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Techniques are given for representing a periodic function of cubic symmetry in terms of a sum over a finite set of
orthogonal functions. General results for cubic lattices are tabulated in a form convenient for use in computation,
The accuracy of an approximation may be improved systematically by augmenting an approximate set of points. The
special points of Chadi and Cohen occur as a case in which the periodic function is evaluated at a sublattice of
points. Other sublattices may also be used. Such sets of points are found to be in the spirit of the original Baldereschi

special points because certain orthogonal functions in the expansion are identically zero for all sublattice points.

I. INTRODUCTION

Baldereschi proposed' that integrals of a periodic
function over a Brillouin zone might be accurately
approximated by evaluating the function at one
point, the Baldereschi point (BP). Baldereschi
and Tosatti' applied the technique with remarkable
success to the calculation of the dielectric func-
tion for semiconductors and insulators and gave a
comparison between calculations employing just
the BP and more accurate approximations sug-
gested by Chadi and Cohen' using finite sets of
"special" points, which shall be referred to as
CCP. As compared with the BP the CCP have the
advantage of allowing arbitrary accuracy depend-
ing on the size of the set of CCP. Both the BP and
CCP represent a tremendous savings in computa-
tion time and simplification of the calculation of
Brillouin-zone integrals as compared to approaches
involving interpolation between finite sets of
points. Since Brillouin-zone integrals occur in
numerous contexts it is not surprising that the
special-point techniques have been applied in many
instances. '

Monkhorst and Pack' observed that the CCP are
in fact finite sublattice sums, a point which was
not self-evident from the original derivation. ' It
would then appear that the idea of a BP and CCP
have nothing essential in common.

To be more explicit let f(k) be a function which
is invariant to translations [f(k+K )=f(k)] by
reciprocal-lattice vectors K and to rotations by
elements of point group G. Then, f(k) may be
expanded,

where the sum ranges over all elements of group
6 of order O'. The vectors 8 are latter. ce vectors
such that exp(iK ~ H„)=1, and each vector H is a
representative member of the set of 'S distinct
vectors S =fsRg generated from R with rota-
tions of group G. An alternative to Etl. (2) is

A.„(k)= Q exp(lk ~ sR„)/'S, (3)
S&Sfft

in which all distinct vectors (R asR ) are included
once in the sum. It follows that

A„(k)*A,(k)d'k=(A (k),A, (k))
BZ

=(A/'S )5 (4)

and that the coefficients in Eq. (1) are given by

c.= (A.(k ),f(k)) 'S„/fl, (5)

where 0 is the volume of the Brillouin zone (BZ)
in k space. The integral in Etl. (4) is over the
BZ. In the case H, =O, A, (k)=1, 'S =1, and

co= k d'k 0
BE

(6)

Q A (k;)ct,,=0, m=1, 2, . . .

is the BZ average of function f(k). .

The BP is that point k~ for which as many
A (kn)rrt=1, 2, . . . , as possible are zero. Then„
c, —= f(kn), if the series converges with sufficient
rapidity. The CCP are chosen to satisfy the .condi-
tions

f(k)= g c A„(k),

in terms of the orthogonal set of symmetrized
functions,

A„(k)=g exp(iK ~ gH„)/G',
gEG

(2)

and

Q-0= 1 . (8)

A generalization of the Chadi-Cohen conditions is
to choose the "weights" in the form of a matrix

A
/le

@=A '
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where matrix A has components

A )
——A (k;).

Then,

(10)

Q f(k, )n,„=c

Obviously, this procedure is practicable only if
the functions A„(k) in A are linearly independent
with respect to the set of points (k,}, i. e. , the
inverse of matrix A must exist. The weights given
by Eqs. (9) and (10) using the CCP and choosing the
functions A„(k) to have the lowest possible magni-
tudes of R are exactly the weights described in
Ref. 3: ~« ——e,-,. The generalization allows all
coefficients to be calculated and not just c,. How-
ever, it is not an appealing scheme as a matrix
inversion is needed.

One objective of this paper is to show that the
coefficients ~,. for the CCP can be evaluated in
closed form. The CCP are found to be special in
the spirit of the Baldereschi point. Certain sym-
metrized functions A (k) which derive from points
R on the surface of the zone in real space which
delimits inequivalent vectors R are found to be
identically zero for all CCP.

Do only CCP sublattice sums have special char-
acter'? A second objective will be to answer this

II. FINITE SUMS IN ONE DIMENSION

With physically motivated artifacts removed the
most complex mathematical structure involved is
a finite geometric series

exp =NM(n, n'; N),
un 2m(n —n')

(12a)

where m, n, n' are any integers and N is a positive

question. The derivation to be presented in Sec.
III treats both lattice and sublattice sums in the
same way. The results, Eqs. (19) and (20), Kre
expressed as the finite sum analog to Eq. (4).

Since the development of Sec. III is quite com-
pact, a one-dimension example is given in Sec. II.
The purpose of Sec. II is to display the essential
features of the derivation and notation in a context
which is relatively free of complications. The
main results for cubic systems presented in Sec.
III are Eqs. (18)-(20), which contain parameters
and are subject to conditions specified in Tables
I-IV. It is intended that the results be in a form
appropriate for immediate implementation on a
computer and that the reader may work through
the details of the derivation or not according to
his desire. In Sec. IV some comments and con-
clusions are given.

TABLE I. Notation for cubic lattice and sublattice points and zonal restrictions. Lattice
(reciprocal-lattice) points are specified by upper- gower-) case symbols. Zonal restrictions
will be specified in. terms of the &th zone wedge. Other points in the zone are generated by
rotations of the cpbic group. A zonal restriction on a set of points is indicated by the symbol
for the points with the zonal restriction in parentheses. For example, bu(fz) designates
those points of the reciprocal sublattice bu contained in the face-centered reciprocal-lattice
zone f&.

(A) Lattice and sublattice points.

u = S= [(2,0, 0), (0, 2, 0), (0, 0, 2) I

eu&=ES&= (1,0, 0) + u, eu2= ES2——(p, 1,p)+ u,

eu3 E$3 (0,0, 1) + u, eu= ES= e~ + eu2 + eu3

bui=ESg ——(0, 1,1)+u, bu2=ES2= (1,0, 1)+ u

bu3-—ES3= (1,1,0) + u, bu= ES= bui + bu2 + bu3

fu = BS= (1,1, 1) + u, s = u + eu + bu +fu

b=u+ bu, B=S+BS

f=u+fu, E=S+ES, feu=fu+ eu, beu=bu+ eu

(B) Zonal restriction. A point (i,j,k) is contained in the -th zone wedge48

if integers i &j &k &0 and

simple cubic zone: sN = S&, 2i ~ N-

body-centered zone: bz= Ez, i +j & N

face-centered zone: fN = BN, 2(i+ j+ k) & 3N and i ~ N
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nonzero integer. The function M(n, n';N) = 1 if
n=n'+j N for integer j, and M(n, n';N)=0 other-
wis'e. In Sec. III the applications to lattices and
sublattices of cubic systems involve triple products
of linear combinations of such sums. A notation
is needed which simply and clearly specifies such
finite sums and the associated restrictions on the
arguments n, n' of the summand. Further, it is
desirable to be able to reorganize such sums
easily. The immediate objective will be to re-
express sums in the form of Eq. (12a) in a com-
pact notation.

The basic idea for the notation is to classify
various infinite sets of points and then to select
from these points a finite set by allowing only those
points in the set which occur in a particular inter-
val. The notation must distinguish between points
which are summed and points which are the argu-
ments of the sum.

For the one-dimensional example let e=E
={.. . , —4, -2, 0, + 2, + 4, . . .) be the set of
all even integers and o=0=1+8 be the set of all
odQ integers. Then the set of all integers is s =S
= E+ 0. The convention is adopted that lower-case
symbols k=e, o, or s refer to points which are to
be summed and upper-case symbols H=E, 0, or S
refer to points associated with the arguments of a
sum. The generalization of this idea for cubic
systems is summarized in Table I(A).

Restrictions on sets of points will be imposed
in a symmetric way, and the symmetry will be
employed to abbreviate the notation. In the one-
dimensional example, let G =(E,I) be a two-ele-
ment group having an identity operation E and an
inversion operation I. In one dimension, inversion
simply changes the sign of a number. Let s„=s~
represent an interval (or zone) of numbers m such
that 0 (m (N/2, and where it is understood that
this set of numbers is to be extended to include the
numbers associated by symmetry operations of the
group. Thus, the complete zone in this one-di-
mensional case is N/2 (m (—N/2. Again, upper-
case symbols are associated with arguments
of the summand and lowercase symbols with the
numbers to be summed. A restricted set of points
will be represented by symbols of the form k(s„).
For example, the symbol o(s, ) represents the set
of all odd points restricted to the zone s„.o(s, )
=(—1, 1). The generalization of this concept for
cubic systems is summarized in Table I(B). The
zonal restrictions delimit basic 3-tuples of inte-
gers (i,j, k), which are then augmented by all
transformations of the cubic group operating on
the basic 3-tuples as Cartesian vectors. Thus,
the cubic group operator c„which involves a 180
rotation about the x axis adds (i, -j, -k} to the
basic set of S-tuples.

Finally, the connection with conventional solid-
@tate-physics notation is made. For cubic sys-
tems this will be done by assigning units to the
quantities which appear in the sum Eq. (12a). The
points that are summed will be associated with k
vectors by assigning a unit (2m/aN}. Thus, for a
set of points k (k=e, o, or s), {k)=k(2m/aN) is
the corresponding set of k vectors. Similarly, , the
arguments of the summand will be associated with
attice vectors by assigning unit a, the lattice con-

stant. Thus, for a set of points H, {R)=Ha is the
corresponding set of lattice vectors. Since nothing
essentially new has been done, the symbols repre-
senting restricted point sets will be used without
decoration to represent restricted sets of k vectors
and lattice vectors. Part of the point of this de-
velopment is to emphasize that these assignments
are quite arbitrary. One could have associated,
equally well, the summed points with real space
and the summand arguments with reciprocal space.

To reexpress Eq. (12a) in the restricted point
set notation, the sum must be reorganized in a
symmetric way and the function M(n, n';N) must
be reexpressed in the new language. The sum
may be reorganized by replacing integers N/2
&m&N by m'=m -N. Then with the exception of
the point m = —N/2 (which only occurs if N is even)
the points in the sum are identical to the set s(s„).
To make the sum symmetric it is convenient to
introduce a weight function w(k) which is defined
relative to a zonal restriction as w(k) = 1 when k
is an interior point of the zone and ao(k) =—,

' when
k is a surface (or end} point of the zone. The
generalization of function M(n, n'; N) is h(R, R';NS)
=1 if R =R'+R„ for R„contained in the lattice
NS (NS indicates lattice S multiplied by N) and is
zero otherwise. A new symbol has been used here
because this function 4 is an extension of function
M and is not identical to M. The reason is that
whereas 6(R,R';NS) is indeed just a scaled ver-
sion of M(n, n'; N), the function 4 also carries
meaning with arguments 4(R, R'; NO) while M does
not. In this notation Eq. (12a) becomes

g so(k) exp[ik(R —R')]=NB(R, R';NS). (12b)
s (s~)

The notation has been devised to do more than
just express a geometric sum in conventional
solid-state notation. The notation also allows one
to specify and evaluate sublattice sums. In the
one-dimensional example only two sublattices e and
o occur.

For even N the sum over even sublattice points is

P w(k) exp(ih(a —a')]= —a R, ))'; —les).N, 1

e(sg ) 2 ' ' 2
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Q w(k) exp[ik(R -R')]
0(sg )

= —[h(R, R'; NS) —4(R, R'; ~ NO)] . (14a)

The direct evaluation of the sum in Eq. (14) gives

exp[i(2v/Na)(R R'}]r (R,—R'; —,
' NS)

= &(R, R '; NS) —d (R, R '; ', NO) . (1—4b)

The right member of Eq. (14b) explicitly reveals
that the phase factor has the value -1 when R -R'
is in sublattice ~NO and has the value +1 for
R -R' in lattice NS.

Recall that the functions 6(R, R';NS) have the
value unity for lattice vectors which are equivalent
with respect to the lattice NS (NS is lattice, S
scaled by N) Thus, .the functions 4 imply a zonal
restriction for inequivalent lattice vectors. For
example, function 6(R,R'; ,'NS) impli—es that in-
equivalent lattice vectors are restricted to the
zone SN&, . The functions h(R, R'; 2NO) involv-ing
a sublattice ~ NO always occur in the context of
explicitly evaluating a sublattice sum as in Eqs.
(13) and (14). Since

4(R, R'; 2NS) = 6(R, R';NS)+ h(R, R'; 2 NO)

the zonal restriction on lattice vectors associated
with 6(R, R'; ,' NO) is als—oS„f,. Also, note that
combining additively Eqs. (13) and (14) repro-
duces Eq. (12b}.

Equation (14) is a new result which leads to the
one-dimensional analog of CCP. The "special"
nature of CCP only manifests itself in the context
of sums over symmetrized functions. In one di-
mension the relevant symmetrized functions are
cos(kR} and sin(kR). For cosine functions, Eq.
(14) is applied to evaluate the cosine sum

g m(k) cos(kR) cos(kR')
eCs~)

= (N/4)[h(R, R'; NS) —r (R, —-R'; ,' NO)—
+ b, (R, R '; NS) —h(R, R ',

~ NO] . (15)

Note that the restricted set of k vectors including
the symmetry-related points involved is

e(s„)=(. . . , 2m, . . . )2v/. (Na)

=(. . . , m, . . .] 2v/{aN/2), -N/2 2m N/2.

Thus, e(s„)=s(s„&,) and Eq. (12b) is identical to
Eq. (13) if N in Eq. (12b) is replaced by N/2. In
this sense we have shown that sums over k vectors
in the sublattice e for N even does not lead to a-
new result. Conversely, the set of points s(s„)
= e(s») serves as the basis for extending a lattice
sum to larger ¹

For even N the sum over odd sublattice points is

The right member of Eq. (15) may be evaluated
explicitly when R and R' are restricted to lattice
vectors R, R' in S(S„&,) =(o ~m ~N/4ja. Note
that symmetry-related (negative) points do not
produce independent symmetrized functions. The
key observation here is that should the point
R =R„=(N/4)a exist (N must be divisible by 4),
the right-hand member of Eq. (15) is identically
zero. The only way that this can happen is if
cos(kR„) =0 for each k in the sum. Exactly, the
same situation occurs in three dimensions, and
this is what is "special" about CCP.

All one-dimensional sums may be expressed
in the form of finite-sum analogs to Eq. (4),

g ao(k) cos(kR ) cos(kR') =N,{k(s„)}
h(sg)

sl ill 0 F 0S

(15a)

where 'S„[see Eq. (3)] is 'S„=2 for R & 0 and
'S, = 1 for R, =O. The quantity N{ k(s„) )is the
number of inequivalent points in the sum

Q eo(k) =N, (h(s„)).
h(sg)

(16b)

N(s(s„)) =N and N(o(sz)) =N/2. The normaliza-
tion factor M(k, m) is always unity for R interior
to the zone of inequivalent lattice vectors. M(s, m)
=2 if a R„ is a zone-surface point R =(N/2)a
Such a surface point exists only if¹iseven. M (o, m)
=0 if R is a zone-surface point R„=(N/4)a. The
odd sum has meaning only for even N, and a zone-
surface point R„=(N/4)a occurs only if N is divisi-
ble by 4.

There are more parallels that may be drawn
between the one-dimensional case and the cubic
systems. The main complications in proceeding
to cubic systems are the difficulty in visualizing
the three-dimensional geometry and the increased
number of possible restricted point sets.

III. FINITE CUBIC LATTICE SUMS

The objective of this section will be to outline
an explicit derivation of lattice and sublattice sums
over a Brillouin zone in which for each set of
points in the k-space sum there will correspond a
specific set of lattice vectors (Rj. The results
summarized in Tables I-IV apply to Eqs. (18)-(20)
of the text.

Notation for specifying (sub)lattices of points is
given in Table I(A). As in one dimension, upper-
case symbols are associated with space (sub)lat-
tices and lower-case symbols with reciprocal (sub)lat-
tices. It may be helpful to note the mnemonics
used in naming the sublattices. Of course, s, 5,
and f refer to simple, body centered, and face
centered. The conventional usage is followed
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where the lattice reciprocal to a given space lat-
tice is given the same name as the space lattice.
For example, f is a body-centered-cubic lattice
of points, but it occurs as a lattice reciprocal to
a face-centered space lattice. The prefix e in eu
is a reminder that these are edge points. The
reciprocal lattice u is a universal lattice in that
it is a sublattice of all three cubic reciprocal lat-
tices.

A finite set of (sub)lattice points is specified by
allowing only those points which lie within or on the
surface of a "zone." Such zonal restrictions are
specified in Table I(B). Thus, g(kN) symbolizes k
vectors in the form k=(k„k2, k, ), where 3-tuples
of integers k are points in (sub)lattice g and they
are restricted to a zone h~. Units for k vectors
are 2m/Na, where a is the lattice constant for the
conventional cue. The k-vector restrictions are
just BZ restrictions. Similarly, H(I,„)represents
the set of lattice vectors 8„=(m„m„m, }with 3-
tuples of integers m& in (sub)lattice H which are
restricted to the zone L„. Units for lattice vec-
tors are a/2.

Note that for integer N, zone s» contains all k
vectors in zones s„, k„, and f„. The approach
will be to perform the (sub)lattice sum g(s,„)of
exp(ik R ) directly and then to reduce it to the
appropriate BZ. Since it is conceptually simplest
to consider all points within a particular zone of
k space, a weighting scheme is devised whereby
points on the surface are assigned a weight ac-
cording to the fraction of the point (regarded as a
finite sphere) which is contained in the volume.
For the simple cubic zone an interior point k has
weight w(k) = 1; for face points w(k) = —,'; for edge
points ao(k) =—', ; and for vertex points ao(k }= —', .
This weighting assures that equivalent surface
points will be counted once only. The result is

m k expik R —R'
e( 2g}

=N'[n 60(R, 8;NS)+n, &(8, R', NZS)

+ n, 4(R, R'; NES) + n, h(R, 8'; NBS)],

(17a)

where 4(R, R';NH) =1 if R —R' =NR(H), where
8(H} is any vector of (sub)lattice H and h(R, 8', NH)
=0 otherwise. The parameters n& (j=0, 1, 2, 3)
depend on the (sub)lattice sum which has been per-
formed and are specified in Table II.

It may be helpful for the reader to note that in
Table II only the first four entries are fundamen-
tal. All remaining entries correspond to combi-
nations of these sublattice sums. For example,
to obtain the lattice sum b, one may simply com-
bine sublattice sums u and bu. The coefficients

TABLE II. Brillouin-zone sum parameters for Eqs.
(18). The first three columns labeled I'(L) indicate re-
strictions on N for each of the space lattices. A
(sub)lattice sum g which occurs Ilontrivially only for
even N is indicated with an 8, and a sum g which occurs
nontrivially for both even and odd N is indicated with an
o. The last column Z& specifies zonal restrictions on
lattice vectors.

~(s) z(a) s (F) ~0 si g2 R3

0

8Q

bl
fu
S

b

f80
f
b8u

1 1 1 S~
1 -1 -3 SN

3 s„
-1 1 -1 S~

0 0. 0
0 . 0 4 B~
p p 4 B„
0. . 2 0 Fg
0 -2 0 Fg

n& add columnwise.
From Table H and Eq. (17a) it is seen that the

lattice sums simplify to

ra(k ) exp[i k ~ (8 —R')] =N'n, h( R, 8', NL},

(17b)

where k (k=u, s, k, f ) is any reciprocal-lattice
sum and L (L=—,

' S, S, B, F) is any space lattice.
No such simplification is possible for sublattice
sums. In the case of sublattice sums the first
nonzero coefficient n& (j=1,2, 3) implies the
smallest zone Z„ in which inequivalent vectors
R may be found. For n, 0, Z„=S~; for n, 10,
Z„=E„; and for n, 0, Z„=8~. If n, =n, =n, =0,
then Z~ =S2~.

All that remains in the sketch of the proof is to
reduce the sums over points in s» to points within
the appropriate BZ. The following observation
makes this process straightforward. Conventional
BZ's are formed subject to the requirement that
all nonequivalent points be as close to the origin as
possible. ' Alternative restrictions on nonequiva-
lent points are simpler to conceptualize in the
cases of lattices reciprocal to the bcc and fcc
space lattices. Let a "simple cube" have sides
of unit length (reciprocal-lattice units are 2v/a)
which are parallel to the cubic axes: the [100],
[010], and [001]directions. Of course, a simple
cube centered about the origin is identical to the
simple cubic BZ. It is easy to show directly that
the BZ for the lattice reciprocal to the bcc space
lattice is equivalent to two simple cubes, one
centered at the origin and one centered at the
point (1, 0, 0). Also, the BZ for the lattice recipro-
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cal to the fcc space lattice is equivalent to four
simple cubes, one centered at the origin and three
centered about points (1, 0, 0), (0, 1, 0, ), and (0, 0, 1).

The reduction must be done separately for each
space lattice. It is done by translating simple
cubes and half cubes into the appropriate BZ sim-
ple cubes. Two types of translations occur:
(1) Translations by k vectors in the universal lat-
tice u, e. g. , k —(2, 0, 0) =(-2N+k„k„k,)/N.
Such translations do not affect the sublattice. (2)
Translations by a primitive lattice vector. e. g. ,
k —(1, 1,0)=(-N+k„-N+k2, k, )/N. If N is odd,
the sublattice may be changed. The weighting
scheme assures that the interior points have
weight w(k }= 1 and that surface points are ap-
portioned according to the fraction of the point
contained inside the BZ. All that must be done
is to account for each translation. The BZ in the
form of simple cubes is then rearranged into the
symmetric BZ. In the case where N is odd each
translation may introduce a new sublattice of
points. Such cases are excluded as trivial. In
nontrivial cases, the reduction simply introduces
a space-lattice-dependent repetition factor M~:
Mz ——8, M~ =2, and Ms =4. Equations (12) become

Mz g w(k) exp[ik (R —R')]
r {h~)

=N'[n, h(R, R'; NS) + n, h(R, O'; NES)

+ n, 4(H, R'; NFS) + n, h(R, R'; NBS)],

(18a)

Mz g w(k)exp[ik (R —R')]=N'n, b(B, R';NL).
s'{&g )

No(g(h„}) is the number of inequivalent points in
the (sub)lattice sum

se k =No ghg
M~

(19b)

's(k)A (k)A (k)=N, (g(h„)}
g{rhg ) 0Ã

(19c)

where xh„ is the symmetry-reduced zonal section
or irreducible wedge (RBZ). If od(k) is the num-
ber of k vectors in the set d(k) of distinct vectors
generated by cubic group rotations, then

Before proceeding to discuss the normalization
factor M(g, m) and the use of symmetry in the
sums, it is well to be sure that the meaning of
Eq. (19a) is clear. Assume that N is given. The
reciprocal lattice h=( kj is implied by the trans-
lational invariance of f(k). In turn this implies
that the relevant lattice vectors are H=(R ] and
the appropriate reduction factor is M~=MH. The
sum over points k of (sub)lattice g [Table I(A)] is
restricted to zonal section h„[Table I(B)], but is
otherwise independent of h. Any (sub)lattice sum
may be used, provided N is even or it is nontrivial
in the case of odd N. The inequivalent vectors of
H are determined by the sum (Table II). The nor-
malization factor M(g, m} (Tables II-IV) for vec-
tor R depends on R and the sum.

The use of symmetry to reduce the sum and the
evaluation of normalization factors involves simi-
lar considerations. Since the functions A (k) are
invariant to cubic group rotations all k vectors
which are related by rotations may be combined
into one term,

(18b) 's(k) =w(k)'d(k). (20)

The relevant parameters are given in Table II.
All sub(lattices) considered are invariant to cubic
rotations.

The preceding discussion applies to cubic (sub)-
lattice sums in general. Now, the scope is limited
to applications for expansions of functions f(k)
which are invariant to cubic group rotations and
to translations by reciprocal-lattice vectors as in
Eq. (1). The result has the form

Q w(k)A (k)A, (k)=N, (g(h„))-.

(19a}

for all (sub) lattice sums g characterized in Table
II, where the symmetrized functions defined by
Eqs. (2) and (3) are constructed from transla-
tionally and rotationally inequivalent vectors R
contained in zonal section Z„. The quantity

The set of vectors d(k) may include vectors k'=k
+K which, therefore, are translationally equiva-
lent to k. Let s(k) denote the set of vectors which
are rotationally distinct from k and translationally
inequivalent. For most k vectors in cubic systems
the number of members of s(k) is 's(k), as given
by Eq. (20). For interior points w(k)=1 and
's(k) =d(k). For most face points the effect of
points in d(k) which are equivalent to k is to re-
unite the face points into whole points. The proof
is by inspection. In cubic systems the only points
in the BBZ for which Eq. (20) fails occur in the
case of the symmetric RBZ for the lattice re-
ciprocal to the fcc space lattice and which fall
on the hexagonal face 2k ~ (1, 1, 1)=3. For these
points translation of a k vector rotated by a dihe-
dral operation produces a relation between face
points, and not an equivalence. These symmetry-
related points lie on either side of the line between
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TABLE III. Weights and normalization factors for (sub)lattice sums over the Brillouin
zone in Eqs. (19). Eight different types of points are distinguished by cubic rotational sym-
metry. They are listed with their multiplicities d(k) shown in parentheses: (0, 0,0), (1); (x,
0, 0), (6); (x, x, x), (8); (x,x, 0), (12); (x, y, y), (x, x, z), (x,y, 0), (24); (x, y, z), (48), where x&y
&z &0. Weights zv(k) and normalization factors M(g, m) are given for each of the cubic zones
defined in Table I. Points are specified by 3-tuples (i,j,k) where i ~ j ~ k ~0. A restriction
to the hexagonal face 2(i+ j+ k) = 3N is denoted HF. Any further restrictions are given ex-
plicitly. (Sub)lattic-dependent parameters of the normalization factor M(g, m) are defined
in Table II.

(A) SC Zone, Sz.

(4) {N,N, N)/2

(3) (N, N, 2k)/2, N&2k~ 0

(2) (N, 2j, 2k)/2, N& 2j~ 2k & 0

(1) interior point

(B) bcc zone b&= F&,

(5) (N, Q, 0)

(4) (N, N, N)/2

(3) (i, N-z, N- i); N&z &N/2

(2) {i,N-i, k)/2, N&i &N/2; N-i &k

(1) interior point

(C) fcc zone, f„=B~.
(5) (N, N/2, 0)

(4) (N,j,k), N/2&j + k& 0

(2) (i, N/2, N-i), N&i& N/2

{2a) (i,j,k), N& i&N/2&j &N/4- HF

(2b) (i,j,k), N&i&N/2;3N/4&j &N/2; HF
(1) interior point

m(k)

1
8

4

2

8

4

3

2

1

2
1
2

M(~, m)

(np + 3ng + 3n2 + n3)/np

(n, + 2n, + n, )/n,

(np + ng)/np

{2np+ 4n, )/n,

(n, + 3n, )/n,

{np + 2n2)/np

(np+ n2)/np

(2np + 2n3)/np

(n, + n, )/n,

points W [k=(1,—,', 0)] and I. [k=(—,', —,', —,')]. Since
such points are face points with ts(k) = —,', a way to
handle the situation is to exclude one set of these
points; (for example, those with k„&—,'). Then,
Eq. (19c) applies equally to all cubic systems,
with the prime on the sum serving as a reminder
to exclude the hexagonal face points described
above in the case of the fcc space lattice. In prac-
tice it is simplest to determine 'd(k) and then to
use Eq. (20) to compute 's(k). The weights for
face points in cubic systems are given in Table III.

To complete the discussion of Eq. (19) the nor-
malization factor M(g, m) remains to be derived.
First, symmetry is used in Eq. (19a) to replace
A.„(k ) by one plane wave,

Q to(k)A„(k)A„,(k)
= Q to(k)exp(ik R„)A„,(k) (21)

g(h~)

~ tv( k ) exp[i k ~ (sR„, —R„)]
0~

g g(hN) ~m

and the second equation follows using the definition
of A„, in the form of Eq. (8). Then, Eqs. (18) are
used to evaluate the sum. The face points on the
zonal section must be treated separately. The re-
sults expressed as normalization factors are given
for general (sub)lattice sums in Table III and are
evaluated for the sums considered here in Table
IV. The parameters have been checked by verify-
ing Eq. (19c) by direct calculation on a computer.

IV. DISCUSSION

Several points merit further comment. In the
case of the sublattice sum fu all A (k) =0 which
are constructed with respect to surface poirits
R . These are Chadi-Cohen points and this is why
they are special. Of the possible choices of sub-
lattice sums, they are to be preferred because
calculations using other symmetric sublattice
points often involve more points in the sublattice
sum than the number of independent coefficients
c of Eq. (1) that they can approximate.



3676 N. O. FOLLAND 22

TABLE IV. Evaluation of normalization factors M(g) for surface points. The various types
of surface points are in listed Table III. Only the index will be given here.

(A) sc zone, ~z(~2&).

(4)

(3)

(2)

(1)

M(eu)

4
3
4
3

Mgl)

2
Y

1

fM()]

(B) bcc zone, bz=+z.

(5)

(4)

(3)

(2)

M(ye&)

i
3
2
Y

(C) fcc zone, f~=Bz.
(5)

(4)

(3)

(2a)

M(5) M(feu)

Any of the (sub)lattice sums above may be used
to approximate specific Brillouin-zone integrals
such as Eqs. (5) and (6). In general the number
of independent coefficients c obtained is equal to
or less than the number of rotationally and trans. —

lationally inequivalent points used in approximat-
ing the coefficient. The finite-sum analog to Eq.
(5),

M(g, rn)c„='S g os(k)A (k )f(k)
g(rh~) N (g()t ))

is obtained using Eq. (19c) and Eq. (1). As an

example of the use of the tables, consider the
case where f (k) is invariant to lattice vectors
reciprocal to the fcc space lattice. Let g=fu, the
CCP. Hence, from Table I(A), the k vectors will
be of the form k=(1, 1, 1)+(2m, 2n, 2p) inunits of
2s/(Na), where rn, n, p are integers. Further, in
Table I(B) they must be in the face-centered re-
duced zone f„conditioned by

2m+1& 2n+1& 2P+1&0,

2m + 1 ~ N, 2(3 + 2m + 2n + 2p) & 3N .

The space-lattice repetition factor is M~ =- 2.

TABLE V. Comparison of the number of points for
simple cubic lattice sums N(s(rf~)) to Chadi Cohen su-b-
lattice sums N(fu(rf2~)) of the same accuracy in estimat-
ing BZ integrals. The example refers to an fcc space
lattice. N restricts the zonal section. No is the. ,total
number of points in the Brillouin zone.

No N(& &far)) N(fg (rftg) )

3
4
5
6
7
8

12
16

108
256
500
864

1 372
2 048
6 912

16 384

10
19
28
44
60
85

231
489

10
19
28
44
60

182
408

From Table II, line 4, it is seen that N must be
even and that the inequivalent lattice vectors are
face-centered lattice vectors, restricted to a
reduced zone S~. The total number of points, Eq.
(19b), is No(fu(f„)) =N'/2

The weight factors os(k) are determined from
Eq. (20) and Table III(C). 'S„ is the number of
distinct lattice vectors generated by cubic rota-
tions. The normalization factors M(fu, m) are
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listed in Table IV(A), column 4. The fact that
M(fu, m) =0 for lattice vectors H„on the surface
of zone S„simply means that these coefficients
c are not determined, since A„(k}=0for all
points k of the type fu. The ratios o'. ,o='s(k, )/
N (fu(f~)) are exactly the weights described by
Chadi and Cohen, Eqs. (V} and (8).

The sum with g= s and with N replaced by N/2
would evaluate these same "internal" coefficients
an& the coefficients corresponding to the surface
lattice vectors at the same level of accuracy. The
application of CCP to the interpolation of functions
throughout the Brillouin zone has attractive possi-
bilities.

It is not difficult to derive formulas which
"count" the number of inequivalent points in a
~4, zonal section. To illustrate the "surface" ef-
fect in CCP, a comparison is made in Table V
between the number of CCP and the number of
simple cubic lattice points which may be used to
evaluate BZ integrals to the same accuracy. The
comparison is made for the fcc space lattice.

However, it would be premature to conclude
categorically that the CCP are the only sublattice
sums that merit consideration. Other sublattices
may prove valuable in expansions or in the evalua-
tion of specific integrals involving symmetries
other than the identity representation. Equations
(18) provide the basis for an investigation of such
expansions.

The derivation given here is specific to the cubic

systems. In this respect it lacks the elegance of
an approach which treats any space lattice on equal
footing. A more general approach would have been
to form k-vector (sub)lattices with respect to the
primitive k vectors, b» b„b,. For example, an
odd set of k vectors would be o,.=(. . . , —3, —1,
1, 3, . . .)b,/N T.he corresponding treatment for
lattice vectors relates lattices and sublattices to
the primitive lattice vectors a„a„a, (a, ~

b&

=2w6,.&). For cubic systems one obtains the same
results as described above, but at the cost of con-
siderable complication.

It would be of interest to see the effect of using
CCP in applications to interpolation such as have
been reported recently by Boyer. ' Boyer's ap-
proach to evaluating an approximation is a very
good one and can be used any time that Fourier-
series techniques are applicable. It is to be pre-
ferred to the time-honored practice of pronouncing
an approximation to a particular Fourier coefficient
adequate if it appears to stabilize as the level of a
approximation is increased.

ACKNOWLEDGMENTS

I wish to express my appreciation for the gen-
erous hospitality of H Division of the the Lawrence
Livermore Laboratory where this work was com-
pleted. This work was performed under the
auspices of the U. S. Department of Energy by
Lawrence Livermore Laboratory under Contract
No. W-7405-Eng-48.

*The author was a participating guest at Lawrence Liver-
more Laboratory and on sabbatical leave from Kansas
State University, Manhattan, Kansas 60506.

A. Baldereschi, Phys. Rev. B 7, 5212 (1973).
A. Baldereschi and E. Tosatti, Phys. Rev. B 17, 4710
(1978).

D. J. Chadi and M. L. Cohen, Phys. Rev. B 8, 5747
(1973).

G. Gilat, J. Comput. Phys. 10, 432 (1972).
58ee Citations Index references to Ref. 3 above. Most

of these references do not specifically study the ac-
curacy of the method.

H. J. Monkhorst and J. P. Pack, Phys. Rev. B 13, 5188
(1976).

G. F. Koster, Solid State Phys. 5, 174 (1957).
SL L Boyer, Phys. Rev. B 19, 2824 (1979).


