Dipole selection rules for the hexagonal-close-packed lattice

R. L. Benbow^{*} Physics Department, Northern Illinois University, DeKalb, Illinois 60115 (Received 20 May 1980)

Complete tables of optical dipole selection rules for Bloch states in the hexagonal-close-packed lattice are given for symmetry lines and symmetry points in the Brillouin zone. Included are both single and double group representations.

It has long been known that a knowledge of optical dipole selection rules is useful in interpreting optical spectra and other photoexcitative processes in solids. The recent prolific growth of angle-resolving photoelectron spectroscopy calls attention to the fact that selection rules for optical dipole transitions are necessary for correct assignment of structures in experimental spectra to calculated energy bands. In the case of symmorphic space groups (e.g., those with fcc and bcc lattices and many others), the appropriate selection rules are easily derived. In the case of the nonsymmorphic groups (e.g., hcp and diamond among others), the method is not as obvious, mainly because one cannot find irreducible representations to some of the factor groups G_K/T_K of the space group G_K which have as basis functions components of the polar vector \vec{r} . T_K is the translation group in three dimensions, and we take K to run over symmetrical points in the Brillouin zone.

Selection rules for the hexagonal-close-packed (hcp) lattice structure are not widely known. The purpose here is to present the optical dipole selection rules for all symmetry lines and points. We note that the general methods of computing selection rules for nonsymmorphic groups have been developed and applied to the diamond lattice.^{1,2} The method has been elucidated in the book by Cornwell,³ and is applied here. Actually, the optical dipole selection rules for the hcp lattice at the symmetry points Γ , *A*, *L*, *M*, *H*, and *K* were previously published by Cornwell.⁴ We include the selection rules for those points in order to present a complete set.

The direct optical dipole selection rules for the hcp lattice are given in Table I. The notations for the single groups and the Brillouin-zone orientation are those of Herring.⁵ The notations for the double

©1980 The American Physical Society

TABLE I. The direct optical dipole selection rules for the hcp lattice. When double group representations are time-reversal degenerate, they are not separated in the tables but are joined by a plus (+) sign. Note that in Herring's figure for the Brillouin zone, $\Gamma - T - K$ is the k_x axis, $\Gamma - \Sigma - M$ is the k_y axis, and $\Gamma - \Delta - A$ is the k_z axis. S, S', and T' are parallel to the k_x axis, R is parallel to the Z axis.

Г <mark>†</mark>	Γ_2^{\pm}	Г] Г	+ 4	$\Gamma_{\overline{5}}^{\pm}$	Γ 6	×		Γ †	Γ <mark></mark>	۲ ۶		
Γ ₆ Γ ₂ [∓]	г 7 г 1	Γ₹ Γ Γ₹ Γ	\$ 5 3	Г₹. Г₹. Г₹ Г₹	Г <u></u> ∓, Г ₂ ∓, Г₹	, Γ <i>ξ</i> Ŧ	-	Γ₹.Γ₹ Γ₹	Г₹, Г₹ Г₹	Γ₹.Γ₹ Γ₹		
	<i>A</i> ₁	A 2		<i>A</i> ₃				$A_4 + A_5$	· · · ·	A ₆		
	A 3 A 1	A_3 A_2		A_{1}, A_{2}, A_{3} A_{3}				$\begin{array}{c} A_6\\ A_4 + A_5 \end{array}$		$\begin{array}{c}A_4 + A_5, A_6\\A_6\end{array}$		
Δ ₁	Δ ₂	Δ3	Δ_4	Δ ₅		Δ ₆		Δ ₇	Δ_8	Δ9		
$\Delta_6 \\ \Delta_1$	$\Delta_5 \\ \Delta_2$	$\Delta_6 \\ \Delta_3$	$\Delta_5 \\ \Delta_4$	$\Delta_2, \Delta_4, \Delta_5$	۵ ₆	$\Delta_1, \Delta_3, \Delta_5$ Δ_6		Δ_7, Δ Δ_7	$_{9}$ Δ_{8} Δ_{8}			
		$ \begin{array}{cccc} \Gamma_{2}^{\overline{F}} & \Gamma_{1}^{\overline{F}} \\ \Gamma_{2}^{\overline{F}} & \Gamma_{1}^{\overline{F}} \\ \end{array} $ $ \begin{array}{c} A_{1} \\ A_{3} \\ A_{1} \\ \end{array} $ $ \begin{array}{c} \Delta_{1} & \Delta_{2} \\ \end{array} $ $ \begin{array}{c} \Delta_{6} & \Delta_{5} \\ \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							

<u>22</u>

3775

3770						E. BEINDO						. 44
	M_1^{\pm}			M_2^{\pm} M_3^{\pm}				M4 [±]		M5 [±]		
<i>x</i>	<i>M</i> ₃ ∓			M₄ [∓]	M_1^{\mp}		M ₂ T				i	<i>M</i> 5 [∓]
у	<i>M</i> 2 [∓]			M_1^{\mp}		M_4^{\mp}		M_3^{\mp}				M₅Ŧ
Z	M_4^{\mp}			<i>M</i> ₃ [∓]		M_2^{\mp} M_1^{\mp}					M ₅ ∓	
		L ₁	L	!			L ₃		L ₄			
x y, z		L ₂ L ₁	L ₁ L ₂		•	•	L_3 L_4		L ₄ L ₃			
	U	1	U ₂		U	3	U ₄					U ₅
x y z	U U U	2	U_4 U_1 U_2		U U U	4	U ₂ U ₃ U ₄					U ₅ U ₅ U ₅
	<i>R</i> ₁	R_1 R_2 R_3 R_4			R ₅		Σ ₁		Σ ₃	Σ ₄	Σ ₅	
x y z	R ₄ R ₁ R ₃	R ₃ R ₂ R ₄	R 2 R 3 R 1	R ₁ R ₄ R ₂		R 5 R 5 R 5	$\Sigma_4 \Sigma_1 \Sigma_3$		$\Sigma_3 \Sigma_2 \Sigma_4$	$\Sigma_2 \\ \Sigma_3 \\ \Sigma_1$	$\Sigma_1 \\ \Sigma_4 \\ \Sigma_2$	Σ ₅ Σ ₅ Σ ₅
•	H_1 H_2 H_3			$H_4 + H_6$		$H_5 + H_7$		H ₈		H ₉		
x, y z			$\begin{array}{ccc}H_1,H_2 & H_9\\H_2 & H_5+H_7\end{array}$			$\begin{array}{c}H_8\\H_4+H_6\end{array}$			$H_5 + H_7, H_9$	8	$H_4 + H_6, H_9$ H_8	
	<i>K</i> 1	K ₂	К 3	<i>K</i> ₄		K 5	К	6		<i>K</i> ₇	K ₈	K ₉
x, y z	K ₅ K ₄	K ₆ K ₃	K ₅ K ₂	К ₆ К ₁		.K ₃ ,K ₅ K ₆	K ₂ , K K	4, K 6 5		K ₈ ,K ₉ K ₈	K ₇ ,K ₉ K ₇	, K ₇ ,K ₈ K ₉
		P	· .	P ₂		P ₃				$P_4 + P_5$		P ₆
x, y z	· · · ·	P_3 P_1		³ 2		P ₂ , P ₃ P ₃				$\begin{array}{c} P_6 \\ P_4 + P_5 \end{array}$		$\begin{array}{c} P_4 + P_5, P_6 \\ P_6 \end{array}$
	<i>S</i> ₁			$S_2 + S_5$		$S_3 + S_4$		(Applies to S' as v		S' as well)	· · · · · · · · · · · · · · · · · · ·	
x, y z		<i>S</i> ₁ <i>S</i> ₁		$S_2 + S_5$ $S_3^2 + S_4$		$S_3 + S_4$ $S_2 + S_5$						
		<i>T</i> ₁	<i>T</i> ₂		<i>T</i> ₃	T ₄			<i>T</i> ₅	(/	opplies to	T' as well)
x y z		$ \begin{array}{c} T_1 \\ T_4 \\ T_3 \end{array} $	T ₂ T ₃ T ₄		T_3 T_2 T_1	$ \begin{array}{c} T_4 \\ T_1 \\ T_2 \end{array} $			T_5 T_5 T_5			

groups are those of Elliott,⁶ following the corrections given by Cornwell⁴:

$$\Gamma_5^{\pm} \times D_{1/2} = \Gamma_8^{\pm} + \Gamma_9^{\pm}$$
, $\Gamma_6^{\pm} \times D_{1/2} = \Gamma_7^{\pm} + \Gamma_9^{\pm}$.

The selection rules for direct optical transitions are given by symmetry point or line. The polarization is given at the left side and the symmetry of the initial (or final) state is given at the top of each subtable. The bodies contain the allowed final (or initial) state for each polarization (resolved into the maximal number of separable components). The extra irreducible representations for the double groups are set off on the right-hand side in each subtable by extra spaces.

The support of Professor Z. Hurych is acknowledged, and the author of this paper was supported by the NSF Grant No. DMR 78-11663.

- [•]Mailing address: Synchrotron Radiation Center, University of Wisconsin-Madison, 3725 Schneider Drive, Stoughton, WI 53589.
- ¹R. J. Elliott and R. Loudin, J. Phys. Chem. Solids <u>15</u>, 146 (1960).
- ²M. Lax and J. J. Hopfield, Phys. Rev. <u>124</u>, 115 (1961).
- ³J. F. Cornwell, *Group Theory and Electronic Energy Bands in Solids* (North-Holland, Amsterdam, 1969), Chap. 7, pp. 165-190.
- ⁴J. F. Cornwell, Phys. Kondens. Mater. <u>4</u>, 327 (1966).
- ⁵C. J. Herring, J. Franklin Inst. <u>233</u>, 525 (1942).
- ⁶R. J. Elliott, Phys. Rev. <u>96</u>, 280 (1954).