds to a
stable fixed point characterizing a system of nonin-
teracting spins in a field h( '. With n, ~ the un-
stable fixed points cover the segment ~h/J ~ & I and
coalesce into a line of fixed points. We can associate
a set of critical exponents with every point of this
line. They do not change along the line and undergo
a jumplike change at ~h/J ~

= 1, the exact value" of
the critical ratio. We stress that at every point of
fixed line the exponents are well defined and their
values are those of (h/J) =0 point.

For D = 2 and 3, within the two-level scheme the
situation is a bit different. Only the two last recur-
sion relations q = n, and 1 can be iterated towards
their fixed points (h/J)~ = —(h/J)„'. [These values

correspond to the critical field (l't/J), = I in ID.]
(h/J), is known exactly" in any D and is equal to

1

z (19)

~here z' is the number of nearest neighbors for a
given lattice. [The formula (19) is to be modified for
the antiferromagnetic interactions on a triangular lat-
tice."] In Ref. 17 the formula (19) was derived by
requiring that it be the highest magnetic field for
which there is no gap between the ground state and
continuum of excited states. In our RG calculations
(h/J ) „. is an unstble fixed point above which the gap

S I'

opens. Therefore (/t/J)„' can be associated with the
S

critical field (h/J), .
No other recursion relations can be iterated to-

wards their fixed points because they lie outside the
range Eq. (17). From the more detailed numerical
examination of a set of recursion relations, like Fig.
5(b) [with relation (17)] the following picture
emerges: From whatever point )(/t/J)' '[ & ((It/J), )

one starts the iteration one is jumping between recur-
sion relations with different q, not necessarily the
neighboring ones. After a given number of iterations
a small [with respect to (/t/J), ] region is reached in
which only few recursion relations participate in the
RG trajectory. By continuing the iterations the RG
trajectory does not escape from thjs region. The size
of this "fixed" region is roughly given by the position
of zeros of the recursion relations lying closest to the
origin; i.e., h/J =0. The characteristic of this fixed
region is slightly different for the blocks with n, even
or odd. For n, even there are two recursion relations
closest to the origin, numbered q = —n, and
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0.2-

-0.2 ~

{i4
-

(h)h
J

n+l)]

q = —,n, +1. If we start the iteration at any point

within the limits of validity of either of them after a
few iterations we end up in the small region h/J —0.
For certain ("commensurate") starting points, the
fixed region consists of a close path where the same
value of (h/J)'"' is reproduced every second n F.or
other ("incommensurate") starting points the fixed
region is covered by the open, erratic RG trajectory.
In Figs. 6(a) and 6(b), we present examples of the
closed and erratic fixed trajectories as obtained using
two central recursion relations of 81 block. Within
this fixed region the values of ~(h/J)'"'~ never
exceed 0.2. For n, odd there exists always the recur-
sion relation with qo= , (n, + I—) having (in most

cases) an unstable fixed point (h/J );,=0. In this

case three recursion relations qo and qo+ 1 define a
limited region around h/J = 0. Due to the presence
of the central recursion relation in general no values
(h/J)'"' reappear exactly in a course of iteration

although a fixed region can be defined with some
spread 8((h/J)'"') « (h/J), .

This last case is illustrated for the n, = 9 (Q 3 block
of Fig. 3) in Fig. 7, where three recursion relations
(obtained numerically) are represented, together with

an example of an erratic RG trajectory. The distinc-
tion between n, odd and n, even cases becomes negli-

gible by increasing n, . With n, increasing the fixed
regions shrink progressively and in the limit n,
they coalesce to a stable fixed point (h/J)" =0. In a

sense, the fixed region (/t/J ) =—0 is a finite-block-
size effect. The above picture may be indicating that
in the region ~h/J ~ & —,z' the size of h/J is an ir-

relevant quantity and that the critical behavior of
correlation functions in this region should be that of
A=0

We recall that, in a sense, a similar situation exist-
ed in 1D case, 'o except that in the ~h/J ~

& I region
each point was a fixed point with exponents as of
h =0 situation. In 2D case no fixed points in
0 & ~h/J ~

& z
z' were found but the character of RG

trajectories indicates that the exponents in this region
were those of the h =0 case. It is rather difficult at
present to say whether the 2D results are resulting
from the method or are the reflections of a deeper
similarity between 1D and 2D situations. We tend to
believe that the latter is true. Similar views were re-
cently expressed, based on other methods. ' On the
other hand, the three-fixed-point structure of RG tra-
jectory in 2D is strongly reminiscent of the Ising
model in transverse field (IT).6 7 However one can-
not draw any far reaching analogies between these
two cases, particularly concerning the ordering. In
3D the calculations are limited by numerical possibili-
ties. Only the block C1 was resolved completely and
few recursion relations of C2 were obtained (see Fig.

n+&)

0.2- 0.4-

x,

-0.2-

0,2 0.4

(b)

I

h
(n)

-0.2 0.2 n)

-Q.4 ~

FIG. 6. Comparison of two RG trajectories for the n, =4,
H 1 block (see Fig. 1). The starting points of iterations are
denoted by fat circles. Only a pair of recursion relations

q =2, 3 lying close to the origin are illustrated. The regions
of validity are x2=0, x& =—x3. For (a) a closed trajectory is

obtained enclosing a fixed region while for {b) an erratic RG
trajectory encloses an "almost" fixed region.

FIG. 7. An example of an erratic trajectory for three cen-
tral recurison relations obtained numerically for the Q3
block {see Fig. 3). The starting point is depicted by a fat cir-
cle. The slope of the central relation was slightly increased
for the reason of clarity.
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4). In the [(h/J)'"+", (h/J)'"'] plane the slopes of
recursion relations are again smaller than in D ( 3
cases. For n, ~ we may think of them as being
piecewise approximants of continuous curves as in

the IT model. Since in 3D the XY model orders, '

with the ordering extending to T = 0 it could be in-

structive to analyze a block giving the fixed point
(It/J)'=0. The smallest block with n, odd leading
to this fixed point is C2 with n, = 27. Its subspace
1=0 is too large to be diagonalized and the question
of how the order in 3D could be treated was not pur-
sued any more with our RG method.

IV. CRITICAL BEHAVIOR OF CORRELATION
FUNCTIONS

In this section we will discuss in detail the results
on different lattices and consequently the behavior
of correlation functions will be calculated. For small
enough blocks the magnetization p, =(OiS; ]0)
(n = X, Y ) can be directly computed using the spin
recursion relations (13). The best way to avoid the
edge effects is to evaluate the averaged magnetization
p, of the block, with the corresponding operator

n

cr =1/n, g ', S~ . Considering the qth recursion re-

lation of Eq. (13) one obtains

proximations there is no magnetization for all the
values of h in the 2D XY model. Further discussion
on this point will be found in Sec. VII. For 3D
blocks no recursion relations in the region h/J —0
could be calculated but the slopes of other recursion
relations seem to indicate a similarity with the Ising
model with transverse field ' where the order exists.
The results for (h/J)„' = —(h/J)i—= (h/J)', „and
the critical exponents as defined later, are presented
in Table I for 2D and Table II for 3D.

Quantitatively the most satisfying results are ob-
tained for the hexagonal lattice, with blocks H 1, 02,
H3. There is a monotonic approach of (h/J)', „ to-
wards 1.5 (exact value" ). For the block H3 the de-
viation is & 7.5%. We notice, that for T2 and Q I we
have obtained the exact position of the critical field.
In these cases we have the exact cancellation of the
error connected with the method and the error of in-

troducing the blocks consisting of the surface only.
For the quadratic lattice the blocks Q 1, Q3, and Q4
represent the first three members of the sequence of
hypersquares with the edge of length I —1 lattice
spacings. A suitable generalization of the 1D case'
allows an analytic calculation of (ir/J)', , „and the ex-
ponents associated with it. The calculations are
presented in Appendix A. For general D, we obtain
from Eq. (AS)

with

(n+1) — (n)
Pa = qPa (20) D cos[m/(I+ I)]J,„ 1 —[2/(/+ I ) ] sin2[m/(I + 1) ] I-

n

4P (21)

We find for 0, = X, Y and for all q's of all the 2D
blocks g~ & l. It means that within our two-level ap-

(22)

We observe that for I ~ we get for (It/J)",, „ the
exact value 2. This means that concerning the values
of (h/J )",„ the method becomes exact in the limit of
large hypercubes. The values of (It/J)', „gave us

TABLE I. The critical fields and critical exponents as obtained for the set of 2D blocks (Figs. 1, 2, and 3). Zp and Y] p denote
the effective values averaged over a large number of iterations in the fixed regions near h = 0.

Block ns =i2 1 I
Z

2

h

, max
Zmax Zp Zp &xmax &xp +xp

H1
H2
H3.
T1
T2
T3
T4
01
Q2
g3
04
g5

4
7
9
4
3
7

13

5

9
16
13

1.5
1.5
1.5
3
3
3
3
2
2

2
2

2

1.3
1.333
1.388
3.16
3.00
2.777
2.6015
2.0
1.6
1.8856
1.8774
1.636

1.58
1.4248
1.4649
0.6874
1.476
1.096
1.3800
1

1.2188
1.2618
1.4286
1.9375

0.370

0.214
0.04534

0.4569
—0.1463

0.144

0.370

0.51

0.4569
—0.1463

0.191

2. 100
2,67
2.082
1.426
2.0
2.042
2.1152
2

2.1309
2.0528
2.078
2.1381

1.5150

1.4762

1.4569
1.3120
1.176

1.5150

1.76

1.4569
1.3120
1.195
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and we apply n —1 times the Eqs. (20) and (21).
(n) (n)

The new superspins a.p and o-R are now in the
same block. The R dependence is obtained from

TABLE II. The critical fields and critical exponents as ob-
tained for two 3D blocks (see Fig. 4) near (h/J) = (h/J), .

h

, max

(0l~r~r l0) ((z )2(n-1) (g )2n1 r
Z

2
ns= fBlock max &xmax

R-&xq(D) (23)

8
27

Cl
C2

3
2.828

2

2.523
3
3.182 Now using the assumption that R = n," we get

In(z»
r)~(d) = 2D-

Inn,
(24)

much confidence for the method and we proceeded
to calculate the correlation functions. Suppose now
that we want to calculate the correlation function

p)( = (OlSOSa l0) at the fixed point (h/J)» in D di-

mensions. For simplicity we assume that, in the
units of lattice spacing, R is the nth power of the di-
lation factor f = (n, )' o. Since there is no order we

expect that at (h/J);, p)( has a power-law behavior

(D)
p

z ~ R zip

R ~oo

The above formulas allow one to extract from the re-
cursion relation q the exponent q ~ if the fixed point
is reached. From the foregoing discussion only ex-
ponents near (h/J), and near (h/J) =0, referred to
as g,„and q p, respectively, have a physical mean-

ing. The calculated values of q,„are listed in
Tables I (D =2) and II (D =3). We note that, ex-
cept of H3 and T1 blocks, the values of q„,„are
close to D. This is in full agreement with calculations
based on the functional integral technique. ""The
value 2)„,„(D)=»)„[(h/J), ] =D is also obtained
from the l ~ limit of the D-dimensional supercube
calculations with n, = I [see Eq. (A8)]:

As in Eqs. (20) and (21) we introduce again the
block-averaged quantity o-,". Now

p)( = (01(ro~))10)

(25)

,„(D)= D is thus believed to be exact. We can-

not, strictly speaking, repeat these calculations for
any other values of (h/J) & (h/J)', „, the reason
being that no fixed points can be reached in this re-
gion. %e can, however, quite formally calculate the
corresponding quantity q„without associating it with

the correlation functions. The complexity of ap-
propriate wave functions renders it practically impos-
sible for larger blocks. For smaller blocks it can be
done by hand. One observes that for all the recur-
sion resulting q„'s are smaller than D. In particular
the recursion relation closest to origin (like for Hl
block, see Fig. 6), or passing through origin (like for
T2 block) gives values of 2)„close to 1.5 in 2D.
They are listed in Table I in the entry q„p. No value
of q„p in 3D could be obtained. As explained in the
previous section if we start the iteration at any point
(h/J) & (h/J)', „, after many steps we always end up
at the fixed region about the origin, roughly given by
the zeros of two recursion relations closest to the ori-
gin. In this region the RG trajectory jumps between
these two recursion relations (n, even, Fig. 6) or
jumps between them and a one passing through ori-
gin (n, odd, Fig. 7). It is then natural to associate
with the fixed region a certain averaged exponent q„p

which is simply an arithmetic average over a large
number of iteractions. If n, is even we see from
Table I that q„p—= q„p. For n, odd q„p & q„p, as in

Q3, and r)„o seems to be not far from —,. This value

of q„p is best reproduced by the simple block H2
which is also known to give the best results in other
RG calculations. '

The method allows also an independent evaluation
of the dynamical critical exponent z which, at the
fixed point, is defined as H("+"= f 'H'"' or

J(n+) ) f—zJ(n) (26)

where f = n, 'iD is a dilation factor and J'"+" is de-
fined in Eq. (14). At the fixed point the h'"'s and
the J'"'s rescale with the same factor so it is enough
to use for instance Eq. (14) to obtain z at the fixed
point (h/J)» as

ln(z»J
zq = —D

inn,
(27)

Again we have to distinguish between the fixed point
(h/J)', „and fixed regions around h/J —0. The
values of z,„, zp, and zp are listed in Table I. To
date, no calculations of zp for D & 1 were reported so

z

,„(D,l) = D ln, —cotan lnl D, (a =X, Y)l' i+1 2 I+1
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i

z,„=—ln sin
2 7r

lnl 3I+1 l+1
i

(2g)

which does not agree with estimates of Gerber and
Beck.2' By taking more levels at each iteration the
results will be surely improved as was already shown,
in the 1D case. '

V. ESTIMATES OF THE GROUND-STATE ENERGY

our values zp —
3

in 2D are the first estimates of zp.

In contrast to zp, z „was estimated to be equal 2 for
all D ) 1."" Our results are based on a two-level
method which does not describe the energetic well.
The error can be best estimated by performing the
I "limit of Eq. (A6) for the supercubes. One ob-
tains

The values calculated from Eq. (28) are not satis-
factory (see Table III). While this simple device
works in 1D, it cannot give good results in 2D for
the following reasons: First, we observe that the
identity relating the number of bonds with number of
spins in an infinite system, N& = —z'N, is no longer

satisfied for a superblock at stage n, when for
n & ~N~"' & —,zN, '"'. To account for this bond-site

asymmetry we have chosen to calculate at every stage
the ground state energy per bond and to sum all the
contributions. The energy per spin is given by the
resulting sum multiplied by —,z'. If the number of
bonds at stage n is b(n) [with b(0) =0] then from
Eqs. (9) and (11) the constants C'"' of Eq. (5) satis-

fy

In this section we shall present a calculation of
ground-state energy estimates. For n, unpair and
h 0, there is a fixed point (h/J)p =0 with

qp= —,(n, +I), g, J—= gJ, and ev =ca+i =—ep. At

every stage iteration n we use the energies per
number of spins, i.e., n, . The geometrical series is
readily summed to give [see Eqs. (5), (9), and (11)]

C(n+1) ( (n)

b(n+1) b(n)

(n, —2q +1)h " + —(eq+ z e)+Ji'"

b(n+1)

(30)

Ep(h =0)
JN

ep

ns —6 (29)

The total ground-state energy per bond Ep/Ns is the
sum of Eq. (30), and consequently the energy per
spin is

n (n, —2q+1)h "i+—(ev+e+i)J"
1

z lcm b(n+ I) (31)

Equation (30) is a generalization of Eq. (20) of Ref. 10 for D & 1 cases. In order to sum Eq. (30) the explicitfo™0' b(n) must be known. It can be shown by induction that for every lattice and block we considered the
b(n)'s satisfy the following recursion relation

b(n+1) =n, b(n)+Bpl, b(0) —= 0 (32)

where n, is a number of spins at stage 1, Bp is a number of bonds in the block at stage 1, and l is the number of

TABLE III. The values of h =0 estimates of the ground-state energies per spin together with quantities used to derive it, see
Eq. {33). —Ep/N is an average —{Ep'+ Eps)/2N ln the last column sev.eral existing estimates for Ep/N are quoted. —

Block
1

z
2 (n„ I Bp) —ep

1 1

Ep

jv

Ep

, s

Ep

N

Ep

N

Q2
03

T2
T3

3
3

(5,3,4)
(9,3,12)

(3,2,3)
(7,3,12)

1.125
0.853

0.889
0.957

2.449
7 ~ 187

2,00
6.760

1.436
1.291

2.469
1.874

0.630
0.882

0.947
1.119

1,033
1.087

1,708
1.496

' 1.098'
1.08
1 074c

1.58d

'Reference 21.
Reference 35.

'Reference 34.
Reference 37.
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b (n) = (n," I )—
n, —I

(33)

which can be used to calculate Ep(h)/N for arbitrary
h. Only the case h =0 on the blocks with n, odd:
Q2, Q3, and T2 will be calculated. For n, unpair,
using Eqs. (31) and (33) we get

Ep(h =0)

, B

n, I, -
=e ' ' —z' lim0 g0 2 n+1 ~I+1

1 l

(34)

The values calculated with Eq. (34) are given in
Table III.

Evidently, these values are not variational in char-
acter because the bond-site asymmetry can be
remedied in other ways. Since the derivation of Eq.
(29) [Eq. (34)] underestimates (overestimates) the
role of bonds we have simply taken the arithmetic
average of Eqs. (29) and (34). The results are
presented in Table III and it is seen that indeed a
very good agreement with existing estimates was
achieved.

bonds between two neighboring blocks at stage 1. For
example, for the T3 block (n„Bp, I) = (7, 12, 3). We
seek the solution in the form b(n) =xn,"+yl and
we find

I+) (n+1) X+),+(n)

S

(36)

where X- denotes the summations restricted to
above two subspaces. For n, odd the spectrum con-
sists of series of doublets, I+) and I

—) being the
lowest lying pair of them; also, it turns out that
)+= A. . The recursion relation defining block spins
are obtained by calculating for peripheral spins Sp

'"'
((x =x,y) their matrix elements

(—Is'"'I+& =g'"'(ll '-}) .

New couplings y'"+" are obtained by rewriting

Hl(n+I) 1 [1 y (n)(( ( (x))n2] + Sx(n+l)sx(n+1)
2 I J

(i,J&

[I (n)( y(((n))2] X Sy(n+1)sy(n+1)

We choose the representation of eigenfunctions of
S". Similarily to IT case6' the spectrum of Eq. (35)
can be decomposed into two subspaces with opposite
parity total number of "down" spins. For a given
block we denote the ground states of these subspaces
I+) and I

—), respectively. The wave functions I+)
can be developed in the basis of vectors in the form
le), e2. . . . , e„),where «=+1 for Sx'"'=+I

S

VI. ANISOTROPY DEPENDENCE OF
MAGNETIZATION

In this section the numerical results concerning the
vanishing of order as a function of anisotropy will be
presented. To this end we set in Eq. (1) J —= 1 and
h =0 and rewrite Eq. (1) at stage n of iteration as

with

(ga(n) ) 2 — X pa(n)g a(n)
p

p t'ai

p ~J

o. =x,y

(37)

(38)

Hi(n) X (1+ (n))Sx(n)sx(n)

(iJ&

+ —'(1 — '"))s,""'s,""'
'y (35)

where in Eq. (38) the summation is over the peri-
pheries of neighboring blocks i,j (For th.e sake of
simplicity we do not consider the more complicated
cases, like block Tl, see Fig. 2.)

Equation (37) can be now rewritten as

( 'I

H'(n+1) It'(n+1) + (I + y(n+1) )Sx(n+1)sx(n+1) + (I y(n+1))sy(n+1)sy(n+1)
2 I 2 I J

)

(39)

where

I(tn l+)(y(n)) 1

( I + y(n)) [g ( x(ny) ) ]2+ 1 (I (n)) [gy( (n)) ]2 (40a)

and

(n+1)( (n)) I
1 (I + (n)) [gx( (n)) ]2 1 (I (n)) [p( (n)) ]2 }/h (n+1)
2 2

(40b)

The levels I+) and the relations (40) were determined numerically for the blocks T3 and 03 in order to calculate

)M,"=(((,"(y) in the limit y 0. It was found that

~x 020
y~0
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for Q3 and

x P22

y~p

for T3. This is consistent with the results in Sec. IV
where also no order was found within the two-level
method in the isotropic case. It is not clear to what
extent the p,"(y) dependence can be trusted because
we used degenerate levels in the RG procedure. In
1D it was found exactly ' 9' that

VII. DISCUSSION AND CONC-LUSIONS

As mentioned in the Introduction the 2D XY
model at T =0 presents a very special case: for
h =0, Eq. (2), there may exist a phase transition in

the ground state as function of spin dimensionality s,
because for s = —the order may not exist but it cer-

2

tainly exists for s = ~. Furthermore, for fixed s =—
there must exist a phase transition in the ground
state for 1 & D & 3, since D = 1 case is not ordered,
whereas D =3 case is. '9 (Let us mention that the
analysis at T & 0 situations are also plagued with
similar difficulties. " ~')

We have applied the two-level renormalization
group for all the values of (h/J). We hope to have
shown that the method becomes asymptotically exact
at (h/J ), as far as the behavior of correlation func-
tions is concerned in the limit of infinitely large hy-
percubic blocks. The analytical calculations for the
hypercubes of Appendix A can be extended to other
types of lattices" with the same results. At the
(h/J), the gap opens with the exponents s = l. We
believe that s = 1 in all D exactly. From the exact
scaling law at (h/J ),= —,z', s = z v and presumed

equality z = 2 (all D)" we obtain the divergence of
the correlation length R, —[h/J —(h/J), ] "with
v = D ' The power-l. aw behavior of p„(R) is

described by rt=D at (h/J), . The above values of
(h/J), and r,t„reareasonably well reproduced in
D =2 and 3. In the region lit/J l & l(h/J), I, con-
trary to the 1D case, ' no fixed points were obtained
and for n, ~ the system is mapped into the h = 0
case. We have no reasons to believe that the method
is exact for h = 0. In fact the h =0 results are, in a
sense, obtained as an extrapolation from the h ~ 0
situation. There are many indications that for h =0
the ground-state wave function l0) is extremely com-
plicated. Recently, a considerable effort was under-
taken to reconstruct l0). The variational approach'4
and the extrapolation from the finite cell data" both
lead to some degree of order in l0). It is not clear at
the moment whether it is a result of approximations
used or a reflection at ordering in the true ground

state. Our method in its present form did not detect
any ordering which is surely a very subtle effect. In
contrast, the values of ground-state energy (corrected
for surplus of bonds in blocks) are not in disagree-
ment with existing estimates. Since no order was ob-
served we assumed for h = 0 as a hypothesis a
power-law behavior of spin-spin correlation functions.
The corresponding exponents qp were calculated in

D =2 for several blocks and their values lie roughly
in the interval 1.2 & qp & 1.6. The corresponding
dynamic exponents zp are calculated to be 0.2 & zp

& 0.45 depending on the block.
Let us. emphasize that the numbers quoted above

are tentative. They are merely the best we have been
able to achieve with the two-level renormalization-

group procedure.
We have already noticed that there exists a certain

similarity between the h A 0 behavior in D = 1 and 2:
1

in D = 1 the exponents (7J o, zp) = ( &, 1) were con- .

stants all the way along the line of fixed points
0 & lh/Jl & 1. In D =2 the RG recursion relations

map any point 0 & lb/J l & —,z' into the stable fixed

point (h/J)'=0(n, ~), with the exponents

(rt„o,zo) = ( —,, —, ). It is then reasonable to assume3 1

that for D = 1, 2 and h =0 the space-time correlation
functions can be written in a scaled form:

pD(R t) = (01&o (0)Stt (t) lo)
t 't

2D

=R Fp
,

R
(u =x,y) (41)

pg+) (R t) [R D ~ (R z —tz) tt4] (D =1, 2) . (42)

Equation (42) was worked out by generalization to
D = 2 of the bosonization procedure of Luther and
Peschel. " In order to associate Eq. (42) with the
form Eq. (41) we have to assume that

Fo (X) const
X~P

We then obtain from Eq. (42) qD =D ——,1

(D = 1, 2), in agreement with our estimates. To get
the zp's we observe that for R 0 pD should depend
on t only. Then, it is necessary that

Fg (X) X
X ~oo

or

p (t) ~ t D~D

where FD(X) is the scaling function in D dimensions
and the subscripts "0" have been supressed. Equation
(41) may also serve as the definition of (qD, zD). FD

is assumed to be nonsingular.
It is now very interesting to show that both pairs of

(rto, zD), D = 1, 2 follow directly from the explicit
form of po(R, t) derived very recently by Lutherz6:
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with Eq. (41) giving zogD = —,. Substituting the pre-

vious values of qD we obtain z1= 1, z2 = —,again in

fair agreement with our results. While the above
cannot serve as a proof of Eq. (42) we do think that
the agreement between two such different approaches
as RG and the bosonization is an encouraging sign.
Clearly the region h —0 must still be treated with
more refined methods in order to test the above
results. It is entirely possible that the treatment of
ordering in the 2D XY model would require a more
powerful method which is not known at present.
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respectively. Also by expressing the old spin opera-
tors we find that

gx g gx(n+1)1''''' D 1''' ' D

with

Pl'''''PD

' D/2
2

I+1
P 1K . PD7T

sin sinI+1 I+1 (A3)

I+1 I+1 (A4)

The location of the last fixed point is then given by:

The renormalization of the constant J is obtained
by rewriting the interblock interaction which involves
all the spins of one face of the hyperblock. We get:

2J(n+1 )6- („)
— $ 6,(,, . . . , (o

p2s ~ ~ ~ spD

APPENDIX A: ANALYTICAL EXPRESSIONS FOR
THE CRITICAL FIELD LOCATION AND THE
EXPONENTS AT THE CRITICAL FIELD FOR

THE HYPERCUBIC LATTICE IN

D DIMENSIONS

, max

7r 2 . 7r=D cos- 1— sin-I+1 I+1 /+1

2

The exponent z at the fixed point is given by:

(AS)

Here, we applied the method by considering hyper-
cubic blocks with I spins in each direction. The total
number of spins in the block is n, = I and a given
spin in the block can be labeled by the D numbers

p1, . . . , pD where p; =1, . . . , /. To find the location
of the critical field we construct the RG transforrna-
tion which considers the states ~+) and

~

—), respec-
tively, ground states of the subspaces q = n, + 1 and

q = n, The sta. te ~+) is unique and corresponds to
all the z-spin components pointing up. The state

~

—)
is a given combination of the elementary functions

which correspond to all the spins pointing

up except the spin located in p1, . . . , pD pointing
down. The right normalized combination which cor-
responds to the ground state of the XY Hamiltonian
at step n (in the subspace q = n, ) is:

D/2

p 1s ~ ~ ~ spD

2 . 7rz= —ln sinI+1 I+1 lnl (A6)

1 2
s ( I +1

p 1s ~ ~ ~ spD

D/2

x sin sin
Pl . PD (A7)I+1 /+1

we find:

( s

D ln, —cotan lni2 7r

i2 I+1 2 I+1

(AS)

When / ~ we find:

One can also find the exponent ri by evaluating (s

[Eq. (21)l

P 1' . PD7P

/ + 1 / + 1 p1s ~ ~ ~ spD

The reduced energies e„+( and e„[Eq. (9)] are
S $

(Al)

, max

z 3,
D

1D= —z
2

h h

,
J max

(A9)

en, +1 =o

en = —eD cos
7r

"s (+] (A2)

The results for (h/J ), and ri are asymptotically ex-
act. The result for z is wrong; we think that z must
tend to 2. To have a good estimation of z we must
take more levels.
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APPENDIX B: DERIVATION OR RECURSION
RELATIONS FOR THE BLOCK 01

satisfy at the nth iteration

E(n) (6 2q )h(n) +e J(n) (82)

HH (
= —J [S(~) (S ( + S2 + S3 ) + So (S (+ + S2+ + S3+ ) j

h (So +S( +S2 +S3 ) (Bl)

The block H1 has n, = 4 spins and is coupled with
its neighboring block by two peripheric-peripheric
couplings, as illustrated in Fig. 1. According to Eq.
(9) the ground-state energies E4 of five different sub-

spaces of the single block Hamiltonian, As usually, the noramalized wave functions ~q) cor-
responding to E~'s will be chosen using the criterium
that for a given q they must have the highes( possible

symmetry of the block. We use the representation of
eigenfunctions of X'= X„' OStc. Below we give the

set of ~q) 's and E, 's of H 1:

q = I:il) = E(=4h +OJ, e, =0

q =2:12)= 1

J2
1 (02+43) ~

2

E2= 2h —v 3J, e2= —J3

= (it4, (83)

E3 = Oh —2J, e3 = —. 2

q =4:i4) =
K2

1+~ I

q =5:)5)= Es = —4h —OJ, es =0

In the truncated basis Q( Q7 Htt( has the following matrix representation
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4'

fl 42 4(3 4)4 I)5 (i(6 (I)7

—4h

—2h —J3J
—J3J —2i

2h —v 3J
—J3J 2h

4h

q =5, X'=+4

q =4 X'=2

q=3, X'=0

q =2, X'= —2

q =1, X'= —4

(B4)

J(n+1) i J(n)
3

The fixed point resulting from Eq. (BS) is

(h/J )4 = 1.299 and lies in the region of validity of
Eq. (BS) from Eq. (17) by (h/J)4 &

4 (e3 —e3) so

(h/J )4 & —, and (h/J )4 can therefore be regarded as

a "physical" fixed point with the critical exponents

q„4 =—q„,„=2.1 and z4
—=z,„=1.58. In contrast, the

fixed point of recursion relations between q = 3 and 4
subspaces, (h/J)3, as obtained from

(BS)

)))
'"+"= /7'"'+ —(e3 —e4) = /)

'"' -0.134J'"'
2

J(n+I) 7 + 2~12 J(n)
18

(B6)

from which the above values of E, follow. We note
that the search of the ground state reduces to solving
a 2 x 2 matrix. The remaining nine orthonormal func-
tions (I)8 4))6 completing the full basis of HH( are
completely decoupled from 4)) (I)7 and describe
higher excited states.

The recursion relations between q =4 and 5 sub-

spaces are obtained from Eqs. (B3):

is (h/J)3 = 0.5917 and does not satisfy
0 & (h/J)3 & —,. This implies that (h/J)3 cannot

be regarded as a "physical" fixed point. One can,
however, attach some meaning to the exponents. In
fact, if we start the iteration at any point ih/Ji & —,

after a number of steps we end up in a "fixed" region
between (3,4) and (2,3) recursion relations, roughly
limited by ii)/J i & 0.075. This situation is illustrated
in Fig. 6. As explained above it is then reasonable to
introduce "averaged" exponents which are arithmetic
averages over the number of iterations. In this par-
ticular example the "averaged" exponents are equal to
those related to either of (3,4) and (2,3) recursion re-
lations. The above example on the hexagonal lattice
is certainly a very simple one. The determination of
wave functions iq) for larger blocks becomes quickly
unmanageable and exceeds even numerical possibili-
ties for n, & 9 in 2D and n, & 8 in 3D [for the
QS(n, =13) block the evaluation of (6,7) recursion
relations should require the diagonalization of 1716-
dimensional matrix]. It is very advantageous, howev-
er, that the evaluation of (h/J ) „' = (h/J )',„ is made

S

by hand for all the blocks listed in Tables I and II.
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