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Calculation of electric-field gradient in a dilute alloy of Al-Mg
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The existing calculations of electric-field gradient (EFG} in dilute Al-based alloys with nonmagnetic
substitutional impurities are unsatisfactory on two accounts. First, the magnitudes of the calculated EFG
are very different from the experimental results. Second, these calculations predict an axially symmetric
EFG at the nearest-neighbor host sites from the impurity ion, contrary to experimental observations. The
discrepancy between experiments and these calculations is largely due to the neglect of the size-effect EFG
in the latter. In the present paper, we have calculated in the case of Al-Mg alloy contributions to EFG
from both the valence effect and the size effect. The EFG from the valence effect has been calculated from
a free-electron-screening charge distribution assumed for the alloy. The size-effect EFG tensor, linear in
local strain around the impurity, has been evaluated in the elastic continuum approximation. The present
result not only provides improved values for the magnitudes of EFG but also predicts a nonzero asymmetry
parameter at the nearest-neighbor host sites from the impurity ion, in fair agreement with experiment.

I. INTRODUCTION

The calculation of the electric field gradient
(EFG) in alloys, unlike that in the case of perfect
crystals, poses problems. 'The difficulties arise
mainly due to the lack of a good knowledge of the
electron distribution in the alloys. 'The conven-
tional methods of calculating the energy eigenfunc-
tions of electrons in perfect crystals do not apply
to the case of alloys on account of the loss of
periodicity of the crystal potential in the latter.
Under such circumstances, various approximations
are made for the screening charge distribution in
alloys. We shall discuss here the case of dilute
alloys with cubic host and nonmagnetic substantial
impurities. In such alloys with aluminum as host,
the existing calculations" of EFG have been car-
ried out by following either of the two procedures
described below.

In the first procedure, ' a screening charge dis-
tribution based on a free-electron model is as-
sumed for the alloy. The scattering phase shifts,
in terms of which the screening charge density'
is expressed, are obtained from a scattering po-
tential in the scheme of Alfred and Van Osten-
burg. ' In the second procedure, ' the screening
charge density in the alloy is constructed from a
first-order perturbation calculation for the per-
turbed wave function in the alloy by using an ap-
propriate pseudopotential for the perturbation.

However, the results of calculations for the EFG
from either procedure" are unsatisfactory in
two respects. First, the magnitudes of the cal-
culated EFG are very different from the experi-
mental values. 4 ' Second, both these calcula-
tions' predict an axially symmetric EFG at the
nearest-neighbor (NN) host sites, contrary to
experiments. ' ' The discrepancy between experi-

ments and these calculations is largely due to the
assumptions made in the latter that the EFG ar-
ises solely from the valence effect. The latter
effect is so called, because its origin is the val-
ence difference of the host and the impurity ions.
The other source of EFG, which has been ignored
in these calculations, "is the lattice strain, re-
sulting from the different sizes of the host and
impurity ions. The contribution from the latter
source is referred to as the size-effect EFG in
literature. '

In the case of Cu-based alloys, it is shown by
Sagalyn and Alexander' (SA) that the size-effect
EFG is even more important than the valence-ef-
fect contribution. The latter authors' have shown
that by combining the size-effect EFG with the
contribution from the valence effect, not only the
magnitudes of the calculated EFG are improved
but also a nonzero asymmetry parameter results
at the NN sites. For the valence-effect contribu-
tion, SA (Ref. 7) have used the phase shifts of
Hurd and Gordon, ' which were obtained for a
square-well potential assumed to represent the
scattering potential of the impurity ion.

Inspired by the success of these authors' in ex-
plaining the observed EFG data in Cu-based al-
loys, we have made an attempt here to extend their
method of calculation to the case of Al-based al-
loys. Although the present calculation closely re-
sembles those of SA, ' there are differences in de-
tails; the latter appear particularly in the evalua-
tion of certain parts of the valence-effect EFG.

The motivation for the present calculation is to
check whether the procedure of SA, ' applied to
Al-based alloys, leads to the same success as
achieved in the case of Cu-based alloys. As a
first step in this direction, we have performed
the calculation for the Al-Mg alloy. The results
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of this calculation show that the net EFG arising
from both the valence effect and the size effect
agrees with experiments much better than those
from other calculations. "

This procedure for calculation, ' in principle,
can be extended to other alloys of Al with impuri-
ties different from Mg. However, results from
preliminary calculations for these impurities show
that there are some difficulties which limit the
accuracy of the calculated EFG. The difficulties
arise in the process of solving for a suitable set
of phase shifts for these impurities. It is to be
remarked here that the standard method of calcu-
lating the phase shifts, in the scheme of either
Alfred and Van Ostenburg' or Hurd and Gordon, '
is by satisfying both the Friedel sum rule7 and the
experimental resistivity data' for the alloy. Un-
fortunately, however, the set of phase shifts so
obtained is not unique. This difficulty of nonunique-
ness of the set of phase shifts is partially over-
come by working with the one set of phase shifts
out of all the possible ones which satisfies other
experimental data for the alloy in addition to the
Friedel sum rule and resistivity data. Such was
the case for the phase shifts of Hurd and Gordon'
for Cu-based alloys. The experimental data which
the phase shifts of Hurd and Gordon' were to satis-
fy are the fractional solvent Knight shift, the char-
acteristic thermopower, and the change in elec-

tronic specific heat in the alloys.
In the case of Al-based alloys, apart from the

resistivity data, the only other experimental data
available to our knowledge are the fractional sol-
vent Knight shifts. ' Therefore attempts are made
in the present calculations to obtain a set of phase
shifts which also satisfies the fractional solvent
Knight-shift data. ' The results of the present cal-
culation show that while this is possible for Mg
impurity, it is not so for other impurities in Al-
based alloys. Therefore, we have preferred to
report the results of the present calculation for
Al-Mg only.

The outline of the paper is as follows. Section
D contains the derivations of the relevant equa-
tions giving the contributions to EFG both from
valence and size effects. Results and their dis-
cussions are given in Sec. III. The conclusions
are summarized in Sec. IV.

II. CALCULATION OF EFG

The calculation of EFG in Al-based alloys closely
resembles those of SA (Ref. 7) for Cu-based alloys
with some differences in details. The net EFG
consists of contributions from both valence effect
and the size effect. First, we discuss the con-
tributions from the valence effect.

A. Valence-effect contribution

A free-electron-screening charge distribution is assumed for the alloy. The latter in the large-r region
is approximately given" by

& cos(2k~r+ P) cos(2k~r+ g)
r3 r4 9

where the parameters &, &, P, and f are known' functions of the scattering phase shifts and their deriva-
tives with respect to the Fermi wave vector. These phase shifts are calculated from a scattering potential
assumed to be either a square well or a square barrier. The latter choice of the potential is determined
by the effective valence of the impurity ion in the alloy. The phase shifts are calculated either from the
formula'0

j, , (kgb 0)j1 1(kyar) —j„,'(k1rO)j1 1(ky'rO)

j1+1(ktrO) / 1(k1pr0) j1 1(kfrO) 1+1(-kEr0)

in case of both square well and square barrier if k, &09 or from

k I„, ,(Ik, lr, )j, ,(k r, ) —Ik, jt, (k r,)I. . .(lk, lr, )

(2)

for a square barrier if k', &0. Here x, is the range
of the potential well (barrier). The depth (height)
D of the potential well (barrier) is related to k, by
the equation'0

k~ =k~2+ 2D.

The plus sign refers to the well and the minus sign

l
to the barrier. Use of the atomic units (m =1,
k = l, e =1) has been made throughout the present
calculation. The parameter k1, , used in Eqs. (2)-
(4), is the Fermi wave vector for the host metal.
The parameters x, and D are adjusted to satisfy
both the Friedel sum rule including the Blatt cor-
rection, "namely,
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4Z~ =- Q (2l+1)n, ,
2"
~ l=o

and the experimental resistivity relation

&p=0.21749 g l sin'(q, , —q, ),
h I" l"-1

where Z„denotes the valence of the host ion and

g, is the phase shift in the lth partial wave. The
quantity &Z~ consists of the sum of two terms,
namely, the nominal valence difference between
the impurity ion and the host and the Blatt correc-
tion" arising from the change in volume of the
impurity cell. It is given in standard notation' by

LZ*=(Z -Z )-—Z
3 1da

y e

where Z, denotes the valence of the impurity ion,
and other parameters have their standard mean-
ing. ' As remarked before in Sec. I, the set of
phase shifts obtained from Eqs. (2)-(V) is, how-
ever, not unique. Out of all the possible sets, the
one which also satisfies the fractional solvent
Knight-shift' data for Al-Mg is chosen for the cal-
culation of EFG.

For the purpose of evaluating the contribution to
EFG at the host site in the valence effect, the
space around the impurity ion is divided into four
regions in exactly the same way as was done by
SA (Ref. I) for Cu-based alloys. The geometry is
indicated in Fig. 1. It is easy to see that the EFG
at the host site from the charges in region IV is
zero.

The EFG from charges in region I is the same
as that of a point charge located at the impurity
center and with a magnitude equal to the total
charge inside the impurity sphere. 'The latter
contribution is given' by

qg =, "
I r'&n(r)dr .8v I-y„) f'"

RM/2

The superscript R denotes the axial direction of
the valence-effect EFG, and y„denotes the anti-
shielding factor" for the host ion.

The contribution to EFG from the charges in

region III can be calculated from the standard ex
pression

qP« = o( &n(r), d'r, (9)(3 cos'8' —1)
host sphere

where n is the so-called Bloch enhancement fac-
tor. ' In Eq. (9), while r is measured from the
impurity ion, r' and 8' are measured from the
host ion (see Fig. 1). Equation (9) thus represents
a typical two-center integral and can be evaluated
by using the technique of n-function expansion of
Lowdin. "" Here we differ with SA'(Ref. I) in the

FIG. 1. Geometry used in the calculation of EFG in
valence effect. Here A and 8 denote, respectively, the
impurity and host centers.

evaluation of q«, . The latter authors have used
directly the formula for this contribution obtained
earlier by Jensen, Nevald, and Williams' (JNW).
What JNW did was to calculate the component
q», (in the direction of the impurity) of the trace-
less field gradient tensor from the formula'

where V(r) denotes the self-consistent screening
potential corresponding to the screening charge
&n(r). The expression which they' have used for
V(r) is given' by

( )
7I'

( )
2A sin(2kyr + Q)Vr =—„, &nr+ (,)

However, the actual self-consistent potential cor-
responding to the screening charge &n(r) contains
more terms involving higher powers of 1/r than
Eq. (11) gives. Thus, the contribution qR«, ob-
tained from Eqs. (10) and (11) will be limited in
accuracy. On the other hand, if one calculates
qP« from Eq. (9), where the charge density instead
of potential is used, such errors as associated
with the potential of Eq. (11) will not appear. Be-
sides this, Eq. (9) is quite general in the sense
that from this the field gradient due to a charge
distribution of any kind (not necessarily spherical-
ly symmetric as in the present case) can be cal-
culated with the help of n-function" "expansion.

Expanding &n(r) in terms of n functions" "cen-
tered about the host site and using the orthogonal-
ity relations in spherical harmonics, Eq. (9) can
be reexpressed as

8, ~~2 (zoo I ft, r )

\

Here &, is the standard a function" corresponding
to k=2.

The contribution to EFG from charges in region
II can be expressed as the difference between two
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terms, namely, the contribution from the angular
region bounded between the impurity sphere and
the outer sphere of radius R+d/2 (see Fig. 1) and
the contribution from region III. This is expressed

q"„=(1 y—)[q'. (—1/a)q,'„], (is)

—~~V(r -5), (14)

if r &R and by

P, ( cso&') i. gl(l —1) R'

1=2
63 R2 2 l61 ly

if x~R. Here the function I', denotes the Legendre
polynomial of order / and the 6 function is the or-
dinary Dirac 6 function. Substituting Eqs. (14) and

(15),in Eq. (9) and integrating over the entire an-
nular region with the help of the orthogonality re-
lations in the Legendre polynomials, the contribu-
tion q» can be rewritten as

qP, =-8v(1- y„)
R

x —, r'6(r)dr —66(R)+6 6"„,), (16)
R-d/ 2

III

where the function g(r) is related to &n(r) and is
given by

& cos(2k~~+ P) & cos(2k~~+ g)
4y' y' (17)

We mould like to remark here that the procedure
for evaluating qIRI in the present calculation differs
from that of SA. ' In order to see the difference
between. the two procedures, comparison of the
results for q~ and qDRI obtained in both the present
procedure and that of SA (Ref. 7) has been made in
one sample case of Cu-based alloys. A detailed
discussion of this comparison is given in Sec.III.

The net EFG from valence effect is obtained by
combining the contributions from all the four re-

where q'R denotes the contribution from charges
in annular region. The latter can be evaluated
from an integral of the same form as given in
Eq. (9) but with the range of integration limited
to the annular region. Since this integral is a two-
center one, it can be converted into a one-center
integral by using a suitable transformation. How-
ever, unlike expanding &n(x) in the case of qP„,
here the field gradient operator, namely,
(8 cos'8& —1)/x', which is centered about the host
site, is expanded about the impurity site. The
standard expansion formula" which accomplishes
this is given by

~,(cos~ ) i ~(i+i)(i+2) r' „
l=OR R)61 2

v y 1 v~xx =&z z = -&&zz ~

The superscript V stands for the valence effect
and the subscripts XX, FF, and ZZ for the prin-
cipal axes of the valence-effect EFG tensor.

B. Size-effect contribution

The contribution to EFG from size effect has
been calculated following the same procedure as
that of SA.' Since both Cu and Al hosts have the
same cubic structures, ...the equations derived for
the components of the size-effect EFG tensor in
the case of Cu-based alloys will hold equally well
for Al-based alloys. The principal components
of the size-effect EFG tensor at the NN sites are
given' by

54&2 1 da) A

vy, a dc

8192 1 da A

27W2 1 da A

16wy, a de d,
''

Similarly the principal components at the next-
nearest-neighbor (NNN) sites are'

108W2 1 da A
~ll ~zz y6 y g d d3

and (2i)

S S- & S
~XX ~FY ~~ZZ'

Here the lower case letters x, y, and z are used
for the crystal coordinates, ' whereas the capital
letters X, ~, and Z are used to label principal
axes of the EFG tensor. The distances d, and d,
are measured from the impurity ion to the respec-
tive NN and NNN host ions in the alloy. The sub-
scripts xx, &, and II are the principal directions of
the size-effect EFG tensor at the NN sites. These
are parallel to the respective crystal directions
[100], [011], and [011]. A is a dimensionless pa-
rameter which relates the experimental EFG to
the EFG which would be observed if the distorted
lattice were made up of unshielded point charges.

Combining the corresponding components of the
EFG tensor in the valence effect with those in the
size effect, the principal values of the total EFG
at the NN sites can be written' as

gions. The principal components are expressed' as
V R R R R

&ZZ=&I +&II+&III+&IV
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V S & V S+q „=-2qii + 2qii y

S 1 7' o S
qi = q~ + q~ = -&q))—

V
qadi =qii +qii ~

(22)

TABLE I. Details of phase shifts and their deriva-
tives with respect to the solvent Fermi wave vector.
~0= 1.8748 a.u. and D = 0.5860 a.u. Phase shifts are
expressed in radians.

Similarly the components of the total EFG at the
NNN sites are given by

F
qZZ=q}} +qit ~

1
qXX qYY qZZ (23)

where q~=qzz and is given in Eq. (18). It is clear
both from Eq. (23) and also from the symmetry
consideration that the total EFG at the NNN sites
is axially symmetric with the asymmetry param-
eter 7i equal to zero. Equation (22) on the other
hand suggests that the total EFG at NN sites is
not axially symmetric. Once the parameter A

is fixed, the principal Z axis as well as the Y and
X axes of the total EFG tensor at NN sites can be
determined from the standard condition

lq-I - lq. rl - lqxxl. (24}

The asymmetry parameter is then calculated from
the relation

& = (qxx- qrr)iqzz. (26)

The criterion for fixing ~ is discussed in Sec. III.

III. RESULTS AND DISCUSSIONS

We begin our discussions with the results of
EFG from the valence effect. A number of sets
of phase shifts satisfying Egs. (5) and (6) were
calculated from either Eq. (2) or (3) depending
on whether k', &0 or k', (0. Of all these sets, only
one had satisfied the fractional solvent Knight-
shift data' in Al-Mg. It turned out that for the
latter set of phase shifts k', (0. These phase
shifts are therefore calculated from Eq. (3). The
derivatives of these phase shifts with respect to
the Fermi wave vector, namely Sq, /&k~, are cal-
culated following the same prescription as of Hurd

and Gordon. ' The set of phase shifts as well as
their derivatives up to l =6 are summarized in
Table I. This table also lists the range x, and the
height D of the square barrier. The fractional
solvent Knight shift, calculated by using these
phase shifts, turned out to be.0.012, which is in
close agreement with the experimental' value of
0.0]..

Using these phase shifts, the contributions qR,

q», and q,"«were calculated, respectively, from
Eqs. (8), (16), and (12). These results are given
in Table II both for NN and NNN sites. For the
contribution q„„ the value of n, the Bloch en-
hancement factor, used in the present calculation
is V.SV. The latter value was obtained from the

-0.824 89
-0.31925
-0.123 99
-0.01515
-0.000 88
-0.000 03
-0.000 000 7

-0.668 67
-1.307 84
-0.600 25
-0.106 45
-0.008 22
-0.000 30
-0.000 09

TABLE II. Contribution to valence-effect EFG from
regions I, II, III, and IV. All the field gradients are
given in units of 10 3ao 3.

Sites qR qrI qrrr
R

qzv q~(tot)

NN -0.2035 0.4618 -4.8015 0.0 -4.5433
NNN -0.2447 0.1668 1.9807 0.0 1.9024

works of Holtham and Jena" by averaging their
k-dependent enhancement factors over the direc-
tions of k. We would like here to remark that
there are available other values, namely n =22.6,
22.8, and 27, of which the first two values have
been used in the calcu'lation of Fukai and Watanabe'
and the third value by Nevald et al. ' The values of
n used by Fukai. et nl. ' wereobtained from a single
orthogonalized plane-wave (OPW) approximation
for the band states. On the other hand, the re-
sult of Holtham and Jena" for the enhancement
factor is based on a many-OPW calculation. In
view of this difference in the two methods of cal-
culation, we expect the results of n from the
many-OPW calculations" to be more accurate tha, n
those from a single-OPW calculation. ' lt is evi-
dent from Table II that the magnitudes of qR and

q» are much smaller than that of q«, . In fact,
the values of qP and q"„are, respectively, 4.2'%%up

and 9.6% of q,"„atNN sites and about 12.4%%up and
8.4%%up at NNN sites. Further, the contributions qP,
are opposite in sign to q, at both NN and NNN

sites. For the latter reason, the sum q, +qR is
only 5.4%%up of q«, at NN and 3.9'%%up at NNN sites.
Somewhat similar results for q, and qR were also
obtained by SA (Ref. 7) in the case of Cu-based
alloys.

It may be recalled here that the present proce-
dures for evaluating the contributions q„and q, »
are different from those used by SA (Ref. 7) in
Cu-based alloys. It will, however, be interesting
to compare the results for q» and q„, obtained
in both procedures. For this purpose, we have
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picked up the Cu-Zn alloy, as a sample case, for
which results of the calculations of SA (Ref. 7)
are available. %e have also calculated both q~
and q,» for the same alloy in the present proce-
dure. In doing so, we have used the same phase
shifts and other parameters as used by SA (Ref.
7) in their calculation for Cu-Zn alloy. The re-
sults of q~r and qrrr so obtained for Cu-Zn alloy in
both the procedures are summarized in Table III.
It is evident from this table that the magnitudes
of both q» and quern in the present calculation are
slightly larger than those of SA.' As far as the
contribution q"„, is concerned, we have an explana-
tion for this discrepancy.

SA (Ref. 7) have calculated qf„ from the approxi-
mate self-consistent potential V(x) of Eq. (11),
where terms in (1/r) with powers higher than four
are neglected. On the other hand, in the present
calculation of qP», since &n(r) is used directly
in Eq. (9), no such approximation in the self-con-
sistent potential is made. Therefore we expect
that the results in the present calculation will be
slightly larger in magnitude than those of SA.'

In the case of q», we do not have an explanation
for the discrepancy between the present results
and those of SA, ' because the details of calculation
of q~» by the latter authors are not given. Before
we begin to discuss the results in the size effect
we would like to state that for Al-Mg alloy, we
have used in the present calculation &p = 0.34
p&/at. 'k for the experimental" resistivity and
(1/~)(d&/dc) =0.09&:for the fractional change" in
the lattice parameter per unit concentration of
impurity.

The size-effect EFG tensor as given in Eqs.
(20) and (21) involves the dimensionless param-
eter A. SA (Ref. 7) have given a prescription to
fix A in the case of Cu-based alloys. In fact, in
their prescription both A and n (Bloch enhance-
ment factor) were treated as variable parameters.
In the present calculation, we have regarded A as
the only adjustable parameter. The value of A may
be fixed in the present case in the following way.

TABLE DI. Comparison of the valence-effect con-
tributions q&& and

q&&&
for Cu-Zn alloy obtained in the

present procedure with those obtained in Ref. 7. All
the field gradients are given in units of ao

Sites Ref. 7

qu

Present
calc. Ref. 7

qIIl8

Present
calc.

NN -0.01126 -0.01130 -0.00756 -0.00858
NNN 0.00103 0.00107 0.000 59 0.00133

The valence-effect EFG calculated from the
screening charge &n(r) is expected to give better
results at host sites far away from the impurity
ion than at NN sites. This is due to the fact that
the screening charge density used in the present
calculation holds rigorously well only at a far
distance from the impurity ion. Thus, one may
expect that the valence-effect EFG at the NNN sites
will be relatively more accurate than that at NN

sites. For this reason, the total EFG at the NNN

sites is also expected to be better than that at NN

sites. Therefore, the value of & may be fixed so
as to reproduce the experimental EFG at the NNN

sites. Once & is fixed this way, it can be used
in Eq. (22) to determine q» and p at NN sites.
However, still better results of EFG can be ob-
tained if one optimizes the value of A so as to
minimize the errors in EFG and the asymmetry
parameter both at NNN and NN sites. In the case
of Al-Mg, the optimum value of ~ is found to be
-18.

The components of the size-effect EFG with
& =-18, as well as the components of valence-
effect EFG, are summarized in Table IV. It is
evident from this table that the components of the
size-effect EFG are quite large in magnitudes
compared to the valence-effect EFG. The relative
ratios of the components of the size-effect EFG
to valence-effect EFG in the present calculation
are similar to those observed in the case of Cu-

TABLE IV. Theoretical values of q and g for Al-Mg alloy. The contributions of the val-
ence and size effects and the principal values of the total EFG tensor are also given. All the
field gradients are given in units of 10 ao . The largest component is underlined for the
purpose of identifying it with the principal z component.

Site

NN Size
Valence
Total

NNN Size
Valence
Total

-11.2842
2.2716

—9.0126

—4.0779
—0.9512
—5.0291

16.9272
2.2716

19.1988

-4.0779
-0.9512
-5.0291

5.6430
—4.5433
-10.1863

8.1558
1.9024

10-0582

19.1988

10.0582

0.06

0.00
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based alloys. ' The value of & used in the present
calculation is well within the range of values of A

found for Cu-based alloys. '
The results of EFG from other calculations"

as well as those in the present are summarized
in Table V. This table also lists the experiment-
al ' values of both EFG and the asy, mmetry pa-
rameter in Al-Mg alloy. For reasons already ex-
plained in Sec. D, the value of n equal to V.3V has
been used to express the EFG's from other calcu-
lations. "These are given in columns 2-5 of
Table V. It is evident from Table V that the mag-
nitudes of EFG in the present calculation agree
with the experimental values ' better than those of
others. ' The asymmetry parameter at the NN

sites has a value of 0.06 which is well within the
range of experimental values. ' Further, with
the choice A =-18, the agreement of the calculated
EFG with the experiment ' is very good at the
NNN sites. However, at NN sites, there is still
a discrepancy of about 35% between the calculated
EFG and the experiment. ' Of course, here the
perfect agreement at NN sites should not be ex-
pected, since the screening charge used in the
present calculation is not very good at NN sites.

We would like to remark here that results of
EFG given in Table V from Refs. 1 and 2 are cal-
culated from the valence effect only. It will be
interesting to compare these results" with the
contributions from the valence effect alone in the
present calculation. The latter from Table II
are seen to have values -4.5433 and 1.9o24 at NN

and NNN sites, respectively. Comparing these
results with the corresponding results from Befs.
1 and 2 given in Table V, we find that the present
results agree better with the results from Ref. 2
both in regard to sign and magnitudes than with
the results from Ref. 1. The results from Ref. 1

are opposite in sign to those in the present: cal-
culation for both NN and NNN sites. This com-
parison suggests two things, namely, the phase
shifts of Ref. 1 are probably not as good as those
in the present calculations. Secondly, the free-
electron approximation to the screening charge
distribution in Al-Mg is perhaps not so bad an
approximation as it was thought by Fukai et al. '

The procedure of calculating EFG in Al-Mg
can be extended, in principle, to other Al-based
alloys with impurities different from Mg. How-
ever, as stated before, the phase shifts for these
impurities, unlike those of Mg, fail to satisfy the
corresponding fractional Knight-shift data. This
failure may be interpreted as an indication of the
inadequacy of the free-electron model for the
screening charge distribution in Al alloys with
these impurities.

IV. CONCLUSION

Following the procedure of Sagalyn and Alexand-
er, ' the EFG in dilute Al-Mg alloy has been cal-
culated. The results indicate that the contributions
from the size effect are quite important for ex-
plaining the discrepancy between the experiments' '
and the theoretical results from other calcula-
tions' ' where this effect has been neglected. ~ In
the present calculation, by combining the contribu-
tions from valence effect with those from the size
effect, not only the magnitudes of EFG's are im-
proved but also a nonzero asymmetry parameter
is predicted at NN sites in fair agreement with

experiments.
This procedure for calculation' of EFG can be

extended, in principle, to dilute alloys of Al with
other impurities. However, results from prelim-
inary calculations for these impurities suggest

TABLE V. The total EFG in Al-Mg alloy from theoretical calculations and experiments.
The field gradients are given in units of 10 3

~0 3.

Theoretical '
Experiment

Ref. 1 Ref. 1
q q

Bef. 2 Ref. 2

q

, Present
calc.

Ref.

NN 8.7086

NNN -2.8031 -2.4188

1.0557 -5.6339 -2.3934 19.1988 0.06 27.414 0.12
28.895 0.03
28.895 0.07

1.0061 1.3961 10.0580 0.00 9.335 0.00
9.335 0.00
9.335 0.00

4

6

5

Asymmetry parameter in the calculations from Refs. 1 and 2 s zero.
From the Alfred and Van Ostenburg scheme without Blatt correction.
From the Alfred and Van Ostenburg scheme with Blatt correction.
From the calculation of Fukai and Watanabe without exchange correction.
From the calculation of Fukai and Watanabe with exchange correction.
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that it is difficult to find a suitable set of phase
shifts which, in addition to satisfying the Friedel
sum rule and the experimental resistivity data,
will aLso satisfy the corresponding fractional sol-
vent Knight, -shift data. ' In view of this failure,
it may be concluded that the free-electron approxi-
mation for the screening charge distribution in

the A1-based alloys with these impurities is not
good.
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