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Lindemann melting criterion and the Gaussian core model
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A series of molecular-dynamics calculations has been carried out to examine melting in the

classical Gaussian core model at reduced density p =0.2. The stable crystal form at this density

is body-centered cubic. Thermal equilibrium values of mean-square particle displacement have

been evaluated over the entire temperature range below melting. As a result the Lindemann

ratio f'(of rms displacement to lattice spacing at the melting point) was found to be

0, 160+0.005, considerably larger than Shapiro's estimate for several bcc metals. This finding

further undermines the Lindemann hypothesis that f should Pe constant for all solids of a given

crystal structure at their melting points.

I. INTRODUCTION

One of the oldest and simplest criteria for the melt-
ing of solids is the Lindemann rule. ' This rule states
that melting occurs when the mean amplitude of
thermal motion for a particle in the crystal reaches
some characteristic fraction f of the spacing a
between nearest neighbors:

( ( U )2) 1/2/a f
ere u is the displacement measured from the stable

lattice position. While the original Lindemann study
suggested that f ought to be close to —,, subsequent

1

work seems to reveal that rather smaller values are
appropriate, depending in fact upon the crystal struc-
ture involved. Using harmonic lattice dynamics,
Shapiro' has found, for example, that f is close to
0.113 for all five of the bcc alkali metals, while 0.071
is the value appropriate for the fcc metals Al, Cu,
Ag, and Au. The latter f value agrees reasonably
well with experimental results for Al and Cu deter-
mined by Martin and O' Connor' by Bragg diffraction
of Mossbauer x-rays from an "Fe source.

As computer simulation of classical many-body sys-
tems has become more and more popular it has be-
come feasible to check the quantitative validity of the
Lindemann rule for a variety of model interactions.
Hansen4 has studied the case of the Lennard-
Jones6 "potential (for which the crystal structure is

fcc) and finds that f along the melting line is nearly
temperature independent and in the range 0.14 to
0.15, roughly twice the Shapiro value for metals.
Young and Alder~ have carefully investigated the ex-
tremely anharmonic rigid-sphere model (also fcc in
its crystalline phase) and obtain results showing that
f is 0.14. Hoover, Gray, and Johnson have applied
both lattice dynamics and Monte Carlo computer

simulation to model fcc crystals whose particles in-
teract with simple inverse-power potentials, finding
once again that f lies close to 0.15.

Even admitting the possibility of some error in
these various results, it appears that the Lindemann
hypothesis has been significantly violated for the fcc
structure. At this stage it seems worthwhile to exam-
ine the parallel case of the bcc structure, for which
Shapiro's f value 0.113 stands alone and unchal-
lenged. It is in this spirit that we have investigated
the Lindemann rule for the Gaussian core model.

II. GAUSSIAN CORE MODEL

In reduced units that are most natural to the prob-
lem, the Gaussian core model has the following sim-
ple potential-energy function:

lv

g exp( —r,&')

It is known' that the stable crystal form at low densi-
ty is fcc, while at high density it is bcc. At absolute-
zero temperature the respective regions of stability
are the following ranges of reduced density:

p ( 0.179407 (fcc), p" ) 0.179767 (bcc) . (3)

In the low-density —low-temperature 1imit this model
is known to reduce to the rigid-sphere model. '

Owing to the penetrability, or softness, of its pair
potential the Gaussian core model exhibits unusual
properties. Molecular-dynamics simulation reveals
that at high density (p'~ 0.4) the behavior is dis-

tinctly "waterlike, "with negative melting volumes,
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and with negative thermal expansion and negative
temperature coefficient of self-diffusion in the fluid
phase. Furthermore, it has been established" that
the melting temperature of the bcc phase goes to zero
as its density increases to infinity. Because these
anomalies are not shared by any of the other real
substances or theoretical models for which the Lin--
demann rule has been tested, it seems especially
worthwhile expending some effort to see how the
Gaussian core model compares with prior results.

In order to place the Gaussian core model in con-
text, it is .useful to interpret the Gaussian potential at
a given distance r in terms of an effective inverse-
power potential. By matching logarithmic derivatives
for the two functions one finds that the exponent of
the inverse-power form must be"

n" (r ) = 2r' . (4)

By inserting the nearest-neighbor distance for the bcc
crystal at density p',

n"(a) =6(4p")'r' . (5)

This is 6.96 at p'=0. 2, the density of primary in-

terest in the present paper, and indicates a rather
softer replusive core than usually assumed for realis-
tic pair potentials.

The core softness exhibited by the Gaussian poten-
tial suggests that in a crude way this model might be
useful for studying matter under extreme compres-
sion, where electron valence shells have begun to
break down to produce conduction electrons. With
this as its motivation, an Appendix shows how a
rough correspondence can be established between
thermodynamic states of the Gaussian core model
and those of the real monatomic substance Ar. With
this correspondence the p'=0. 2 density of the form-
er is equivalent to the latter at about 5 times its
triple-point liquid density, and the implied pressure in
the Ar is about 5.5 megabars.

the inequality

exp( —r') ( exp (—28) = 7 x 10 " (6)

At'=0. 05 . (7)

Average values were computed for each state during
runs of 4000 steps (following relaxation runs) during
which total energy and total momentum remained
virtually unchanged.

Melting and freezing in these calculations are mon-
itored by a wide variety of properties, including pres-
sure, mean potential energy, pair-correlation func-
tion, and self-diffusion constant. Changes of phase
are unambiguous and create striking changes in all of
the cited properties. Hysteresis is invariably ob-
served; the solid superheats and the fluid undercools.
Figure 1 shows this hysteresis for the mean interac-
tion energy per particle, (4)/N, giving curves that
are a summary of many separate determinations. We
presume that the position of the thermodynamic
melting point T" falls close to the center of the hys-
teresis loop, ' and on that basis we believe

T' = 8.12 && 10 (p = 0.2) (8)

The melting entropy is estimated to be

AS/Nks = 0.847 (p' =0.2)

Initial momenta were assigned by a random-number
generator, and corresponded to a temperature very
much lower than the melting temperature. Subse-
quent changes in temperature were effected by rescal-
ing momenta at the end of a previously completed
run, followed by a relaxation run to achieve equili-
bration in the new state.

The differential equations of motion were integrat-
ed using Gear's fifth-order algorithm' and a step size
in reduced units (particle mass = 1)

III. MOLECULAR DYNAMICS TECHNIQUE 0174-

Our previous molecular-dynamics work on the
Gaussian core model examined properties at the
two densities p'=0.4, 1.0. In the present project we
have focused entirely on the lower density p'=0. 2.
As before, the stable solid phase at low temperature
is bcc.

To initiate the computations N = 432 particles were
placed within a unit cube of the proper size for the
given density. The starting positions corresponded to
a perfect bcc arrangement. Periodic boundary condi-
tions were imposed. Interactions were disregarded
during the computation for all pairs of particles suffi-
ciently far apart that the Gaussian function satisfied
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FIG. 1. Mean interaction energy for the Gaussian core
model at p =0.2.
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Figure 2 shows the time dependence of
iV

A (t') = N ' $ [r, (t")—r, (0) j' (10)

approaching this point by slow superheating, defects
can be spontaneously formed and diffusion becomes
obser vable.

for a single molecular-dynamics run carried out on
the perfect bcc crystal at a temperature somewhat
below T'. Its form is typical. Notice that an average
only over particles is involved, not over time. In spite
of the natural fluctuations present it is obvious that a

plateau region is achieved well before the end of the
run (at t'=200). We subsequently calculate the
time-averaged mean-square displacement ((4 r )'} by
averaging A (t) over the last half of the dynamical
run:

1 200

((6r)'}= J A (t")dt' .

In principle, self-diffusion ought to be present in

the solid at any temperature above absolute zero. Its
presence would cause A (t") to display a linear up-

ward drift with time from whose slope the self-
diffusion constant could be inferred. In practice we

find that solid-state diffusion is not perceptibly
present at or below T . The number of particles em-.

ployed in this study, 432, has just the right form as
an integer (JV = 2n') to permit a defect-free crystal to
exist in the system, aligned with the principal direc-
tions of the unit cell, and fitting perfectly to the im-

age systems at all six cell faces. Spontaneous creation
of point defects that would assist diffusion (intersti-
tials and vacancies) is apparently very improbable
below T' for the system size considered. Of course
the diffusion process could artifically be encouraged
by changing N slightly from 432.

As the crystal is heated beyond T' it becomes in-

creasingly unstable and shakes apart quickly at an ef-
fective superheating limit around T'=10 '. Upon

IV. RES U LTS

((6 r )'}=2((u)'} (12)

This permits the Lindemann ratios, Eq. (I), to be in-
ferred. The right-hand vertical scale in Fig. 3 shows
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Figure 3 shows our calculated ((6 r )'} values.
Points are plotted for 35 distinct molecular-dynamics
runs, generated both during heating and cooling por-
tions of the overall sequence. Although some scatter
is obviously present we believe that the points shown
genuinely reflect the correct behavior of the Gaussian
core model at this density.

The upward curvature displayed by results in Fig. 3
is due to anharmonicity. At the melting temperature
T' we estimate that this anharmonicity causes
((3 r )'} to be about 10% above the linear extrapola-
tion of low-temperature harmonic results. Similarly
we find that the increment in mean potential- energy
(&0}/tv' over its value at absolute zero is about 9%
larger at T' than harmonic motion alone would pro-
duce.

Because the positions of any given particle at wide-
ly separated times are uncorrelated, we have

0.1 "

50 100 150 200

0.20-

Q.1 8—
Cy~ 016-

014-
0.1 2-

0.10—

0.08-

0.06—

o.o4-

0.02-

—.17 t:)
I-

.16
z

—.15
X
O

—.13

—.10
-09
—.08
—.07
—.06—.05

0
e0

~
Oy

e
I

e y I

~e I

I

I

I

I

I

I

l

I I I I I I I II I I I I

1 2 3 4 5 6 7 8 9 10 11 12 15
10'T"

FIG. 2. Squared displacement vs time, averaged over par-
ticles, for a molecular-dynamics run at T'=7.899 & 10

p =0.2.

FIG. 3. Mean-square particle displacements vs tempera-
ture and the associated Lindemann ratios. Gaussian core
model at p =0.2 in the defect-free bcc crystal. The thermo-
dynamic melting point is indicated by dashed lines.
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these f values. From the figure one sees that

f(T.")= o.16o+ o.oos, (13)

a value substantially in excess of Shapiro's result for
the bcc alkali metals, 0;113. The Gaussian c6re
model exhibits the latter f value at T" = 4.7 x 10 ',
which is sufficiently far below our presumed T' that
the discrepancy can hardly arise from an error in
identifying this melting temperature.

employed in the calculation. When they grow to en-
counter their periodic images, mismatch at the seam
arises. The end product is strained, and contains
both point defects and extended defects. We have
typically found that the ((5 r )2) values for any such
sample vs T' describes a curve that lies above the one
shown in Fig. 3 for the perfect bcc crystal. Enhance-
ments of 30% were frequently observed. Unfor-
tunately it is difficult to assign a precise melting tem-
perature to any one such defective sample.

V. DISCUSSION

The clear implication of the results shown in Eq.
(13) is that the Lindemann rule is susceptible to sig-
nificant violation for bcc as well as fcc solids. It
seems likely that f will be found to be potential
dependent for any given crystal structure.

Because the properties of the Gaussian core model
become increasingly anomalous as density increases it
is desirable to redetermine f for p' )0.2. A naive
guess would be that the resulting f 's would be even
larger and would constitute an even more drastic vio-
lation of the Lindemann rule. Unfortunately it is
more difficult to induce spontaneous freezing in the
model at these elevated densities, which implies some
extra uncertainty in locating T'. In any case map-

ping out a curve such as that shown in Fig. 3 is a ma-

jor computational undertaking.
Hoover, Gray, and Johnson' have claimed that es-

timates of f using small-system calculations lie below
the proper f value for the infinite system limit.
Specifically they suggest that the negative error is

proportional to N ' 3, where N is the number of par-
ticles used in the calculation. Although we have not
checked this matter in our own study, it is worth
stressing that if such a correction were to be applied
to Eq. (13) the discrepancy with Shapiro's result'
would only widen. .

In a recent study of crystal nucleation from the
melt, Hsu and Rahman" have shown by molecular-
dynarnics simulation that a pair potential constructed
to describe Rb (one of the metals considered by
Shapiro) leads to a stable bcc crystal. This potential
has an infinite number of maxima and minima (re-
flecting the contribution of a Fermi sea of conduction
electrons). In view of the paucity of direct determi-
nations of f for bcc crystals, either experimental or
theoretical, it would be enlightening to perform the
requisite molecular-dynamics determination of f for a

perfect bcc crystal with this interaction.
Finally, we remark that we have examined

((5 r )') for defective crystals (both bcc and fcc) in

the Gaussian core model at p'=0. 2. These have
been generated by spontaneous nucleation of the su-
percooled fluid. On account of the random nature of
nucleation, crystals formed in this manner are usually
misaligned with respect to the sides of the unit cube

APPENDIX

The Lennard-Jones (LJ) 6-12 potential

Vt, (R ) =a&L)(R/a), 4u(x) =4(x "—x ')

(Al)

can adequately represent the interactions in Ar with

the following choice of parameters":

(r =3.44 A

«=120 K x kq

(A2)

&2G (x ) = A exp( —ax ) —B exp( Px') . —(A3)

The four constants A, a, 8, and p are fixed by re-
quiring $2G to mimic @t~ in the following four
respects:

@,~ (1)= P„,(1)=0;
@2G(2' ) =qhU(2' ) = —1

4'2G (2 ) O'LJ(2

y2'G (2&&6) = y~)(2'~6) = 72/2'~3

(A4)

(As)

(A6)

(A7)

These simultaneous equations can be solved numeri-
cally to yield

A = 7 073.856 194, ot = 8.332 099 803

8 =6.639106684, P=1.360916181
(A8)

Figure 4 shows a plot of $2G and of the difference
The fit is indeed close over most of

the attractive well. Naturally $qG fails to display the
proper long-range tail of @Lj, but in the region where
the discrepancy is the largest (x = 1.88) both func-
tions are small. In the "core region, "x ( 1, P,G

-1.6565 x 10 '4

in units of erg/atom.
In order to establish contact with the Gaussian core

model we first construct a fit to $„, near its mini-

mum using a linear combination of two Gaussians:
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FIG. 4. Two Gaussian approximation to the Lennard-
Jones potential.

rises less rapidly than $L~. It should be noted that
experimental studies of this core region for pairs of
real atoms colliding at high energy generally reveal
that @L, has too impenetrable a core. '

Under the circumstances it is not implausible to
use $2G to represent interactions in Ar under condi-
tions of very high pressure and/or temperature. But
under such conditions the structure and properties of
the substance would be dominated by the first term
in $2G', the second negative term would be negligible.
Thus interactions in Ar would effectively have been
reduced to single repelling Gaussians acting between
each pair of particles, in other words, the Gaussian
core model examined in the body of this paper.

Conversion is now straightforward between re-
duced variables (with asterisks) used in the Gaussian
core calculations and variables (no asterisks) used to
describe the corresponding state of Ar. Number den-

sity, temperature, and pressure transform in the fol-

T =6893 (A12)

in K. The fluid-phase pressure p' at this transition
point is found to be 7.975 && 10 ', so Eq. (A 1 I) im-

plies (in bars) .

p = 5.521 x 106 (A13)

Finally, we can relate the dimensionless time t' in

the Gaussian core calculations to real time t for Ar:

t = tr(m/nA E)' 't'

= 8.9666 x 10 "t' (A14)

expressed in sec. Here m =6.6336 x 10 "
g is the

mass of an Ar atom. From this last result we see
that each 4000-step molecular-dynamics run
(t'=200) amounts to an elapsed time of 1.7933
psec.

in bars.
At the reduced density p' = 0.2 investigated in this

paper, the number density of Ar implied by Eq. (A9)
is 0.1182 atoms/A3. This may be compared with the
value 0.02130 atoms/A' for liquid Ar at its normal
freezing point (84 K). ' Equation (AIO) converts the
melting temperature T', Eq. (8), to

'F. A. Lindemann, Phys. Z. 11, 609 (1910).
2J. N. Shapiro, Phys. Rev. B 1, 3982 (1970).
C. J. Martin and D. J. O' Connor, J. Phys. C 10, 3521

(1977),
4J.-P. Hansen, Phys. Rev. A 2, 221 (1970).
5D. A. Young and B. J. Alder, J. Chem. Phys. 60, 1254

(1974).
W. G. Hoover, S. G. Gray, and K. W. Johnson, J. Chem.

Phys. 55, 1128 (1971).
7F. H. Stillinger, J. Chem. Phys. 65, 3968 (1976).
8F. H. Stillinger and T. A. Weber, J. Chem, Phys. 68, 3837

(1978).
F. H. Stillinger and T. A. Weber, J. Chem. Phys. 70, 4879

(1979).

' C. W. Gear, Argonne National Laboratory Report No.
ANL-7126, January, 1966 (unpublished).

' 'C. S. Hsu and A. Rahman, J. Chem. Phys. 71, 4974
(1979).

' J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular
Theory o/'Gases and Liquids (Wiley, New York, 1954), p.
1110.

' R. B, Bernstein and J. T, Muckerman, in- Advances in

Chemical Physics, edited by J. O. Hirschfelder (Wiley-
Interscience, New York, 1967), Vol. 12, pp. 392, 393.

' R. J. Meyer, Grnelins Handbuch deI Anorganischen Che/nie.

Edelgase (Verlag Chemic G.M. B.H. , Leipzig, 1926), p.
139.


