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It is proven that in two dimensions a system of electrons embedded in a uniform neutralizing
positive background and interacting by a potential given by e2/i cannot exhibit long-range crys-
talline order at any finite temperature. The proof is conditional to the following prescription for
taking the therrnodynarnic limit: The potential e /I is replaced by a screened potential e e t' /r
and p. is set to zero after the thermodynamic limit is taken.

Grimes and Adams' have recently presented evi-
dence for a crystalline transition of electrons trapped
on a surface of liquid helium. This quasi-two-
dimensional system has been canonically modeled as
a system of electrons in two dimensions, interacting
by a potential given by e2/r, and neutralized by a uni-

form positive background. Here r is the two-

dimensional distance between two points. In this
context it is important to know if at any finite tem-
perature such a system can display true long-range
crystalline order in the thermodynamic limit. In par-
ticular, there are attempts' to establish contacts
between the experiment of Grimes and Adams and
the melting theory of Koster1itz and Thouless. For
such a contact to be meaningful it remains to be
shown that a conventional long-range order cannot
exist in this system. This is precisely the subject of
this paper.

We want to emphasize that the crystalline order in

this system is not ruled out by the classic work of
Mermin. ' There exist highly plausible general argu-
ments due to Landau' and Peierls' which indicate
that crystalline long-range order cannot exist in two
dimensions. These arguments, however, are not
completely rigorous. Landau's argument is based on
his general theory of second-order phase transitions,
which is known to be misleading in the critical region.
Peierls's argument is based on the harmonic approxi-
mation. The proof in this case consists of sho~ing
that the transverse part of the harmonic phonon fre-
quency cu, ( k ) =k'a' for k 0. This then implies
that the root-mean-square deviation of a particle
from its equilibrium position increases indefinitely in

the thermodynamic limit. Although these arguments
can be challenged as not being rigorous enough, a re-
cent Monte Carlo simulation of this system by Gann,
Chakravarty, and Chester indicated, although not
conclusively, the validity of the conclusion drawn

from them. On the basis of the numerical work it
was conjectured '(in Ref. 7) that although a rigorous
proof does not exist, the general conclusion of Lan-
dau and. Peierls should be valid.

In this paper we shall prove that a true long-range
crystalline order cannot exist in this system in the
thermodynamic limit. The proof does not invoke the
harmonic approximation. It makes use of
Bogoliubov's inequality as discussed by Mermin and
is based on the prescription for the thermodynamic
limit described below.

Some complications arise because of the long-range
nature of the interaction. Although these complica-
tions are well known it is important to state them
clearly: (a) In order to obtain physically meaningful
results the interaction e2/r is replaced by
e'/r exp( —pr) Since , we. are interested in the bulk
properties of the neutral medium our limiting pro-
cedure will be first W ~, A ~, W/A n = con-
stant, and then p, 0. Here N is the total number of
electrons and A the area. This limiting procedure is a
commonly accepted one, appearing in many text-
books. However, we are unable to justify it
rigorously. Curiously enough Mermin's proof does
not hold for the screened interaction e e "'/r either,
since the interaction is not sufficiently divergent as
r D. (b) Another related assumption'0 is that the
equilibrium state of the system does not have macro-
scopic surface charge. Although it is highly implausi-
ble that an equilibrium state violating this assumption
could have lower free energy, we are not aware of a
proof of this.

It will become evident later that even with these
assumptions stated above, the original proof of Mer-
min does not go through because of the plasmons in
the long-wavelength limit. Consider, then, A' classi-
cal electrons enclosed in a box of area A. A uniform
neutralizing positive background is assumed to exist.
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The interaction
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In Eq. (1) the first term is the electron-electron in-

teraction, the second is the interaction between the
electrons and the positive background, and the third
is the self-energy of the background.

%e adopt the same criterion for crystallinity as
Mermin; i.e.,

lim (p-„)/N =0,

k not a reciprocal-lattice vector

&p&)
N-~

for k equal to at least one reciprocal-lattice vector G,
where

N

pV= Xe
i~1

Here (f) denotes the canonical ensemble average
with respect to the interaction energy U and the in-

tegrations are over the interior of a box of area A.
%e now consider the Schwartz inequality

and choose C and B to be

-i (k +G) ~ r(
e

i 1

N

B= k, 2-ea'X V, —
i~1

(4)

k(k V;) ' . . (V r,.fi r;)e ,
'e a"
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(5)

The function f( r;) is chosen as follows. ' Consider
0, to be a set of points within a distance aL' of the
walls of the box, where a is independent of L. f is a

continuous and differentiable function which vanishes
on the surface and satisfies the following conditions.
(1) 0 «.f «1 in Q„(2),f =1 everywhere else, and
(3) I'7 f I ( bL '~ in 0,, for some b independent of
L. It will become clearer later on that we have gone
to great pains in introducing the functions f( r;)."
The intention has been to make the surface terms
arising from the integrations by parts vanish. The
complications arising from f ( r;) could have been
entirely avoided with a slightly careless use of the
periodic boundary condition. The choice of B [Eq.
(5)] is one of the key points of our proof. It serves
to project out the longitudinal part of the force and
suppresses the plasmons in the denominator of the
right-hand side of the inequality [Eq. (3)]. With
these choices of C and B [Eqs. (4) and (5)] it is
straightforward to derive the inequality

&Icl') ~ &Ic"Bl')/&IBI') (3) (Ipg+o I ) ka2' ~(6)
A(k)

(6)

where

2

h(6) =[6'—(k 6)'] — dr~P(r~) f(rt)e'NJ
kgT
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i dr~P(r~)([O~f(r~)]~ —[k '7~ f(r~)] ]——
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The distribution functions are defined to be

4 e PUdr2 . drN
P(r, ) =N "

J e &Udrl drN
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The inequality (6) is now multiplied by a positive Gaussian g(k+6) centered at k +6 =0, and summed over k
to obtain

k T —G
g k+6

A V N A «&G)2 A(k)

The strategy now will be to proceed to the thermodynamic limit, show that A(k) —l«k2 for small k, and then
take the limit p, 0. The proof will then be completed by showing that the left-hand side of the inequality is
bounded. Proceeding to the thermodynamic limit then allows us to write

kdk J d&«g(k +6) ~ kaTg(
2

G) J kdk Ji d8« (12)

The inequality (12) can be strengthened further with the help of methods similar to those used by Fernandez. '

%e obtain

2 f+2%' ' —1

&' dkg(k+6) ~-7rkaTG'g(2 G) —
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Now
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The first term on the right-hand side of Eq. (14) vanishes since we are now in the thermodynamic limit. The ar-
gument is identical to that used by Mermin. ' The second term can also be seen to vanish after converting it to a
surface integral.

The next two terms also vanish but are trickier. Consider first the third term. Here at least one of the integra-
tions get restricted to 0, and let us call that integration r2. Now

p
&'12

dr~ J dr2
3 (p, r(q +pr~2+1)[f(rt) f( r 2)) P( r t, r—2,)

A A r12

r12

b2
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Similarly the fourth term can be estimated to be

[1+f(r2)][1 f(rt)](1+pr~q —p, r~q) P—( r~, r2)
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In both of the estimates [Eqs. (1S) and (16)] we have followed the prescription that the thermodynamic limit is
taken before p, 0. If this were not the case both of these estimates would have diverged. Also, since we are in

the thermodynamic limit the last term can also be seen to be zero by explicit integration. It is easy to verify that
if we had made use of the function B as chosen by Mermin, 3 the term analogous to the last term in Eq. (14)
would have diverged as p, 0. A closer look would reveal that the leading term in that case is proportional to k
and not k, thus substantiating our earlier remarks about the choice of B. %e then have

4 +2N' e
lim — d8kA(k) = dr~ I dr2
k~0 7p 40 2X ~ 112

't

WP(r~, r2) ——P(r~) ——P(r2) + (p, r~2 —p, r~2 —1) . (I'7)
A A

The limit p, 0 now allows us to identify the right-
hand side of Eq. (17) as proportional to the internal
energy per electron of a system of electrons embed-
ded in a neutralizing uniform positive background
and interacting by a potential e2/r in two dimensions.
Hence,

p28'

lim lim —
~ dpi, A(k) = —k'(F. ;„,/N) . (Ig)p~0k~0 7p

For this system a rigorous lower bound has recently
been obtained by Totsuji"

&Int ~ 1.1284e
N a

where a is the average interparticle distance. Thus
we have

r

lim lim — dHkA(k) ~k'
go~0k ~0 7p a

, (20)

which can be used in the denominator to strengthen
the inequality further. One additional piece of infor-
mation is required. This is

1 f lG ' r)
Therefore, —

J~ drtP(r~) f(r~) e ' can be re-

placed in the thermodynamic limit by (pg)/N since

by assumption the equilibrium state does not have. '.

macroscopic surface charge. '

To complete the proof it needs to be shown that
the left-hand side of the inequality [Eq. (13)] is fin-
ite. This will then imply that a finite quantity is

greater than or equal to infinity, and hence, the ines-
capable conclusion that (po)/N vanishes at any fin-
ite temperature. One way to proceed is to follow

, I

Mermin. ' The important ingredient is of course the
free energy of the system considered in this paper.
This, thanks to Totsuji, ' can be shown to have both
an upper and a lower bound. The other alternative is
to follow Sorokina' word for word and arrive at the
conclusion that the left-hand side of the inequality
(13) is bounded.
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